Resolution Lower Bounds for Refutation Statements

Michal Garlík Polytechnic University of Catalonia

Banff, Jan 19 - 24, 2020

 $\mathsf{REF}^F_{\mathsf{Res},v}$... propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

 $\mathsf{REF}^F_{\mathsf{Res},v}$... propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

An exponential lower bound $(2^{v^{\delta}})$ on the size of resolution refutations of $\mathsf{REF}^F_{\mathsf{Res},v}$ for any unsatisfiable F (and any v greater than a fixed small polynomial in the size of F).

 $\mathsf{REF}^F_{\mathsf{Res},v}$... propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

- An exponential lower bound $(2^{v^{\delta}})$ on the size of resolution refutations of $\mathsf{REF}^F_{\mathsf{Res},v}$ for any unsatisfiable F (and any v greater than a fixed small polynomial in the size of F).
- An exponential lower bound on the size of resolution refutations of $SAT^{n,r} \wedge REF^F_{Res,v}$ (negation of the reflection principle for resolution).

 $\mathsf{REF}^F_{\mathsf{Res},v}$... propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

- An exponential lower bound $(2^{v^{\delta}})$ on the size of resolution refutations of $\mathsf{REF}^F_{\mathsf{Res},v}$ for any unsatisfiable F (and any v greater than a fixed small polynomial in the size of F).
- An exponential lower bound on the size of resolution refutations of $SAT^{n,r} \wedge REF^F_{Res,v}$ (negation of the reflection principle for resolution).
- New examples of CNFs exponentially separating Res(2) from resolution.

 $\mathsf{REF}^F_{\mathsf{Res},v}$... propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

- An exponential lower bound $(2^{v^{\delta}})$ on the size of resolution refutations of $\mathsf{REF}^F_{\mathsf{Res},v}$ for any unsatisfiable F (and any v greater than a fixed small polynomial in the size of F).
- An exponential lower bound on the size of resolution refutations of $SAT^{n,r} \wedge REF^F_{Res,v}$ (negation of the reflection principle for resolution).
- New examples of CNFs exponentially separating Res(2) from resolution.

We first assign some variables in $REF_{Res,v}^F$ to obtain its layered version $REF_{s,t}^F$ with s levels of t clauses.

Writing down the propositional formula $REF_{s,t}^F$

$$\neg D(s,t,\ell,b) \qquad \qquad \ell \in [n], b \in \{0,1\}$$

Clause $D_{s,t}$ is empty.

Writing down the propositional formula $REF_{s,t}^F$

$$\neg D(s,t,\ell,b) \qquad \qquad \ell \in [n], b \in \{0,1\}$$

Clause $D_{s,t}$ is empty.

$$\neg L(i,j,j') \lor \neg V(i,j,\ell) \lor D(i-1,j',\ell,1)$$
$$i \in [s] \setminus \{1\}, j,j' \in [t], \ell \in [n]$$

Clause $D_{i-1,j'}$ used as the premise given by L(i,j,j') to derive $D_{i,j}$ by resolving on x_{ℓ} must contain the literal x_{ℓ} .

And so on...

The main result

An exponential lower bound on the size of resolution refutations of $\mathsf{REF}^F_{s,t}$ for any unsatisfiable F.

Theorem

For each $\epsilon>0$ there is $\delta>0$ and an integer t_0 such that if n,r,s,t are integers satisfying $t\geq s\geq n+1,\ r\geq n\geq 2,\ t\geq r^{3+\epsilon},\ t\geq t_0$, and F is an unsatisfiable CNF consisting of r clauses C_1,\ldots,C_r in n variables x_1,\ldots,x_n , then any resolution refutation of REF $_{s,t}^F$ has length greater than 2^{t^δ} .

High-level proof sketch

- ▶ Proof by contradiction: Assume there is $\epsilon > 0$ s.t. for all δ and t_0 there are n, r, s, t, F satisfying the conditions of the Theorem and there is a refutation Π of REF $_{s,t}^F$ with $|\Pi| < 2^{t^\delta}$.
- ▶ Find suitable δ and t_0 , and prove a contradiction in two steps:
- 1. Apply a random restriction ρ to obtain $\Pi \upharpoonright \rho$ with small "width": ρ satisfies all "wide" clauses of Π w.h.p.
- 2. Use an adversary argument to show that small "width" refutations of $\mathsf{REF}^F_{s,t} \upharpoonright \rho$ don't exist.

Proof ingredients: important pairs

Usual notions of width (or block-width or index-width) don't work: the restriction ρ has to respect functionality (e.g. $L(i,j,1) \lor ... \lor L(i,j,t)$ together with $\neg L(i,j,j') \lor \neg L(i,j,j''), j' \neq j''$), and so setting $L(i,j,\cdot)$ at random satisfies a single positive literal with too small probability (1/t).

Proof ingredients: important pairs

- Usual notions of width (or block-width or index-width) don't work: the restriction ρ has to respect functionality (e.g. $L(i,j,1) \lor ... \lor L(i,j,t)$ together with $\neg L(i,j,j') \lor \neg L(i,j,j''), j' \neq j'')$, and so setting $L(i,j,\cdot)$ at random satisfies a single positive literal with too small probability (1/t).
- ▶ However, the probability of satisfying a single negative literal is very good ((t-1)/t). This motivates:

Definition

We say that (i,j) is L-important in a clause E of Π if E contains a negative literal of a variable in $L(i,j,\cdot)$ or if E contains at least t/2 positive literals of variables in $L(i,j,\cdot)$.

Proof ingredients: random restrictions

Set $p=t^{-a}$ with $a=\min\{\frac{2+\epsilon/2}{3+\epsilon/2},\frac{3}{4}\}$, and define a random restriction ρ by the following experiment:

- 1. For each pair $(i,j) \in [s] \times [t]$, with indep. prob. p include (i,j) in a set A_D . Then for each $(i,j) \in A_D$, independently, sample a complete clause $D_{i,j}$
- 2. For each $j \in [t]$, with independent probability p include the pair (1,j) in a set A_I . Then for each $(1,j) \in A_I \setminus A_D$, independently, choose at random $m \in [r]$ and set $I(j,\cdot)$ to m.
- 3. For each pair $(i,j) \in \{2,\ldots,s\} \times [t]$, with independent probability p include (i,j) in a set A_V . Then for each $(i,j) \in A_V$, independently, choose at random $\ell \in [n]$ and set $V(i,j,\cdot)$ to ℓ .
- 4. For each pair $(i,j) \in \{2,\ldots,s\} \times [t]$, with independent probability p include the pair (i,j) in a set A_{RL} . Then, for each $i \in \{2,\ldots,s\}$, sample a random 1:2 injection to level i-1. Set $L(i,j,\cdot)$ and $R(i,j,\cdot)$ accordingly.

Proof ingredients: properties of ρ

Lemma

Each of A_{RL} , A_D , A_I , A_V contains < 2pt index pairs on each level w.h.p.

Proof ingredients: properties of ρ

Lemma

Each of A_{RL} , A_D , A_I , A_V contains < 2pt index pairs on each level w.h.p.

Lemma

W.h.p., ρ does not create "worse" connected components then the following:

 ρ simplifies clauses of Π

Lemma

W.h.p. for every clause E in $\Pi \upharpoonright \rho$ and every $Z \in \{D, V, I, L, R\}$, the number of Z-important pairs in E is $< w := t^{4/5}$.

Adversary argument

- We run the adversary argument with "admissible" extensions of ρ , which are partial assignments satisfying certain closure properties.
- ▶ We start the adversary argument at the empty clause of $\Pi \upharpoonright \rho$ with the minimal "admissible" extension σ_{\emptyset} of ρ , and we inductively build a path going from a clause to one of its premises, following certain rules and modifying our admissible assignment.
- ▶ We show that for each clause E we visit in $\Pi \upharpoonright \rho$, the current admissible assignment σ_E satisfies the following:
 - 1. σ_E assigns all variables in E with important indices,
 - 2. whenever σ_E evaluates a variable with a literal in E, it falsifies that literal.

Adversary argument

- ▶ We show that because the "width" of clauses E in $\Pi \upharpoonright \rho$ is small, every new σ_E can be found such that it never falsifies an axiom of $\mathsf{REF}^F_{s,t}$.
- Consider the case when the resolved variable is L(i,j,j') and it is not set by σ_E . At each level, σ_E touches few index-pairs: ρ touches O(pt) pairs and $\sigma_E \setminus \rho$ touches O(w) (due to the small "width" of E).
- Also, we must avoid satisfying any of the variables L(i,j,j'') which may be present in E. But there is at most at most t/2 of them in E, since (i,j) is not L-important (otherwise L(i,j,j') would be already set)
- ▶ We still have O(pt + w) + t/2 < t untouched possibilities where to map $L(i, j, \cdot)$, which makes it easy not to falsify any axiom of $\mathsf{REF}^F_{s,t}$.

