(Semi)Algebraic Proofs over $\{\pm 1\}$ Variables

Dmitry Sokolov

Banff International Research Station January 20, 2020

Notation

$$(\mathcal{F}, \mathcal{H}) = \begin{cases} f_1(x_1, \dots, x_n) = 0 \\ f_2(x_1, \dots, x_n) = 0 \\ \dots \\ \frac{f_a(x_1, \dots, x_n) = 0}{h_1(x_1, \dots, x_n) > 0} \\ h_2(x_1, \dots, x_n) > 0 \\ \dots \\ h_s(x_1, \dots, x_n) > 0 \end{cases}$$

 f_i, h_j are polynomials.

Notation

$$(\mathcal{F}, \mathcal{H}) = \begin{cases} f_1(x_1, \dots, x_n) = 0 \\ f_2(x_1, \dots, x_n) = 0 \\ \dots \\ \frac{f_a(x_1, \dots, x_n) = 0}{h_1(x_1, \dots, x_n) > 0} \\ h_2(x_1, \dots, x_n) > 0 \\ \dots \\ h_s(x_1, \dots, x_n) > 0 \end{cases}$$

 f_i, h_j are polynomials.

Range axiom R_i for a variable x_i :

- $\{0,1\}$ basis: $x_i^2 x_i$;
- $\{\pm 1\}$ basis: $x_i^2 1$.

4 D > 4 A > 4 B > 4 B > B 9 Q A

The **Sum-of-Squares** (SOS) proof of $(\mathcal{F}, \mathcal{H})$:

$$\sum_{u=1}^{a} p_{u} f_{u} + \sum_{j=1}^{n} r_{j} R_{j} + \sum_{v=1}^{b} q_{v}^{2} h_{v} = -1$$

$$f_u \in \mathcal{F}, h_v \in \mathcal{H} \cup 1$$

The **Sum-of-Squares** (SOS) proof of $(\mathcal{F}, \mathcal{H})$:

$$\sum_{u=1}^{a} p_{u} f_{u} + \sum_{j=1}^{n} r_{j} R_{j} + \sum_{v=1}^{b} q_{v}^{2} h_{v} = -1$$

$$f_u \in \mathcal{F}, h_v \in \mathcal{H} \cup 1$$

The **Sum-of-Squares** (SOS) proof of $(\mathcal{F}, \mathcal{H})$:

$$\sum_{u=1}^{a} p_{u} f_{u} + \sum_{j=1}^{n} r_{j} R_{j} + \sum_{v=1}^{b} q_{v}^{2} h_{v} = -1$$

$$f_u \in \mathcal{F}, h_v \in \mathcal{H} \cup 1$$

$$p_i \in \mathcal{F} \cup \bigcup_{j=1}^n \{R_j\};$$

The **Sum-of-Squares** (SOS) proof of $(\mathcal{F}, \mathcal{H})$:

$$\sum_{u=1}^{a} p_{u} f_{u} + \sum_{j=1}^{n} r_{j} R_{j} + \sum_{v=1}^{b} q_{v}^{2} h_{v} = -1$$

$$f_u \in \mathcal{F}, h_v \in \mathcal{H} \cup 1$$

- $p_i \in \mathcal{F} \cup \bigcup_{j=1}^n \{R_j\};$
- $p_i = x_j p_k$ for some j and k < i;

The **Sum-of-Squares** (SOS) proof of $(\mathcal{F}, \mathcal{H})$:

$$\sum_{u=1}^{a} p_{u} f_{u} + \sum_{j=1}^{n} r_{j} R_{j} + \sum_{v=1}^{b} q_{v}^{2} h_{v} = -1$$

$$f_u \in \mathcal{F}, h_v \in \mathcal{H} \cup 1$$

- $p_i \in \mathcal{F} \cup \bigcup_{j=1}^n \{R_j\};$
- $p_i = x_j p_k$ for some j and k < i;
- $p_i = \alpha p_k + \beta p_s$ for some k, s < i and $\alpha, \beta \in \mathbb{F}$;

The **Sum-of-Squares** (SOS) proof of $(\mathcal{F}, \mathcal{H})$:

$$\sum_{u=1}^{a} p_{u} f_{u} + \sum_{j=1}^{n} r_{j} R_{j} + \sum_{v=1}^{b} q_{v}^{2} h_{v} = -1$$

 $f_u \in \mathcal{F}, h_v \in \mathcal{H} \cup 1$

- $p_i \in \mathcal{F} \cup \bigcup_{j=1}^n \{R_j\};$
- $p_i = x_j p_k$ for some j and k < i;
- $p_i = \alpha p_k + \beta p_s$ for some k, s < i and $\alpha, \beta \in \mathbb{F}$;
- $p_{\ell} = 1.$

The **Sum-of-Squares** (SOS) proof of $(\mathcal{F}, \mathcal{H})$:

$$\sum_{u=1}^{a} p_{u} f_{u} + \sum_{j=1}^{n} r_{j} R_{j} + \sum_{v=1}^{b} q_{v}^{2} h_{v} = -1$$

$$f_u \in \mathcal{F}, h_v \in \mathcal{H} \cup 1$$

The **Polynomial Calculus** (PCR^{\mathbb{F}}) proof of \mathcal{F} is a sequence $(p_1, p_2, p_3, \dots, p_{\ell})$:

- $p_i \in \mathcal{F} \cup \bigcup_{j=1}^n \{R_j\};$
- $p_i = x_j p_k$ for some j and k < i;
- $p_i = \alpha p_k + \beta p_s$ for some k, s < i and $\alpha, \beta \in \mathbb{F}$;
- $p_\ell = 1.$

$$\mathcal{F} = \begin{cases} xy - 1 = 0 \\ yz + 1 = 0 \\ x + z - 2 = 0 \end{cases}$$

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 Q (*)

The **Sum-of-Squares** (SOS) proof of $(\mathcal{F}, \mathcal{H})$:

$$\sum_{u=1}^{a} p_{u} f_{u} + \sum_{j=1}^{n} r_{j} R_{j} + \sum_{v=1}^{b} q_{v}^{2} h_{v} = -1$$

$$f_u \in \mathcal{F}, h_v \in \mathcal{H} \cup 1$$

- $p_i \in \mathcal{F} \cup \bigcup_{j=1}^n \{R_j\};$
- $p_i = x_j p_k$ for some j and k < i;
- $p_i = \alpha p_k + \beta p_s$ for some k, s < i and $\alpha, \beta \in \mathbb{F}$;
- ▶ $p_{\ell} = 1$.

$$\mathcal{F} = \begin{cases} xy - 1 = 0 \\ yz + 1 = 0 \\ x + z - 2 = 0 \end{cases}$$

 $\{\pm 1\}$ Variables

{±1} Variables 4/13

{±1} Variables 4/13

Results

 d_0 is the degree of $(\mathcal{F}, \mathcal{H})$. n is the number of variables of $(\mathcal{F}, \mathcal{H})$.

Theorem

Any $SOS_{\{\pm 1\}}$ -proof of $(\mathcal{F}, \mathcal{H}) \circ MAJ(z_1, z_2, z_3)$ has size $\exp(\Omega(\frac{(d-d_0)^2}{n}))$. There d is an SOS-degree of $(\mathcal{F}, \mathcal{H})$.

Results

 d_0 is the degree of $(\mathcal{F}, \mathcal{H})$. n is the number of variables of $(\mathcal{F}, \mathcal{H})$.

Theorem

Any $SOS_{\{\pm 1\}}$ -proof of $(\mathcal{F}, \mathcal{H}) \circ MAJ(z_1, z_2, z_3)$ has size $\exp(\Omega(\frac{(d-d_0)^2}{n}))$. There d is an SOS-degree of $(\mathcal{F}, \mathcal{H})$.

Theorem

If φ is a random 11-CNF formula then whp any $SOS_{\{\pm 1\}}$ -proof or $PCR_{\{\pm 1\}}^{\mathbb{F}}$ -proof of φ has size $\exp(\Omega(n))$.

Results

 d_0 is the degree of $(\mathcal{F}, \mathcal{H})$. n is the number of variables of $(\mathcal{F}, \mathcal{H})$.

Theorem

Any $SOS_{\{\pm 1\}}$ -proof of $(\mathcal{F}, \mathcal{H}) \circ MAJ(z_1, z_2, z_3)$ has size $\exp(\Omega(\frac{(d-d_0)^2}{n}))$. There d is an SOS-degree of $(\mathcal{F}, \mathcal{H})$.

Theorem

If φ is a random 11-CNF formula then whp any $SOS_{\{\pm 1\}}$ -proof or $PCR_{\{\pm 1\}}^{\mathbb{F}}$ -proof of φ has size $\exp(\Omega(n))$.

Theorem

Any $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof of Pigeonhole Principle has size $\exp(\Omega(n))$.

 $\mathsf{SOS}_{\{\pm 1\}}$ is strictly stronger than $\mathsf{PCR}_{\{\pm 1\}}^{\mathbb{R}}.$

4 D > 4 B > 4 B > 4 B > 9 Q P

Size measure. All operations modulo $\langle R_i \rangle$

Size measure. All operations modulo $\langle R_i \rangle$

$$\begin{split} \text{SOS} : \sum_{u=1}^{a} p_u f_u + \sum_{v=1}^{b} q_v^2 h_v &= -1 \\ \text{Size} &\coloneqq \sum_{u=1}^{a} \left(\text{MSize}(p_u) + \text{MSize}(f_u) \right) + \sum_{v=1}^{b} \text{MSize}(q_v) + \sum_{h \in \mathcal{H}} \text{MSize}(h) \end{split}$$

$$\mathtt{PCR}^{\mathbb{F}}:(p_1,\ldots,p_\ell)$$

$$\mathsf{Size} \coloneqq \sum_{u=1}^{\ell} (\mathsf{MSize}(p_u))$$

$$\pi \coloneqq (p_1, \dots, p_\ell) \text{ is a proof of } \mathcal{F}. \ H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$$

1. π is small \Rightarrow size of H is small.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Set x to 0 in π . This operation kills all terms that contain x.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Set x to 0 in π . This operation kills all terms that contain x.
- 4. $\pi \upharpoonright (x = 0)$ is still a proof of $\mathcal{F} \upharpoonright (x = 0)$.

Strategy for the $\{0,1\}$ basis (PCR^{\mathbb{F}})

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Set x to 0 in π . This operation kills all terms that contain x.
- 4. $\pi \upharpoonright (x = 0)$ is still a proof of $\mathcal{F} \upharpoonright (x = 0)$.
- 5. Keep $\mathcal{F} \upharpoonright (x = 0)$ hard in terms of degree.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Set x to 0 in π . This operation kills all terms that contain x.
- 4. $\pi \upharpoonright (x = 0)$ is still a proof of $\mathcal{F} \upharpoonright (x = 0)$.

5. Try to avoid local contradictions in $\mathcal{F} \upharpoonright (x = 0)$.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Set x to 0 in π . This operation kills all terms that contain x.
- 4. $\pi \upharpoonright (x=0)$ is still a proof of $\mathcal{F} \upharpoonright (x=0)$.

- 5. Try to avoid local contradictions in $\mathcal{F} \uparrow (x = 0)$.
- 6. Repeat until we have terms of big degree.

Strategy for the $\{0,1\}$ basis (PCR^{\mathbb{F}})

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Set x to 0 in π . This operation kills all terms that contain x.
- 4. $\pi \upharpoonright (x = 0)$ is still a proof of $\mathcal{F} \upharpoonright (x = 0)$.

- 5. Try to avoid local contradictions in $\mathcal{F} \upharpoonright (x = 0)$.
- 6. Repeat until we have terms of big degree.

We kill all terms of big degree but remaining system is still hard in terms of degree.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Set x to 0 in π . This operation kills all terms that contain x.
- 4. $\pi \upharpoonright (x=0)$ is still a proof of $\mathcal{F} \upharpoonright (x=0)$.
- 5. Try to avoid local contradictions in $\mathcal{F} \upharpoonright (x = 0)$.
- 6. Repeat until we have terms of big degree.

We kill all terms of big degree but remaining system is still hard in terms of degree.

Degree is the source of hardness.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in p_i, \deg(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Set x to 0 in π . This operation kills all terms that contain x.
- 4. $\pi \upharpoonright (x=0)$ is still a proof of $\mathcal{F} \upharpoonright (x=0)$.
- 5. Try to avoid local contradictions in $\mathcal{F} \upharpoonright (x = 0)$.
- 6. Repeat until we have terms of big degree.

We kill all terms of big degree but remaining system is still hard in terms of degree.

Degree is the source of hardness.

Degree and the $\{\pm 1\}$ basis

Set x to 0 in π . This operation kills all terms that contain x

Degree and the $\{\pm 1\}$ basis

Set x to 0 in π . This operation kills all terms that contain x

Attempts.

1. Set x to 0.

Set x to 0 in π . This operation kills all terms that contain x

1. Set
$$x$$
 to 0. $x^2 - 1 \upharpoonright (x = 0) \to -1$.

Set x to 0 in π . This operation kills all terms that contain x

- 1. Set x to 0. $x^2 1 \upharpoonright (x = 0) \to -1$.
- 2. $\tau(p) \coloneqq \frac{p \upharpoonright (x=-1) + p \upharpoonright (x=1)}{2}$. Consider $\tau(\pi)$.

Set x to 0 in π . This operation kills all terms that contain x

- 1. Set x to 0. $x^2 1 \upharpoonright (x = 0) \to -1$.
- 2. $\tau(p) \coloneqq \frac{p \upharpoonright (x=-1) + p \upharpoonright (x=1)}{2}$. Consider $\tau(\pi)$.

$$\frac{p}{xp}$$

Set x to 0 in π . This operation kills all terms that contain x

- 1. Set x to 0. $x^2 1 \upharpoonright (x = 0) \to -1$.
- 2. $\tau(p) \coloneqq \frac{p \uparrow (x=-1) + p \uparrow (x=1)}{2}$. Consider $\tau(\pi)$.

$$\frac{p}{xp} \qquad \frac{\tau(p)}{\tau(xp)} \\
\frac{\tau(p)}{\tau(p)}$$

Set x to 0 in π . This operation kills all terms that contain x

1. Set
$$x$$
 to 0. $x^2 - 1 \upharpoonright (x = 0) \to -1$.

2.
$$\tau(p) \coloneqq \frac{p \upharpoonright (x=-1) + p \upharpoonright (x=1)}{2}$$
. Consider $\tau(\pi)$.

$$\frac{\frac{p}{xp}}{p}$$

$$\frac{\tau(p)}{\tau(xp)}$$

$$\frac{p}{0}$$

Set x to 0 in π . This operation kills all terms that contain x

Attempts.

1. Set x to 0.
$$x^2 - 1 \upharpoonright (x = 0) \to -1$$
.

2.
$$\tau(p) \coloneqq \frac{p \upharpoonright (x=-1) + p \upharpoonright (x=1)}{2}$$
. Consider $\tau(\pi)$.

$$\frac{p}{xp}$$

$$\frac{\tau(p)}{\tau(xp)}$$

$$\frac{p}{0}$$

Multiplication is invertible.

Set x to 0 in π . This operation kills all terms that contain x

Attempts.

- 1. Set x to 0. $x^2 1 \upharpoonright (x = 0) \to -1$.
- 2. $\tau(p) \coloneqq \frac{p \upharpoonright (x=-1) + p \upharpoonright (x=1)}{2}$. Consider $\tau(\pi)$.

$$\frac{p}{xp}$$

$$\frac{\tau(p)}{\tau(xp)}$$

$$\frac{p}{0}$$

Multiplication is invertible.

Grigoriev 98; Buss, Grigoriev, Impagliazzo, Pitassi 01; Grigoriev 01

- 1. Tseitin formulas has small $PCR_{\{\pm 1\}}^{\mathbb{F}}$ and $SOS_{\{\pm 1\}}$ -proofs.
- 2. There are Tseitin formulas that has $\mathtt{PCR}^{\mathbb{F}}$ or \mathtt{SOS} -degree $\Omega(n)$.

$$\pi \coloneqq (p_1, \dots, p_\ell).$$
 Can we reduce the degree of p_i ?

$$\pi \coloneqq (p_1, \ldots, p_\ell).$$

1.
$$p_i \coloneqq \prod_{i=1}^n x_i$$

$$\pi \coloneqq (p_1, \ldots, p_\ell).$$

1.
$$p_i \coloneqq \prod_{i=1}^n x_i$$
 YES

$$\pi \coloneqq (p_1,\ldots,p_\ell).$$

1.
$$p_i = \prod_{i=1}^n x_i$$
 YES

$$\frac{\frac{p}{x_1p}}{\frac{\vdots}{1}}$$

$$\pi \coloneqq (p_1,\ldots,p_\ell).$$

1.
$$p_i = \prod_{i=1}^n x_i$$
 YES

$$\frac{\frac{p}{x_1p}}{\frac{\vdots}{1}}$$

$$2. p_i \coloneqq \prod_{i=1}^n x_i - 1$$

$$\pi \coloneqq (p_1,\ldots,p_\ell).$$

1.
$$p_i = \prod_{i=1}^n x_i$$
 YES

$$\frac{\frac{p}{x_1p}}{\frac{\vdots}{1}}$$

2.
$$p_i \coloneqq \prod_{i=1}^n x_i - 1$$
 NOT REALLY

$$\pi \coloneqq (p_1, \ldots, p_\ell).$$

Can we reduce the degree of p_i ?

1.
$$p_i = \prod_{i=1}^n x_i$$
 YES

$$\begin{array}{c}
p \\
\hline
x_1p \\
\hline
\vdots \\
1
\end{array}$$

2.
$$p_i := \prod_{i=1}^n x_i - 1$$
 NOT REALLY

 $p_i\coloneqq\sum_j t_j.$ Degree of the symmetric differences between t_j 's is the new source of hardness.

$$\pi \coloneqq (p_1, \ldots, p_\ell). \ p_i \coloneqq \sum_j t_{i,j}.$$

$$\pi \coloneqq (p_1, \dots, p_\ell). \ p_i \coloneqq \sum_j t_{i,j}.$$

$$p_i^2 \coloneqq \sum_{i,j'} t_{i,j} t_{i,j'}.$$

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR)

The **QR** of π is the sequence (p_1^2, \dots, p_ℓ^2) where squares are computed without cancellations.

$$\pi \coloneqq (p_1, \dots, p_\ell). \ p_i \coloneqq \sum_j t_{i,j}.$$

$$p_i^2 \coloneqq \sum_{i,j'} t_{i,j} t_{i,j'}.$$

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR)

The **QR** of π is the sequence (p_1^2,\ldots,p_ℓ^2) where squares are computed without cancellations.

Reminder:
$$\tau(p) = \frac{p \uparrow (x=-1) + p \uparrow (x=1)}{2}$$
.

$$\pi \coloneqq (p_1, \dots, p_\ell). \ p_i \coloneqq \sum_j t_{i,j}.$$

$$p_i^2 \coloneqq \sum_{i,j'} t_{i,j} t_{i,j'}.$$

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR)

The \mathbf{QR} of π is the sequence (p_1^2,\ldots,p_ℓ^2) where squares are computed without cancellations.

Reminder:
$$\tau(p) := \frac{p \upharpoonright (x=-1) + p \upharpoonright (x=1)}{2}$$
.

We want operation that apply τ to the QR of π .

$$\pi \coloneqq (p_1, \dots, p_\ell). \ p_i \coloneqq \sum_j t_{i,j}.$$

$$p_i^2 \coloneqq \sum_{i,j'} t_{i,j} t_{i,j'}.$$

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR)

The **QR** of π is the sequence (p_1^2,\ldots,p_ℓ^2) where squares are computed without cancellations.

Reminder: $\tau(p) \coloneqq \frac{p \uparrow (x=-1) + p \uparrow (x=1)}{2}$.

We want operation that apply τ to the QR of π .

$$\begin{array}{c|c} \operatorname{Split}_x & \\ p_i \coloneqq r_i + xq_i. \\ \operatorname{Split}_x(\pi) \coloneqq (r_1, q_1, r_2, q_2, r_3, q_3, \dots, r_\ell, q_\ell). \end{array}$$

$$\pi \coloneqq (p_1, \dots, p_\ell). \ p_i \coloneqq \sum_j t_{i,j}.$$

$$p_i^2 \coloneqq \sum_{i,j'} t_{i,j} t_{i,j'}.$$

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR)

The **QR** of π is the sequence (p_1^2, \dots, p_ℓ^2) where squares are computed without cancellations.

Reminder: $\tau(p) = \frac{p \uparrow (x=-1) + p \uparrow (x=1)}{2}$.

We want operation that apply τ to the QR of π .

$$\begin{array}{c} \text{Split}_x \\ p_i \coloneqq r_i + xq_i. \\ \text{Split}_x(\pi) \coloneqq (r_1,q_1,r_2,q_2,r_3,q_3,\ldots,r_\ell,q_\ell). \end{array}$$

 $Split_{\pi}(\pi)$ is a proof of **damaged** version of \mathcal{F} .

$$\pi \coloneqq (p_1, \dots, p_\ell) \text{ is a proof of } \mathcal{F}. \ H \coloneqq \{t \mid t \in \ \mathsf{QR of} \ \pi, \mathsf{deg}(t) \text{ is big}\}.$$

1. π is small \Rightarrow size of H is small.

$$\pi \coloneqq (p_1, \dots, p_\ell) \text{ is a proof of } \mathcal{F}. \ H \coloneqq \{t \mid t \in \ \mathsf{QR} \text{ of } \pi, \mathsf{deg}(t) \text{ is big}\}.$$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in \mathsf{QR} \text{ of } \pi, \mathsf{deg}(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal *x* in *H*.
- 3. Apply Split $_x$ to π . This operation kills all terms that contain x in the QR of π .

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Apply Split x to π . This operation kills all terms that contain x in the QR of π .
- 4. $Split_x(\pi)$ is still a proof of **damaged** \mathcal{F} .

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal *x* in *H*.
- 3. Apply Split_x to π . This operation kills all terms that contain x in the QR of π .
- 4. Split_x(π) is still a proof of **damaged** \mathcal{F} .
- 5. Try to avoid local contradictions in $\mathrm{Split}_x(\mathcal{F})$.

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal *x* in *H*.
- 3. Apply Split x to π . This operation kills all terms that contain x in the QR of π .
- 4. $\operatorname{Split}_x(\pi)$ is still a proof of damaged \mathcal{F} .
- 5. Try to avoid local contradictions in $\mathrm{Split}_x(\mathcal{F})$.
- 6. Repeat until we have terms of big degree in the QR.

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Apply Split x to π . This operation kills all terms that contain x in the QR of π .
- 4. $\operatorname{Split}_x(\pi)$ is still a proof of damaged \mathcal{F} .
- 5. Try to avoid local contradictions in $Split_x(\mathcal{F})$.
- 6. Repeat until we have terms of big degree in the QR.
- 7. Try to satisfy all **broken** constraints.

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in \mathsf{QR} \text{ of } \pi, \mathsf{deg}(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Apply Split x to π . This operation kills all terms that contain x in the QR of π .
- 4. $\operatorname{Split}_x(\pi)$ is still a proof of damaged \mathcal{F} .
- 5. Try to avoid local contradictions in $\mathrm{Split}_x(\mathcal{F})$.
- 6. Repeat until we have terms of big degree in the QR.
- 7. Try to satisfy all **broken** constraints. Impossible for Tseitin formulas.

- 《ロ》《昼》《意》《意》 (章) りの(3)

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in \mathsf{QR} \text{ of } \pi, \mathsf{deg}(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Apply Split_x to π . This operation kills all terms that contain x in the QR of π .
- 4. $Split_x(\pi)$ is still a proof of **damaged** \mathcal{F} .
- 5. Try to avoid local contradictions in $\mathrm{Split}_x(\mathcal{F})$.
- 6. Repeat until we have terms of big degree in the QR.
- 7. Try to satisfy all **broken** constraints. Impossible for Tseitin formulas.

Lemma

Let π be a $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof of \mathcal{F} and QR of π has degree d. Then there is a $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof π' of \mathcal{F} of degree 2d.

$$\pi \coloneqq (p_1, \dots, p_\ell)$$
 is a proof of \mathcal{F} . $H \coloneqq \{t \mid t \in \mathsf{QR} \text{ of } \pi, \mathsf{deg}(t) \text{ is big}\}.$

- 1. π is small \Rightarrow size of H is small.
- 2. Pick the most frequent literal x in H.
- 3. Apply Split_x to π . This operation kills all terms that contain x in the QR of π .
- 4. $Split_x(\pi)$ is still a proof of **damaged** \mathcal{F} .
- 5. Try to avoid local contradictions in $\mathrm{Split}_x(\mathcal{F})$.
- 6. Repeat until we have terms of big degree in the QR.
- 7. Try to satisfy all **broken** constraints. Impossible for Tseitin formulas.

Lemma

Let π be a $PCR_{\{\pm 1\}}^{\mathbb{F}}$ -proof of \mathcal{F} and QR of π has degree d. Then there is a $PCR_{\{\pm 1\}}^{\mathbb{F}}$ -proof π' of \mathcal{F} of degree 2d.

This is wrong Lemma, we need to change definition of QR to fix it.

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i ($(\ell_{\pi}p_i)$) in the proof π :

- $(\ell_{\pi}p)_i = p_i$, if $p_i \in \mathcal{F}$ or $p_i = p_j$ for some j < i;
- $(\ell_{\pi}p)_i = \alpha p_j + \beta p_k$ without cancellations, if $p_i = \alpha p_j + \beta p_k$.

4□ > <</p>
4□ > <</p>
4□ >
4 = >
5
9 <</p>
6

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i ($(\ell_{\pi}p_i)$) in the proof π :

- $(\ell_{\pi}p)_i = p_i$, if $p_i \in \mathcal{F}$ or $p_i = p_j$ for some j < i;
- $(\ell_{\pi}p)_i := \alpha p_j + \beta p_k$ without cancellations, if $p_i := \alpha p_j + \beta p_k$.

The fixed **QR** of π is the sequence $((\ell_{\pi}p)_1^2, \dots, (\ell_{\pi}p)_{\ell}^2)$ where squares are computed without cancellations.

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 Q ©

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i ($(\ell_{\pi}p_i)$) in the proof π :

- $(\ell_{\pi}p)_i = p_i$, if $p_i \in \mathcal{F}$ or $p_i = p_j$ for some j < i;
- $(\ell_{\pi}p)_{i} := \alpha p_{j} + \beta p_{k}$ without cancellations, if $p_{i} := \alpha p_{j} + \beta p_{k}$.

The fixed **QR** of π is the sequence $((\ell_{\pi}p)_1^2, \dots, (\ell_{\pi}p)_{\ell}^2)$ where squares are computed without cancellations.

Lemma

Let π be a $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof of \mathcal{F} and QR of π has degree d. Then there is a $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof π' of \mathcal{F} of degree 2d.

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 Q ©

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i ($(\ell_{\pi}p_i)$) in the proof π :

- $(\ell_{\pi}p)_i = p_i$, if $p_i \in \mathcal{F}$ or $p_i = p_j$ for some j < i;
- $(\ell_{\pi}p)_i := \alpha p_j + \beta p_k$ without cancellations, if $p_i := \alpha p_j + \beta p_k$.

The fixed **QR** of π is the sequence $((\ell_{\pi}p)_1^2, \dots, (\ell_{\pi}p)_{\ell}^2)$ where squares are computed without cancellations.

Lemma

Let π be a $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof of \mathcal{F} and QR of π has degree d. Then there is a $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof π' of \mathcal{F} of degree 2d.

$$p_i \coloneqq \sum\limits_j t_{i,j} \text{ and } s_i \coloneqq \sum\limits_j t_{i,1} t_{i,j} \qquad \Rightarrow \qquad p_i = t_{i,1} s_i \text{ and } s_i = t_{i,1} p_i.$$

<ロ > < @ > < 差 > < 差 > を き を の Q で

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i $((\ell_{\pi}p_i))$ in the proof π :

- $(\ell_{\pi}p)_i = p_i$, if $p_i \in \mathcal{F}$ or $p_i = p_j$ for some j < i;
- $(\ell_{\pi}p)_i := \alpha p_j + \beta p_k$ without cancellations, if $p_i := \alpha p_j + \beta p_k$.

The fixed **QR** of π is the sequence $((\ell_{\pi}p)_1^2, \dots, (\ell_{\pi}p)_{\ell}^2)$ where squares are computed without cancellations.

Lemma

Let π be a PCR $^{\mathbb{F}}_{\{\pm 1\}}$ -proof of \mathcal{F} and QR of π has degree d. Then there is a PCR $^{\mathbb{F}}_{\{\pm 1\}}$ -proof π' of \mathcal{F} of degree 2d.

$$p_i \coloneqq \sum\limits_j t_{i,j} \text{ and } s_i \coloneqq \sum\limits_j t_{i,1} t_{i,j} \qquad \Rightarrow \qquad p_i = t_{i,1} s_i \text{ and } s_i = t_{i,1} p_i.$$

$$\pi'' \coloneqq (s_1, \dots, s_\ell)$$

(ロト 4*団*) 4 분) 4 분) - 1분 - 19 90

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i ($(\ell_{\pi}p_i)$) in the proof π :

- $(\ell_{\pi}p)_i := p_i$, if $p_i \in \mathcal{F}$ or $p_i := p_j$ for some j < i;
- $(\ell_{\pi}p)_i := \alpha p_j + \beta p_k$ without cancellations, if $p_i := \alpha p_j + \beta p_k$.

The fixed **QR** of π is the sequence $((\ell_{\pi}p)_1^2, \dots, (\ell_{\pi}p)_{\ell}^2)$ where squares are computed without cancellations.

Lemma

Let π be a PCR $^{\mathbb{F}}_{\{\pm 1\}}$ -proof of $\mathcal F$ and QR of π has degree d. Then there is a PCR $^{\mathbb{F}}_{\{\pm 1\}}$ -proof π' of $\mathcal F$ of degree 2d.

$$p_i \coloneqq \sum\limits_j t_{i,j} \text{ and } s_i \coloneqq \sum\limits_j t_{i,1} t_{i,j} \qquad \Rightarrow \qquad p_i = t_{i,1} s_i \text{ and } s_i = t_{i,1} p_i.$$

$$\pi'' \coloneqq (s_1, \ldots, s_\ell)$$

- 1. $\mathbf{p_i} \in \mathcal{F}$: $s_i = t_{i,1}p_i$.
- 2. $\mathbf{p_i} \coloneqq \mathbf{xp_j}$: $s_i = s_j$.
- 3. $\mathbf{p_i} \coloneqq \alpha \mathbf{p_a} + \beta \mathbf{p_b}$:

◆□▶◆御▶◆三▶◆三▶ ● めの◎

 $\pi = (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i ($(\ell_{\pi}p_i)$) in the proof π :

- $(\ell_{\pi}p)_i := p_i$, if $p_i \in \mathcal{F}$ or $p_i := p_j$ for some j < i;
- $(\ell_{\pi}p)_i := \alpha p_j + \beta p_k$ without cancellations, if $p_i := \alpha p_j + \beta p_k$.

The fixed **QR** of π is the sequence $((\ell_{\pi}p)_1^2, \dots, (\ell_{\pi}p)_{\ell}^2)$ where squares are computed without cancellations.

Lemma

Let π be a PCR $^{\mathbb{F}}_{\{\pm 1\}}$ -proof of \mathcal{F} and QR of π has degree d. Then there is a PCR $^{\mathbb{F}}_{\{\pm 1\}}$ -proof π' of \mathcal{F} of degree 2d.

$$p_i \coloneqq \sum\limits_{i} t_{i,j} \text{ and } s_i \coloneqq \sum\limits_{i} t_{i,1} t_{i,j} \qquad \Rightarrow \qquad p_i = t_{i,1} s_i \text{ and } s_i = t_{i,1} p_i.$$

$$\pi'' \coloneqq (s_1, \ldots, s_\ell)$$

- 1. $\mathbf{p_i} \in \mathcal{F}$: $s_i = t_{i,1}p_i$.
- 2. $\mathbf{p_i} \coloneqq \mathbf{xp_j}$: $s_i = s_j$.

3.
$$\mathbf{p_i} \coloneqq \alpha \mathbf{p_a} + \beta \mathbf{p_b}$$
: $q \coloneqq \alpha \sum_j t_{a,1} t_{a,j} + \beta \sum_j t_{a,1} t_{b,j}$.

◆ロト ◆部 ▶ ◆差 ▶ ◆差 ▶ ○差 ・ 釣 Q ②

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i ($(\ell_{\pi}p_i)$) in the proof π :

- $(\ell_{\pi}p)_i := p_i$, if $p_i \in \mathcal{F}$ or $p_i := p_j$ for some j < i;
- $(\ell_{\pi}p)_{i} := \alpha p_{j} + \beta p_{k}$ without cancellations, if $p_{i} := \alpha p_{j} + \beta p_{k}$.

The fixed **QR** of π is the sequence $((\ell_{\pi}p)_1^2, \dots, (\ell_{\pi}p)_{\ell}^2)$ where squares are computed without cancellations.

Lemma

Let π be a PCR $^{\mathbb{F}}_{\{\pm 1\}}$ -proof of \mathcal{F} and QR of π has degree d. Then there is a PCR $^{\mathbb{F}}_{\{\pm 1\}}$ -proof π' of \mathcal{F} of degree 2d.

$$p_i \coloneqq \sum\limits_j t_{i,j} \text{ and } s_i \coloneqq \sum\limits_j t_{i,1} t_{i,j} \qquad \Rightarrow \qquad p_i = t_{i,1} s_i \text{ and } s_i = t_{i,1} p_i.$$

$$\pi'' \coloneqq (s_1, \ldots, s_\ell)$$

- 1. $\mathbf{p_i} \in \mathcal{F}$: $s_i = t_{i,1}p_i$.
- 2. $\mathbf{p_i} \coloneqq \mathbf{xp_j}$: $s_i = s_j$.

3.
$$\mathbf{p_i} \coloneqq \alpha \mathbf{p_a} + \beta \mathbf{p_b}: \quad q \coloneqq \alpha \sum_{j} t_{a,1} t_{a,j} + \beta \sum_{j} t_{a,1} t_{b,j}.$$

$$q = \alpha s_a + \beta \sum_{j} t_{a,1} t_{b,j} = \alpha s_a + \beta t_{a,1} t_{b,1} \sum_{j} \beta t_{b,1} t_{b,j} = \alpha s_a + \beta t_{a,1} t_{b,1} s_b.$$

- (□) (個) (重) (重) (重) のQ()

 $\pi \coloneqq (p_1, \dots, p_\ell)$ is a proof of \mathcal{F} .

Lazy representation of p_i ($(\ell_{\pi}p_i)$) in the proof π :

- $(\ell_{\pi}p)_i := p_i$, if $p_i \in \mathcal{F}$ or $p_i := p_j$ for some j < i;
- $(\ell_{\pi}p)_i := \alpha p_j + \beta p_k$ without cancellations, if $p_i := \alpha p_j + \beta p_k$.

The fixed **QR** of π is the sequence $((\ell_{\pi}p)_1^2, \dots, (\ell_{\pi}p)_{\ell}^2)$ where squares are computed without cancellations.

Lemma

Let π be a $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof of \mathcal{F} and QR of π has degree d. Then there is a $\mathrm{PCR}^{\mathbb{F}}_{\{\pm 1\}}$ -proof π' of \mathcal{F} of degree 2d.

$$p_i \coloneqq \sum\limits_j t_{i,j} \text{ and } s_i \coloneqq \sum\limits_j t_{i,1} t_{i,j} \qquad \Rightarrow \qquad p_i = t_{i,1} s_i \text{ and } s_i = t_{i,1} p_i.$$

- $\pi'' \coloneqq (s_1, \ldots, s_\ell)$
 - 1. $\mathbf{p_i} \in \mathcal{F}$: $s_i = t_{i,1}p_i$.
 - 2. $\mathbf{p_i} \coloneqq \mathbf{xp_j}$: $s_i = s_j$.
 - 3. $\begin{aligned} \mathbf{p_i} &\coloneqq \alpha \mathbf{p_a} + \beta \mathbf{p_b}; \qquad q \coloneqq \alpha \sum_j t_{a,1} t_{a,j} + \beta \sum_j t_{a,1} t_{b,j}. \\ q &= \alpha s_a + \beta \sum_j t_{a,1} t_{b,j} = \alpha s_a + \beta t_{a,1} t_{b,1} \sum_j \beta t_{b,1} t_{b,j} = \alpha s_a + \beta t_{a,1} t_{b,1} s_b. \\ s_i &= \sum_j t_{i,1} t_{i,j}. \text{ Wlog } t_{i,1} \coloneqq t_{a,k} \text{ hence } s_i = t_{a,k} t_{a,1} q. \end{aligned}$

Open problems

- 1. Lower (or upper!) bound on $PCR_{\{\pm 1\}}$ -proofs of Functional Pigeonhole Principle.
- 2. Lower bound on $PCR_{\{0,1\}}$ -proofs of Weak Pigeonhole Principle.

4 □ ト 4 圖 ト 4 恵 ト 4 恵 ・ 9 Q (*)

Open problems

- 1. Lower (or upper!) bound on $PCR_{\{\pm 1\}}$ -proofs of Functional Pigeonhole Principle.
- 2. Lower bound on $PCR_{\{0,1\}}$ -proofs of Weak Pigeonhole Principle.

3. Can we simulate Resolution in $PCR_{\{\pm 1\}}^{\mathbb{F}}$?

Open problems

- 1. Lower (or upper!) bound on $PCR_{\{\pm 1\}}$ -proofs of Functional Pigeonhole Principle.
- 2. Lower bound on $PCR_{\{0,1\}}$ -proofs of Weak Pigeonhole Principle.

3. Can we simulate Resolution in $\mathtt{PCR}^{\mathbb{F}}_{\{\pm 1\}} ?$ Conjecture: NO.