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Notation

fi(x1,...,zn) =0
fz(:cl,...,mn) =0

fa(z1,...,2n) =0
h1(£131,...,$") >0
hg(:ljl,.,.,xn) >0

(f’H):

hs(z1,...,2n) >0

fi, hj are polynomials.
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Notation

fl(.Tl?..A,{En):O
fo(x1,...,20) =0

fa(z1,...,2n) =0
h1(£IZ’1,...,LEn) >0
hg(:cl,...,xn) >0

(‘7:’7-[):

hs(z1,...,2n) >0

fi, hj are polynomials.

Range axiom R; for a variable z;: I

> {0,1} basis: z? -z
» {1} basis: 27 - 1.

{+1} Variables
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Proof Systems

The Sum-of-Squares (S0S) proof of (F, H):
a n b 5
Z Pufu+ Z riR; + Z quhy = -1
u=1 j=1 v=1

fueF hyeHul
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The Sum-of-Squares (S0S) proof of (F, H):

a n b
Zpufu + ZTjRj + Z q121h1) =-1
u=1 j=1 v=1

fueF hyeHul

The Polynomial Calculus (PCR) proof of F is a sequence (p1, p2, P3, - - - , D¢ ):
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Proof Systems

The Sum-of-Squares (S0S) proof of (F, H):

a n b
Zpufu + ZTjRj + Z q121h1) =-1
j=1

u=1 v=1

fueF hyeHul

The Polynomial Calculus (PCR) proof of F is a sequence (p1, p2, P3, - - - , D¢ ):
> picFU U{R; )
j=1
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The Sum-of-Squares (S0S) proof of (F, H):

a n b
S pufut DriRi+ Y qohy = -1
j=1

u=1 v=1

fueF hyeHul

The Polynomial Calculus (PCR) proof of F is a sequence (p1, p2, P3, - - - , D¢ ):
» p;eFu G{Rj};
j=1

> p; = z;pi for some j and k < i;
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Proof Systems

The Sum-of-Squares (S0S) proof of (F, H):

a n b
S pufut DriRi+ Y qohy = -1
u=1 J v=1

1

fueF hyeHul

The Polynomial Calculus (PCR) proof of F is a sequence (p1, p2, P3, - - - , D¢ ):
» p;eFu G{Rj};
j=1

> p; = z;pi for some j and k < i;

> p; = apy + Bps for some k, s <iand o, 3 € [F;
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Proof Systems

The Sum-of-Squares (S0S) proof of (F, H):
a n b 5
Z pufu + Z TjRj + Z qvhv =-1
u=1 J v=1

i=1
fueF hyeHul
The Polynomial Calculus (pcrF) proof of F is a sequence (p1,p2,D3, .-, Pe):
> pieFu U (R);
j=1

> p; = z;pi for some j and k < i;
> p; = apy + Bps for some k, s < iand o, B € F;

> pe=1
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Proof Systems

The Sum-of-Squares (S0S) proof of (F, H):

a n b
S pufut DriRi+ Y qohy = -1
u=1 J v=1

1

fueF hyeHul

The Polynomial Calculus (PCR) proof of F is a sequence (p1, p2, P3, - - - , D¢ ):
» p;eFu G{Rj};
j=1

> p; = z;pi for some j and k < i;

v

pi = api + Bps for some k, s < iand o, 8 € IF;

> pe=1.
zy-1=0
F=43yz+1=0
r+2-2=0

{£1} Variables 3/13



Proof Systems

The Sum-of-Squares (S0S) proof of (F, H):

a n b
S pufut DriRi+ Y qohy = -1
j=1 v=1

u=1

fueF hyeHul
The Polynomial Calculus (PCR) proof of F is a sequence (p1, p2, P3, - - - , D¢ ):
» p;eFu G{Rj};
j=1

> p; = z;pi for some j and k < i;

> p; = apy + Bps for some k, s <iand o, 3 € [F;

> pg:l.
T+z-2 zy -1 yz+1
zy—-1=0 Ty +yz—2y TY + Yz
F=43yz+1=0 2y
z+2-2=0 212 y’-1
1
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Hierarchy

Mon. “Circuits”
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Hierarchy

CPS “Circuits”

Mon. “Circuits”
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Hierarchy

Restriction
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Restriction

Mon. Interpolation
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Hierarchy

Mon. Interpolation
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Hierarchy

CPS

Frege

ACo[p]-
508 Res(®)

PCR

Restriction

ACo-Frege
Cp
[ & NS Res
' Mon. Interpolation
A JAR o 3 = DA




Results

do is the degree of (F,#). n is the number of variables of (F, #).

Any S0S(.1}-proof of (F,H) o MAJ(z1, 22, 23) has size exp(Q(%)).
There d is an S0S-degree of (F, ).
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Results

do is the degree of (F,#). n is the number of variables of (F, #).

_| Theorem !

Any S0S(.1}-proof of (F,H) o MAJ(z1, 22, 23) has size exp(Q(%)).
There d is an S0S-degree of (F, ).

_| Theorem !

If ¢ is a random 11-CNF formula then whp any S0S¢_ 1} -proof or PCR]fil}-
proof of ¢ has size exp(Q(n)).
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Results

do is the degree of (F,#). n is the number of variables of (F, #).

_| Theorem !

Any S0S(.1}-proof of (F,H) o MAJ(z1, 22, 23) has size exp(Q(%)).

There d is an S0S-degree of (F, ).

_| Theorem !

If ¢ is a random 11-CNF formula then whp any S0S¢_ 1} -proof or PCR]fil}-
proof of ¢ has size exp(Q(n)).

_| Theorem !

Any PCR]E .1} -proof of Pigeonhole Principle has size exp(£2(n)).

S0Sy.1} is strictly stronger than Pchfi -

{+1} Variables
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Size measure. All operations modulo (R;)
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Size measure. All operations modulo (R;)

a b
S0S: Y pufu+ Y ¢Chy=-1
u=1 v=1

a b
Size:= )" (MSize(pu.) +MSize(fu)) + Y MSize(gqy,) + Y. MSize(h)

u=1 v=1 heH

PCRF:(pl,..,,pg)

0
Size = Z (Msize(pu))

u=1
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Strategy for the {0, 1} basis (PCR")

7= (p1,...,pe) isaproof of F. H = {t |t € p;, deg(t) is big}.

1. 7 is small = size of H is small.
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Strategy for the {0, 1} basis (PCR")

7= (p1,...,pe) isaproof of F. H = {t |t € p;, deg(t) is big}.
1. 7 is small = size of H is small.

2. Pick the most frequent literal z in H.
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Strategy for the {0, 1} basis (PCR")

,pe) isaproof of F. H = {t |t € p;, deg(t) is big}.

= (p1,...
1. 7 is small = size of H is small.

2. Pick the most frequent literal z in H.
3. Set x to 0 in 7. This operation kills all terms that contain .
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Strategy for the {0, 1} basis (PCR")

7= (p1,...,pe) isaproof of F. H = {t |t € p;, deg(t) is big}.
1. mis small = size of H is small.
2. Pick the most frequent literal z in H.
3. Set z to 0 in 7. This operation kills all terms that contain .
4. w1 (x =0) isstill a proof of F | (z = 0).
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Strategy for the {0, 1} basis (PCR")

7= (p1,...,pe) isaproof of F. H = {t |t € p;, deg(t) is big}.
1. mis small = size of H is small.
2. Pick the most frequent literal z in H.
3. Set z to 0 in 7. This operation kills all terms that contain .
4

. m | (z =0)isstill a proof of F I (x = 0).
5. Keep F | (z = 0) hard in terms of degree. é
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Strategy for the {0, 1} basis (PCR")

7= (p1,...,pe) isaproof of F. H = {t |t € p;, deg(t) is big}.
1. mis small = size of H is small.
2. Pick the most frequent literal z in H.
3. Set z to 0 in 7. This operation kills all terms that contain .
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. m | (z =0)isstill a proof of F I (x = 0).

5. Try to avoid local contradictions in F | (x = 0).
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3. Set z to 0 in 7. This operation kills all terms that contain .
4

. m | (z =0)isstill a proof of F I (x = 0).
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. Try to avoid local contradictions in F | (z = 0).

6. Repeat until we have terms of big degree.
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Strategy for the {0, 1} basis (PCR")

7= (p1,...,pe) isaproof of F. H = {t |t € p;, deg(t) is big}.

5.
6.

1. 7 is small = size of H is small.

2. Pick the most frequent literal z in H.

3.

4. w1 (x =0) isstill a proof of F | (z = 0).

Set x to 0 in 7. This operation kills all terms that contain .

Try to avoid local contradictions in F | (z = 0).

Repeat until we have terms of big degree.

We kill all terms of big degree but remaining system is still hard in terms of degree.

Degree is the source of hardness.
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Strategy for the {0, 1} basis (PCR")

7= (p1,...,pe) isaproof of F. H = {t |t € p;, deg(t) is big}.
1. mis small = size of H is small.
2. Pick the most frequent literal z in H.
3. Set x to 0 in 7. This operation kills all terms that contain x.
4

. m | (z =0)isstill a proof of F I (x = 0).

5. Try to avoid local contradictions in F | (x = 0).

6. Repeat until we have terms of big degree.

We kill all terms of big degree but remaining system is still hard in terms of degree.

Degree is the source of hardness.
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z

Attempts.
1. Setzx to 0.
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z

Attempts.
1. Setx to 0. 22 -1t (x=0)—>-1
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z

Attempts.
1. Setx to 0. 22 -1t (x=0)—>-1
2. 7(p) = w. Consider 7().
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z

Attempts.
1. Setx to 0. 22 -1t (x=0)—>-1
2. 7(p) = w. Consider 7().
P
rp
p
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z

Attempts.
1. Setx to 0. 22 -1t (x=0)—>-1
2. 7(p) = w. Consider 7().
p 7(p)
2P 7(zp)
p
(p)
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z

Attempts.
1. Setx to 0. 22 -1t (x=0)—>-1
2. 7(p) = 71”“96:_1);”(“:1). Consider 7().
p 7(p) P
xp 7(zp) 0
P 7(p) P
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z

Attempts.
1. Setx to 0. 22 -1t (x=0)—>-1
2. 7(p) = 71”“96:_1);”(“:1). Consider 7().
p 7(p) N
xp 7(zp) 0
P 7(p) P

Multiplication is invertible.
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Degree and the {+1} basis

Set x to 0 in 7r. This operation kills all terms that contain z

Attempts.
1. Setx to 0. 22 -1t (x=0)—>-1
2. 7(p) = 71”“96:_1);”(“:1). Consider 7().
p 7(p) N
xp 7(zp) 0
P 7(p) P

Multiplication is invertible.

Grigoriev 98; Buss, Grigoriev, Impagliazzo, Pitassi 01; Grigoriev 01 |

1. Tseitin formulas has small PCRJ{ +1) and S0S 41} -proofs.

2. There are Tseitin formulas that has PCR” or S0S-degree Q(n).
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Degree and the {+1} basis. Part 2

= (pla s 7p€)’
Can we reduce the degree of p;?
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Degree and the {+1} basis. Part 2

= (pla s 7p€)’
Can we reduce the degree of p;?

1. pi = H x;
=1
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Degree and the {+1} basis. Part 2

= (pla s 7p€)’
Can we reduce the degree of p;?

1. pi = H x;
=1
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Degree and the {+1} basis. Part 2

= (pla s 7p€)’
Can we reduce the degree of p;?

1. pi = H x;
=1
p
T1p
1
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Degree and the {+1} basis. Part 2

= (pla s 7p€)’
Can we reduce the degree of p;?

1. pi = H x;
=1
p
T1p
1
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Degree and the {+1} basis. Part 2

= (pla s 7p€)‘
Can we reduce the degree of p;?

1. pi = H x;
=1
p
T1p
1

n
2.pi=Jlai -1 NOT REALLY
i=1
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Degree and the {+1} basis. Part 2

= (pla s 7p€)‘
Can we reduce the degree of p;?

1. pi = H x;
=1
p
T1p
1

n
2.pi=Jlai -1 NOT REALLY
i=1

pi = Y. t;. Degree of the symmetric differences between ¢;’s is the new source of
J

hardness.
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Quadratic representation and Split,

7= (P, .y pe). pi = Ltie
J
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Quadratic representation and Split,

m=(p1,...,Pe). Pi = Yti
J
pi= % tigti g
7,3’

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR) |
J

The QR of  is the sequence (p?, . . . , p ) where squares are computed without
cancellations.
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Quadratic representation and Split,

m=(p1, ..., pe). pi= Ltiye
J
pi= % tigti g
7,3’
We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR) |
J

The QR of  is the sequence (p?, . . . , p ) where squares are computed without
cancellations.

Reminder: 7(p) := 7’7“1:71);”(1:1).
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Quadratic representation and Split,

m=(p1, ..., pe). pi= Ltiye
J
Z t7f Jt 1,37
3,3"

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR) |
J

The QR of  is the sequence (p?, . . . , p ) where squares are computed without
cancellations.

Reminder: 7(p) := 7”“1_71)“’“1 i

We want operation that apply 7 to the QR of 7.
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Quadratic representation and Split,

m=(p1, ..., pe). pi= Ltiye
J
Z t7f ]t 1,37
3,3"

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR) |
J

The QR of  is the sequence (p?, . . . , p ) where squares are computed without
cancellations.

Reminder: 7(p) := 7”“1_71)“’“1 i

We want operation that apply 7 to the QR of 7.

D
Di =T + TG %
Splltz(ﬂ—) = (T1,q1,7’2,qQ,r3,q3,...,rg,qg). X
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Quadratic representation and Split,

m=(p1, ..., pe). pi= Ltiye
J
Z t7f ]t 1,37
3,3"

We want to see all possible pairs, hence we prohibit cancellations.

Quadratic representation (QR) |
J

The QR of  is the sequence (p?, . . . , p ) where squares are computed without
cancellations.

Reminder: 7(p) := 7”“1_71)“’“1 i

We want operation that apply 7 to the QR of 7.

D
Di =T + TG %
Splltz(ﬂ—) = (T1,q1,7’2,qQ,r3,q3,...,rg,qg). X

Split, () is a proof of damaged version of F.
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Strategy for the {+1} basis (PCR")

= (p1,...,pe) isaproof of F. H == {t |t e QRof 7,deg(t) is big}.

1. 7 is small = size of H is small.
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Strategy for the {+1} basis (PCR")

= (p1,...,pe) isaproof of F. H == {t |t e QRof 7,deg(t) is big}.
1. 7 is small = size of H is small.

2. Pick the most frequent literal z in H.
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Strategy for the {+1} basis (PCR")

,pe)isaproofof F. H = {t|t € QR of w,deg(t) is big}.

= (p17 NN
1. 7 is small = size of H is small.

2. Pick the most frequent literal z in H.
3. Apply Split, to m. This operation kills all terms that contain x in the QR of 7
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Strategy for the {+1} basis (PCR")

= (p1,...,pe) isaproof of F. H == {t |t e QRof 7,deg(t) is big}.
1. 7 is small = size of H is small.

2. Pick the most frequent literal z in H.
3. Apply Split, to 7. This operation kills all terms that contain x in the QR of 7.

4. Split, () is still a proof of damaged F.
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Strategy for the {+1} basis (PCR")

= (p1,...,pe) isaproof of F. H == {t |t e QRof 7,deg(t) is big}.
. m is small = size of H is small.

1
2. Pick the most frequent literal z in H.

3. Apply Split, to 7. This operation kills all terms that contain x in the QR of 7.
4

. Split, () is still a proof of damaged F. gg

5. Try to avoid local contradictions in Split, (F).
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Strategy for the {+1} basis (PCR")

= (p1,...,pe) isaproof of F. H == {t |t e QRof 7,deg(t) is big}.
. m is small = size of H is small.

1
2. Pick the most frequent literal z in H.

3. Apply Split, to 7. This operation kills all terms that contain x in the QR of 7.
4

. Split, () is still a proof of damaged F. gg

. Try to avoid local contradictions in Split, (F).

%2

6. Repeat until we have terms of big degree in the QR.
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6. Repeat until we have terms of big degree in the QR.
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Strategy for the {+1} basis (PCR")

= (p1,...,pe) isaproof of F. H == {t |t e QRof 7,deg(t) is big}.
1. 7 is small = size of H is small.
2. Pick the most frequent literal z in H.
3. Apply Split, to 7. This operation kills all terms that contain x in the QR of 7.
4. Split, () is still a proof of damaged F. é

. Try to avoid local contradictions in Split, (F).

%2

6. Repeat until we have terms of big degree in the QR.

7. Try to satisfy all broken constraints. Impossible for Tseitin formulas.

Let m be a PCR]E i,1}-proof of F and QR of 7 has degree d. Then there is a
PCRI{FH} -proof 7’ of F of degree 2d.
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Strategy for the {+1} basis (PCR")

= (p1,...,pe) isaproof of F. H == {t |t e QRof 7,deg(t) is big}.
. m is small = size of H is small.
. Pick the most frequent literal z in H.

1

2

3. Apply Split, to 7. This operation kills all terms that contain x in the QR of 7.
4. Split, () is still a proof of damaged F. é

. Try to avoid local contradictions in Split, (F).

%2

6. Repeat until we have terms of big degree in the QR.

7. Try to satisfy all broken constraints. Impossible for Tseitin formulas.

Let m be a PCR]E i,1}-proof of F and QR of 7 has degree d. Then there is a
PCRI{FH} -proof 7’ of F of degree 2d.

This is wrong Lemma, we need to change definition of QR to fix it.
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Lazy computations %{%’

7= (p1,...,pe) is a proof of F.
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Lazy computations W@ﬁ

7= (p1,...,pe) is a proof of F.
Lazy representation of p; ((¢xp;)) in the proof
> (Lxp), = pi,if pi € F or p; = p; for some j < i;
> (Lxp), = ap; + Bpi without cancellations, if p; = ap; + Bps.
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Lazy computations W@ﬁ

7= (p1,...,pe) is a proof of F.
Lazy representation of p; ((¢xp;)) in the proof
» (Lxp), = pi,if pi € F or p; = p; for some j < 4;
> (Lxp), = ap; + Bpi without cancellations, if p; = ap; + Bps.
The fixed QR of  is the sequence ((£xp)3, ..., (£xp);) where squares are computed
without cancellations.
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Lazy computations W@ﬁ

7= (p1,...,pe) is a proof of F.
Lazy representation of p; ((¢xp;)) in the proof
» (Lxp), = pi,if pi € F or p; = p; for some j < 4;
> (Lxp), = ap; + Bpi without cancellations, if p; = ap; + Bps.
The fixed QR of  is the sequence ((£xp)3, ..., (£xp);) where squares are computed
without cancellations.

Let m be a PCR]E il}-proof of F and QR of 7 has degree d. Then there is a
PCRI{FH} -proof 7’ of F of degree 2d.

pi=Xtijands; =Y tiiti; = pi=ti18;and s; = i1
J J

= (51,...,Sg)
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7= (p1,...,pe) is a proof of F.
Lazy representation of p; ((¢xp;)) in the proof
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q=0asq + 52% 1th,j = aSq + Bta1ts1 Zﬂtb 1ty,j = Sa + Pla,1ty,15s.
S; = th 1t” Wlog t;,1 = tqa,r hence s; = tq,1ta,1q.
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Open problems

1. Lower (or upper!) bound on PCRy, ,-proofs of Functional Pigeonhole Principle.

2. Lower bound on PCR(, ;y-proofs of Weak Pigeonhole Principle.
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1. Lower (or upper!) bound on PCRy, ,-proofs of Functional Pigeonhole Principle.

2. Lower bound on PCR(, ;y-proofs of Weak Pigeonhole Principle.

3. Can we simulate Resolution in PCR]E w1)?
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Open problems

1. Lower (or upper!) bound on PCRy, ,-proofs of Functional Pigeonhole Principle.

2. Lower bound on PCR(, ;y-proofs of Weak Pigeonhole Principle.

3. Can we simulate Resolution in PCR]E +1)¢ Conjecture: NO.
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