Stability conditions via Tits cone intersections

Michael Wemyss

www.maths.gla.ac.uk/~mwemyss

Plan of Talk

- 1. 3-fold flops: enhancing the movable cone.
- 2. Tits cone intersections.
- 3. Application: flops, mutation, and stability conditions. (plus: what is the picture on the first slide?)

Setting

Three-dimensional multi-curve flops, which are pictorially:

where X is Gorenstein terminal (e.g. smooth).

Setting

Three-dimensional multi-curve flops, which are pictorially:

where X is Gorenstein terminal (e.g. smooth). We're interested in:

- Classification.
- Invariants, curve counting.
- Derived categories and stability conditions.
- Symmetries: derived autoequivalences.
- Noncommutative resolutions.

Recap on ADE Dynkin Diagrams

Recap on ADE Dynkin Diagrams + choice of nodes

Construction

Input

- Any choice of ADE Dynkin diagram Δ ,
- and any choice of nodes $\mathcal{J} \subseteq \Delta$.

Construction

Input

- Any choice of ADE Dynkin diagram Δ ,
- and any choice of nodes $\mathcal{J} \subseteq \Delta$.

Now, each such Δ has an associated *root system*. This is just a real vector space $\mathbb{R}^{|\Delta|}$, with basis given by the nodes, together with some *reflecting hyperplanes*.

This does not depend on the choice \mathcal{J} .

Construction

Input

- Any choice of ADE Dynkin diagram Δ ,
- and any choice of nodes $\mathcal{J} \subseteq \Delta$.

Now, each such Δ has an associated *root system*. This is just a real vector space $\mathbb{R}^{|\Delta|}$, with basis given by the nodes, together with some *reflecting hyperplanes*.

This does not depend on the choice \mathcal{J} .

Aim

Want something similar, but which also depends on \mathcal{J} .

The root system has a basis given by the nodes. Thus, the choice \mathcal{J} gives *some* of these, so a *subspace* $\mathbb{R}^{|\mathcal{J}|}$. Picture for $|\mathcal{J}| = 2$ is:

The root system has a basis given by the nodes. Thus, the choice \mathcal{J} gives *some* of these, so a *subspace* $\mathbb{R}^{|\mathcal{J}|}$. Picture for $|\mathcal{J}| = 2$ is:

The reflecting hyperplanes slice the subspace

The root system has a basis given by the nodes. Thus, the choice \mathcal{J} gives *some* of these, so a *subspace* $\mathbb{R}^{|\mathcal{J}|}$. Picture for $|\mathcal{J}| = 2$ is:

We *intersect* the reflecting hyperplanes with the subspace

The root system has a basis given by the nodes. Thus, the choice \mathcal{J} gives *some* of these, so a *subspace* $\mathbb{R}^{|\mathcal{J}|}$. Picture for $|\mathcal{J}| = 2$ is:

We intersect the reflecting hyperplanes with the subspace

Output

A finite collection of (red) hyperplanes, written $Cone(\mathcal{J})$.

・ロト ・四ト ・ヨト ・ヨト 三日

Theorem (Pinkham)

The intersection arrangement $Cone(\mathcal{J})$ is the movable cone of the flopping contraction.

...can also prove this by tracking the skyscrapers around under the flop functors, then de-categorifying.

Some Examples

<ロト < 部 > < 言 > < 言 > 言 の Q (C 8/24)

Some Examples

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ = の Q (~ 8/24

Proposition (Iyama–W)

Consider any $\mathcal{J} \subseteq \Delta$ with Δ ADE Dynkin and $|\mathcal{J}| = 2$. Then, up to changing the slopes of the lines, Cone(\mathcal{J}) is one of:

The number of chambers is 6, 8, 10, 12 and 16 respectively.

E₈

*E*₈ <u>-----</u>

イロト イポト イヨト イヨト

3

10/24

Better: extended ADE Dynkin Diagrams + choice of nodes

Tits Cone Intersections

Input

- Any choice of extended ADE Dynkin diagram Δ_{aff} ,
- ▶ and any choice of nodes $\mathcal{K} \subseteq \Delta_{\mathsf{aff}}$.

Tits Cone Intersections

Input

- Any choice of extended ADE Dynkin diagram Δ_{aff} ,
- and any choice of nodes $\mathcal{K} \subseteq \Delta_{\mathsf{aff}}$.

A similar story as to before, intersecting now inside the Tits Cone (instead of the root system) gives an *infinite* hyperplane arrangement, written Level(\mathcal{K}).

This lives in $\mathbb{R}^{|\mathcal{K}|-1}$.

Finite Inside Infinite

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日><日</td>12/24
Finite Inside Infinite

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Finite Inside Infinite

May as well develop the infinite theory; finite theory comes for free.

Labels and Wall Crossing

Question

How to calculate these intersection hyperplane arrangements?

Labels and Wall Crossing

Question

How to calculate these intersection hyperplane arrangements?

The key is what we actually do is the following:

- ► Every chamber is labelled by a pair (w, J), where w is an element in some group, and J is a subset of nodes.
- If (x, ℑ) and (y, ℬ) label adjacent chambers, it is possible to describe one from the other combinatorially, via a wall crossing rule.

Labels and Wall Crossing

Question

How to calculate these intersection hyperplane arrangements?

The key is what we actually do is the following:

- ► Every chamber is labelled by a pair (w, J), where w is an element in some group, and J is a subset of nodes.
- If (x, ℑ) and (y, ℬ) label adjacent chambers, it is possible to describe one from the other combinatorially, via a wall crossing rule.

The rule is a bit technical, but it allows us to start anywhere, and iterate. The rule is also important for geometric applications.

Number of wall crossings = number of red nodes in subset.

To cross one of these walls, choose red node. Temporarily delete *all other* red nodes, apply Dynkin involution, then put back in the deleted vertices.

Number of wall crossings = number of red nodes in subset.

To cross one of these walls, choose red node. Temporarily delete *all other* red nodes, apply Dynkin involution, then put back in the deleted vertices.

Number of wall crossings = number of red nodes in subset.

To cross one of these walls, choose red node. Temporarily delete *all other* red nodes, apply Dynkin involution, then put back in the deleted vertices.

Number of wall crossings = number of red nodes in subset.

To cross one of these walls, choose red node. Temporarily delete *all other* red nodes, apply Dynkin involution, then put back in the deleted vertices.

Number of wall crossings = number of red nodes in subset.

To cross one of these walls, choose red node. Temporarily delete *all other* red nodes, apply Dynkin involution, then put back in the deleted vertices.

Number of wall crossings = number of red nodes in subset.

To cross one of these walls, choose red node. Temporarily delete *all other* red nodes, apply Dynkin involution, then put back in the deleted vertices.

If $\mathcal{K} \subseteq \Delta_{aff}$ satisfies $|\mathcal{K}| = 3$, then up to changing the slopes of some of the hyperplanes, Level(\mathcal{K}) is one of:

If $\mathcal{K} \subseteq \Delta_{aff}$ satisfies $|\mathcal{K}| = 3$, then up to changing the slopes of some of the hyperplanes, Level(\mathcal{K}) is one of:

Upshot

For every 3-fold flop $X \to \operatorname{Spec} \mathfrak{R}$, obtain a pair (Δ, \mathfrak{J}) , namely a shaded ADE Dynkin diagram.

As before, from this we can always just add in the extended vertex:

Upshot

For every 3-fold flop $X \to \operatorname{Spec} \mathfrak{R}$, obtain a pair (Δ, \mathcal{J}) , namely a shaded ADE Dynkin diagram.

As before, from this we can always just add in the extended vertex:

Upshot

For every 3-fold flop $X \to \operatorname{Spec} \mathfrak{R}$, obtain a pair (Δ, \mathcal{J}) , namely a shaded ADE Dynkin diagram.

As before, from this we can always just add in the extended vertex:

Start of talk: the left one gives us a finite hyperplane arrangement \mathcal{H} , the right hand one gives us an infinite arrangement \mathcal{H}_{aff} .

Enter Noncommutative Resolutions (and variants)

Consider \mathcal{R} , the base of the flop.

Enter Noncommutative Resolutions (and variants)

Consider \mathfrak{R} , the base of the flop.

For finite story, consider $M \in \operatorname{mod} \mathfrak{R}$ such that

- *M* is Cohen–Macaulay, namely $Ext^{i}_{\mathcal{R}}(M, \mathcal{R}) = 0$ for all i > 0.
- *M* is rigid, namely $Ext^{1}_{\mathcal{R}}(M, M) = 0$.
- *M* is maximal with respect to the above property.

In the lingo, 'maximal rigid objects in the category $\mathrm{CM}\mathcal{R}$ '.

Enter Noncommutative Resolutions (and variants)

Consider \mathfrak{R} , the base of the flop.

For finite story, consider $M \in \operatorname{mod} \mathfrak{R}$ such that

- *M* is Cohen–Macaulay, namely $\operatorname{Ext}^{i}_{\mathcal{R}}(M, \mathcal{R}) = 0$ for all i > 0.
- *M* is rigid, namely $Ext^{1}_{\mathcal{R}}(M, M) = 0$.
- ► *M* is maximal with respect to the above property.

In the lingo, 'maximal rigid objects in the category $\mathrm{CM}\mathcal{R}$ '.

...will turn out to only be finitely many of them.

For the infinite arrangement story, need more. Consider those $M \in \operatorname{mod} \mathcal{R}$ such that:

▶ *M* is reflexive, namely there is an isomorphism

 $M \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{R}}(\operatorname{Hom}_{\mathcal{R}}(M, \mathcal{R}), \mathcal{R})$

• *M* is modifying, namely $End_{\mathcal{R}}(M)$ satisfies

 $\operatorname{Ext}^1_{\operatorname{\mathcal{R}}}(\operatorname{End}_{\operatorname{\mathcal{R}}}(M), \operatorname{\mathcal{R}}) = 0$

• *M* is maximal with respect to the above property.

For the infinite arrangement story, need more. Consider those $M \in \operatorname{mod} \mathcal{R}$ such that:

▶ *M* is reflexive, namely there is an isomorphism

 $M \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{R}}(\operatorname{Hom}_{\mathcal{R}}(M, \mathcal{R}), \mathcal{R})$

• *M* is modifying, namely $End_{\Re}(M)$ satisfies

 $\operatorname{Ext}^1_{\operatorname{\mathcal{R}}}(\operatorname{End}_{\operatorname{\mathcal{R}}}(M), \operatorname{\mathcal{R}}) = 0$

• *M* is maximal with respect to the above property.

In the lingo, 'maximal modifying modules'. These are the building blocks of *noncommutative resolutions* (and their variants).

Suppose that $X \to \operatorname{Spec} \mathfrak{R}$ is a smooth flopping contraction.

Associate $\mathcal{J}\subseteq\Delta$ by slicing, which gives a finite arrangement $\mathcal H$ and an infinite arrangement $\mathcal H_{\mathsf{aff}}$.

Suppose that $X \to \operatorname{Spec} \mathfrak{R}$ is a smooth flopping contraction.

Associate $\mathcal{J}\subseteq\Delta$ by slicing, which gives a finite arrangement \mathcal{H} and an infinite arrangement $\mathcal{H}_{\mathsf{aff}}$.

- 1. Maximal rigid objects in $CM\mathcal{R}$ are in bijection with chambers of the finite hyperplane arrangement \mathcal{H} .
- 2. Maximal modifying objects are in bijection with chambers of the infinite hyperplane arrangement $\mathcal{H}_{\text{aff}}.$

Suppose that $X \to \operatorname{Spec} \mathfrak{R}$ is a smooth flopping contraction.

Associate $\mathcal{J}\subseteq\Delta$ by slicing, which gives a finite arrangement \mathcal{H} and an infinite arrangement $\mathcal{H}_{\mathsf{aff}}$.

- 1. Maximal rigid objects in $CM\mathcal{R}$ are in bijection with chambers of the finite hyperplane arrangement \mathcal{H} .
- 2. Maximal modifying objects are in bijection with chambers of the infinite hyperplane arrangement $\mathcal{H}_{\text{aff}}.$

...in particular, we get a *complete* classification of noncommutative resolutions in this setting!

In the opening slide:

 In the opening slide:

The dots are those $M \in \operatorname{ref} \mathfrak{R}$ which give NCCRs.

In the opening slide:

The dots are those $M \in \operatorname{ref} \mathcal{R}$ which give NCCRs. The edges connecting dots are the *mutations* of these; the above is really a picture of the exchange graph.

To have such highly regular structure is very unusual.

Now categorify...

The *mutation functors* lift the above combinatorial statements. Consider the following groupoid:

Now categorify...

The *mutation functors* lift the above combinatorial statements. Consider the following groupoid:

Now categorify...

The *mutation functors* lift the above combinatorial statements. Consider the following groupoid:

with relations give by identifying shortest paths. This is called the *Deligne groupoid*.

There is another way to build a groupoid. By last theorem:

- Each chamber has associated M, thus $D^{b}(\text{mod End}_{\mathcal{R}}(M))$.
- Each wall crossing has *mutation* autoequivalence.

There is another way to build a groupoid. By last theorem:

- Each chamber has associated M, thus $D^{b}(\text{mod End}_{\mathcal{R}}(M))$.
- Each wall crossing has *mutation* autoequivalence.

Theorem (Iyama–W)

There exists a functor from the Deligne groupoid to the groupoid described above.

Corollary (Iyama–W)

 $\pi_1(\mathbb{C}^n \setminus (\mathcal{H}_{\mathsf{aff}})_{\mathbb{C}}) \text{ acts on } \mathsf{D}^\mathsf{b}(\mathsf{coh}\, X).$

And categorify again...

Consider the following two subcategories of $D^{b}(\operatorname{coh} X)$.

$$\mathcal{C} = \{ \mathcal{F} \in \mathsf{D}^{\mathsf{b}}(\operatorname{coh} X) \mid \mathbf{R}f_* \mathcal{F} = 0 \}$$
$$\mathcal{D} = \{ \mathcal{F} \in \mathsf{D}^{\mathsf{b}}(\operatorname{coh} X) \mid \operatorname{Supp} \mathcal{F} \subseteq \mathrm{C} \}.$$

And categorify again...

Consider the following two subcategories of $D^{b}(\operatorname{coh} X)$.

$$\mathcal{C} = \{ \mathcal{F} \in \mathsf{D}^{\mathsf{b}}(\operatorname{coh} X) \mid \mathbf{R}f_* \mathcal{F} = 0 \}$$
$$\mathcal{D} = \{ \mathcal{F} \in \mathsf{D}^{\mathsf{b}}(\operatorname{coh} X) \mid \operatorname{Supp} \mathcal{F} \subseteq \mathrm{C} \}.$$

Main Theorem (Hirano–W)

Given flopping contraction $X \to \operatorname{Spec} \mathcal{R}$, associate finite \mathcal{H} and infinite $\mathcal{H}_{\operatorname{aff}}$ by slicing. Then the forgetful maps

$$\begin{aligned} \mathrm{Stab}^{\circ} \mathcal{C} &\to \mathbb{C}^n \backslash \mathcal{H}_{\mathbb{C}} \\ \mathrm{Stab}_n^{\circ} \mathcal{D} &\to \mathbb{C}^n \backslash (\mathcal{H}_{\mathsf{aff}})_{\mathbb{C}} \end{aligned}$$

are regular covering maps. The first is universal.

And categorify again...

Consider the following two subcategories of $D^{b}(\operatorname{coh} X)$.

$$\mathcal{C} = \{ \mathcal{F} \in \mathsf{D}^{\mathsf{b}}(\operatorname{coh} X) \mid \mathbf{R}f_* \mathcal{F} = 0 \}$$
$$\mathcal{D} = \{ \mathcal{F} \in \mathsf{D}^{\mathsf{b}}(\operatorname{coh} X) \mid \operatorname{Supp} \mathcal{F} \subseteq \mathrm{C} \}.$$

Main Theorem (Hirano–W)

Given flopping contraction $X \to \operatorname{Spec} \mathcal{R}$, associate finite \mathcal{H} and infinite $\mathcal{H}_{\operatorname{aff}}$ by slicing. Then the forgetful maps

$$\begin{aligned} \mathrm{Stab}^{\circ} \mathcal{C} &\to \mathbb{C}^n \backslash \mathcal{H}_{\mathbb{C}} \\ \mathrm{Stab}_n^{\circ} \mathcal{D} &\to \mathbb{C}^n \backslash (\mathcal{H}_{\mathsf{aff}})_{\mathbb{C}} \end{aligned}$$

are regular covering maps. The first is universal.

Autoequivalences of the last slide are the deck transformations.

Conclusion

The t-structures needed to describe the stability conditions *do not* all come from the movable cone and its images under tensoring by a line bundle.

Conclusion

The t-structures needed to describe the stability conditions *do not* all come from the movable cone and its images under tensoring by a line bundle.

You need lots more: the others are noncommutative. The autoequivalence group is much larger than you expect.