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Plan of Talk

1. 3-fold flops: enhancing the movable cone.

2. Tits cone intersections.

3. Application: flops, mutation, and stability conditions.
(plus: what is the picture on the first slide?)
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Setting
Three-dimensional multi-curve flops, which are pictorially:

X

SpecR

where X is Gorenstein terminal (e.g. smooth).

We’re interested in:

I Classification.

I Invariants, curve counting.

I Derived categories and stability conditions.

I Symmetries: derived autoequivalences.

I Noncommutative resolutions.
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What combinatorics controls flops?
Take-home message: the combinatorics of flops, and to a large
extent their homological algebra, is controlled by surfaces data.

X

SpecR

Spec(R/g)

3-foldssurfaces
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Recap on ADE Dynkin Diagrams

An

n≥1
· · ·

Dn

n≥4 · · ·

E6

E7

E8

· · ·

· · ·
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Recap on ADE Dynkin Diagrams + choice of nodes
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n≥1
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Construction

Input

I Any choice of ADE Dynkin diagram ∆,

I and any choice of nodes J ⊆ ∆.

Now, each such ∆ has an associated root system. This is just a
real vector space R|∆|, with basis given by the nodes, together with
some reflecting hyperplanes.

This does not depend on the choice J.

Aim
Want something similar, but which also depends on J.
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Intersection arrangements

The root system has a basis given by the nodes. Thus, the choice
J gives some of these, so a subspace R|J|. Picture for |J| = 2 is:
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Intersection arrangements

The root system has a basis given by the nodes. Thus, the choice
J gives some of these, so a subspace R|J|. Picture for |J| = 2 is:

We intersect the reflecting hyperplanes with the subspace

Output

A finite collection of (red) hyperplanes, written Cone(J).
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Theorem (Pinkham)

The intersection arrangement Cone(J) is the movable cone of the
flopping contraction.

...can also prove this by tracking the skyscrapers around under the
flop functors, then de-categorifying.
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Some Examples
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Proposition (Iyama–W)

Consider any J ⊆ ∆ with ∆ ADE Dynkin and |J| = 2. Then, up to
changing the slopes of the lines, Cone(J) is one of:

The number of chambers is 6, 8, 10, 12 and 16 respectively.
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Better: extended ADE Dynkin Diagrams
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Ẽ6

Ẽ7
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Tits Cone Intersections

Input

I Any choice of extended ADE Dynkin diagram ∆aff ,

I and any choice of nodes K ⊆ ∆aff .

A similar story as to before, intersecting now inside the Tits Cone
(instead of the root system) gives an infinite hyperplane
arrangement, written Level(K).

This lives in R|K|−1.
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Finite Inside Infinite
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Finite Inside Infinite
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Finite Inside Infinite

May as well develop the infinite theory; finite theory comes for free.
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Labels and Wall Crossing

Question
How to calculate these intersection hyperplane arrangements?

The key is what we actually do is the following:

I Every chamber is labelled by a pair (w , I), where w is an
element in some group, and I is a subset of nodes.

I If (x , I) and (y , J) label adjacent chambers, it is possible to
describe one from the other combinatorially, via a wall
crossing rule.

The rule is a bit technical, but it allows us to start anywhere, and
iterate. The rule is also important for geometric applications.
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The Wall Crossing Rule

Number of wall crossings = number of red nodes in subset.

To cross one of these walls, choose red node. Temporarily delete
all other red nodes, apply Dynkin involution, then put back in the
deleted vertices.

Example
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Theorem (Iyama–W)

If K ⊆ ∆aff satisfies |K| = 3, then up to changing the slopes of
some of the hyperplanes, Level(K) is one of:
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Upshot

For every 3-fold flop X → SpecR, obtain a pair (∆, J), namely a
shaded ADE Dynkin diagram.

As before, from this we can always just add in the extended vertex:

Start of talk: the left one gives us a finite hyperplane arrangement
H, the right hand one gives us an infinite arrangement Haff .
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Enter Noncommutative Resolutions (and variants)

Consider R, the base of the flop.

For finite story, consider M ∈ modR such that

I M is Cohen–Macaulay, namely ExtiR(M,R) = 0 for all i > 0.

I M is rigid, namely Ext1
R(M,M) = 0.

I M is maximal with respect to the above property.

In the lingo, ‘maximal rigid objects in the category CMR’.

...will turn out to only be finitely many of them.
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For the infinite arrangement story, need more. Consider those
M ∈ modR such that:

I M is reflexive, namely there is an isomorphism

M
∼−→ HomR(HomR(M,R),R)

I M is modifying, namely EndR(M) satisfies

Ext1
R(EndR(M),R) = 0

I M is maximal with respect to the above property.

In the lingo, ‘maximal modifying modules’. These are the building
blocks of noncommutative resolutions (and their variants).
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Theorem (Iyama–W)

Suppose that X → SpecR is a smooth flopping contraction.

Associate J ⊆ ∆ by slicing, which gives a finite arrangement H and
an infinite arrangement Haff .

1. Maximal rigid objects in CMR are in bijection with chambers
of the finite hyperplane arrangement H.

2. Maximal modifying objects are in bijection with chambers of
the infinite hyperplane arrangement Haff .

...in particular, we get a complete classification of noncommutative
resolutions in this setting!
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In the opening slide:

The dots are those M ∈ ref R which give NCCRs. The edges
connecting dots are the mutations of these; the above is really a
picture of the exchange graph.

To have such highly regular structure is very unusual.
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Now categorify...

The mutation functors lift the above combinatorial statements.

Consider the following groupoid:
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Now categorify...

The mutation functors lift the above combinatorial statements.

Consider the following groupoid:

with relations give by identifying shortest paths. This is called the
Deligne groupoid.
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There is another way to build a groupoid. By last theorem:

I Each chamber has associated M, thus Db(mod EndR(M)).

I Each wall crossing has mutation autoequivalence.

Theorem (Iyama–W)

There exists a functor from the Deligne groupoid to the groupoid
described above.

Corollary (Iyama–W)

π1(Cn\(Haff)C) acts on Db(cohX ).
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And categorify again...

Consider the following two subcategories of Db(cohX ).

C = {F ∈ Db(cohX ) | Rf∗F = 0}
D = {F ∈ Db(cohX ) | SuppF ⊆ C}.

Main Theorem (Hirano–W)

Given flopping contraction X → SpecR, associate finite H and
infinite Haff by slicing. Then the forgetful maps

Stab◦C→ Cn\HC

Stab◦nD→ Cn\(Haff)C

are regular covering maps. The first is universal.

Autoequivalences of the last slide are the deck transformations.
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Conclusion

The t-structures needed to describe the stability conditions do not
all come from the movable cone and its images under tensoring by
a line bundle.
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Conclusion

The t-structures needed to describe the stability conditions do not
all come from the movable cone and its images under tensoring by
a line bundle.

You need lots more: the others are noncommutative. The
autoequivalence group is much larger than you expect.
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