Automorphisms of projective surfaces: finite orbits of large groups

Based on a joint work with Romain Dujardin

Dynamics on a real K3 surface (C.T. McMullen, V. Pit)
Automorphisms of surfaces:

Examples
Surfaces and automorphisms

- X = smooth complex projective surface (real dimension 4)
- Aut(X) = group of holomorphic diffeomorphisms
 = group of (regular, algebraic) automorphisms
 = a complex Lie group.

Example 1. – $E = \mathbb{C}/\Lambda$, an elliptic curve.

\[X = E \times E = \mathbb{C}^2/(\Lambda \times \Lambda). \]
\[X = \text{translations} \subset \text{Aut}(X). \]
\[\text{GL}_2(\mathbb{Z}) \subset \text{Aut}(X). \]

Example 2. – $\eta(x, y) = (-x, -y)$ on $X = E \times E$.

η commutes to the action of $\text{GL}_2(\mathbb{Z})$.

\[Y = \widehat{X}/\eta \text{ is a Kummer surface.} \]
• Example 3.– $X \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, smooth, degree $(2, 2, 2)$:

$$x^2 y^2 z^2 + (x^2 y^2 + y^2 z^2 + z^2 x^2)/200 + x^2 + y^2 + z^2 + xy + z - y = 6.$$
Cohomology:
Minkowski space and types of automorphisms.
• **Intersection form.**–
 \[\langle C|D \rangle = \text{intersection number, with multiplicities}; \]
 \[\langle \cdot|\cdot \rangle = \text{bilinear form on divisors}. \]

• **Néron-Severi group.**– Numerical classes of divisors.

 \[\text{NS}(X; \mathbb{Z}) = H^2(X; \mathbb{Z}) \cap H^{1,1}(X, \mathbb{R}). \]

• **Picard number.**– \(\rho(X) = \dim_\mathbb{R} \text{NS}(X, \mathbb{R}) \).

• **Hodge index Theorem.**– On \(\text{NS}(X; \mathbb{R}) \), the intersection form is non-degenerate, of signature \((1, \rho(X) - 1) \).
Three types of isometries

- Elliptic: f^* has finite order,
- Parabolic: is virtually unipotent,
- Loxodromic: or $\lambda(f) > 1$.
Tame automorphisms

• If f elliptic, then some positive iterate f^k is in $\text{Aut}(X)^0$.

• **Gizatullin’s Theorem.**—
 If f^* is parabolic, then f preserves a genus 1 fibration $\pi : X \to B$, and induces a finite order automorphism of B if X is not an abelian surface.

Examples.— Mordell-Weil groups of a genus 1 fibration $\pi : X \to B$: translations from one section of π to another one.
— Break for Questions —

and Banff International Research Station

Thank You!
The invariant measure μ_f:

stable manifolds, periodic points, equidistribution
Loxodromic automorphisms

- Two invariant isotropic lines

\[R\theta^+_f \text{ and } R\theta^-_f, \text{ with } \langle \theta^+_f | \theta^-_f \rangle = 1. \]

- \(f^*\theta^+_f = \lambda(f)\theta^+_f. \)

- \(\theta^+_f, \theta^-_f \in \text{Ample cone}. \)

- \(\theta^+_f \) is represented by a closed positive current \(T^+_f \) with \(f^* T^+_f = \lambda(f) T^\pm_f. \)

Fact.— The current \(T^\pm_f \) is **unique** and has **Hölder continuous** potentials. The measure

\[\mu_f = T^+_f \wedge T^-_f \]

is an invariant probability measure.
• **Theorem (Bedford, Lyubich, Smille; C.; Dujardin).**—
 The periodic points of f of period N become equidistributed with respect to μ_f as N goes to $+\infty$:

 \[
 \frac{1}{|\text{Per}_f(N)|} \sum_{x \in \text{Per}_f(N)} \delta_x \longrightarrow \mu_f.
 \]

 Moreover, $|\text{Per}_f(N)| \sim \lambda(f)^N$.

• **Theorem (C., Dupont; see also Filip and Tosatti).**—
 If the measure μ_f is smooth, or absolutely continuous with respect to the Lebesgue measure on X, then (X, f) is a Kummer example.
• **Kummer groups.** \(\Gamma \subset \text{Aut}(X) \) is a Kummer group if there exists

- an abelian surface \(A \); a subgroup \(\Gamma_A \subset \text{Aut}(A) \);
- a finite, normal subgroup \(G \) of \(\Gamma_A \);
- a birational morphism \(q_X : X \to A/G \);
- homomorphisms \(\tau_X : \Gamma \to \text{Aut}(A/G) \) and \(\tau_A : \Gamma_A \to \text{Aut}(A/G) \);

such that \(q_X \) and the quotient map \(q_A : A \to A/G \) are naturally equivariant and define the same groups:

- \(q_X \circ f = \tau(f) \circ q_X \) for every \(f \in \Gamma \);
- \(q_A \circ g = \tau(f) \circ q_A \) for every \(g \in \Gamma_A \);
- \(\tau_A(\Gamma_A) = \tau_X(\Gamma_X) \).
— IV —

Periodic orbits for large groups
• **Theorem A (C., Dujardin).** –
 - \(k \) = number field.
 - \(X \) = smooth projective surface defined over \(k \).
 - \(\Gamma = \text{subgroup of } \text{Aut}(X_k) \text{ containing parabolic elements with distinct invariant fibrations.} \)

 If \(\Gamma \) has a Zariski dense set of periodic points, then \((X, \Gamma)\) is a Kummer group.

• **Remarks.** –
 - Works also over the field \(\mathbb{C} \) if we assume that \(\Gamma \) has no periodic curve.
 - Related question: classify pairs of loxodromic elements with \(\mu_f = \mu_g \).
 (see the work of Dujardin and Favre for Hénon automorphisms)
• \(k = \) number field, \(\bar{k} \cong \bar{Q} \).
• \(X \) and \(\Gamma \) defined over \(k \).
• \(\text{Pic}(X; \mathbb{R}) = \text{Pic}(X_{\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{R} \) (Picard group)

 \[\text{NS}(X; \mathbb{R}) \text{ if } \text{Pic}^0(X_{\bar{k}}) \neq 0. \]

• **Definition (A. Baragar).**— A **canonical vector height** is a function

\[h: \text{Pic}(X; \mathbb{R}) \times X(\bar{k}) \to \mathbb{R} \]

such that

(a) for \(D \in \text{Pic}(X; \mathbb{R}) \), \(h(D, \cdot) \) is a Weil height w.r.t. \(D \) on \(X(\bar{k}) \);

(b) \(h(D, x) \) is linear in \(D \): \(h(aD + bE, \cdot) = ah(D, \cdot) + bh(E, \cdot) \);

(c) \(h \) is equivariant: \(h(f^*D, x) = h(D, f(x)) \) for all \(f \in \Gamma \).
• **Example.**— The Néron-Tate height, for automorphisms fixing the neutral element.

• **Example.**— When $\rho(X) = 2$, and Γ is generated by a loxodromic element (Baragar, after a construction of Silverman).

• **Example.**— Kawaguchi found examples of Wehler surfaces with no such height functions.

• **Theorem B (C., Dujardin).**— $\Gamma \subset \text{Aut}(X_k)$ as in Theorem A. If there exists a canonical vector height for Γ, then

 • X is an abelian surface,

 • Γ has a periodic point y,

 • and h is derived from the Néron-Tate height:

 $$h(D, x + y) = h_{NT}(D, x) + \langle [E][D] \rangle \varphi(x).$$
Proof Strategy
Yuan’s equidistribution (following Kawaguchi)

• 1.A– Kawaguchi’s stationary height
 • \(\nu \) = probability measure on \(\Gamma \), with finite support
 • \(\sum_f \nu(f)f^*(D) = \alpha(\nu)D \), for some \(\alpha(\nu) > 1 \), and some \(D \) ample

Then there is a Weil height \(\hat{h}_D: X(\bar{k}) \to \mathbb{R}_+ \),

\[
\sum_f \nu(f)\hat{h}_D(f(x)) = \alpha(\nu)\hat{h}_D(x), \quad \forall x \in X(\bar{k}),
\]

with a decomposition as a sum of continuous local heights.

Finite orbits correspond to points of height 0 for \(\hat{h}_D \).

• 1.B– Yuan’s equidistribution theorem, for a sequence of periodic points \(x_i \):

\[
\frac{1}{|\Gamma(x_i)|} \sum_{y \in \Gamma(x_i)} \frac{1}{|\text{Gal}(\bar{k} : k)(y)|} \sum_{\sigma} \delta_{\sigma(y)} \longrightarrow \mu
\]

where \(\mu \) is a \(\Gamma \)-invariant probability measure.
• 2.– The limit μ does not depend on ν

$$\nu_n \to \frac{1}{2} \delta_f + \frac{1}{2} \delta_{f^{-1}}$$

The measure μ coincides with μ_f, for every loxodromic $f \in \Gamma$.

• 3.– Compose parabolic elements with distinct invariant fibrations

The measure μ has full support.
• 4.– The measure μ is smooth

• 5.– Every loxodromic element is a Kummer example. Then (X, Γ) is a Kummer group.
What more?