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The Bogomolny Equations

I Suppose A is an SU(2) connection on R3 whose curvature is
FA. Suppose Φ is a section of the adjoint su(2) bundle, then
the Bogomolny equations are:

FA = ∗dAΦ.

I Assymototic conditions: |FA|+ |dAΦ| = O(
1

r2
),

|Φ| = 1 + O(
1

r
).

I Connected components of the configuration space {(A, Φ)}
can be indexed by the “monopole number” k .

(Classified by the degree of the map
Φ

|Φ|
: S2 → S2 ⊂ su(2).)
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Donaldson’s Description of the Moduli Space

Let Mk be the moduli space of solutions up to SU(2) gauge
transformation with monopole number k.

I Theorem (Donaldson, 1984) There is a circle bundle M̃k over
Mk , such that M̃k can be identified with rational maps
f : CP1 → CP1 with degree k and f (∞) = 0.

I In particular, dim M̃k = 4k, dimMk = 4k − 1.

I Donaldson’s result was based on a study of the moduli space
of “Nalm’s equations” over (−1, 1) with certain boundary
conditions. The relationship between 1-d Nalm’s equations
and the 3-d Bogomolny equations was established earlier by
Nalm and Hitchin.
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Hitchin’s Algebraic Geometrical Approach

Hitchin’s algebraic geometrical method:

I Consider the moduli space of straight oriented lines in R3

(identified with TCP1).

I If an oriented line (with direction v) has L2 solutions to the
ODE equation ∇A

v s +Φs = 0 on it, then all such lines form an
algebraic curve in TCP1, namely the “spectral curve”.

I The spectral curve satisfies certain constraints that can be
described algebraically. And verse visa, all such curves
correspond to all solutions to the Bogomolny equations.
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Knot Singularity?

I It is trending now to study the gauge theoretic PDEs with a
knot singularity. For example
I Kronheimer and Mrowka’s studied the instanton floer theory

with a knot singularity;
I Witten proposed to study Kapustin-Witten equations with

certain knot singularity.

I It is natural to ask (and proposed by Taubes), what can we
say about the moduli space of the solutions on R3 with a knot
singularity? Can Bogomolny equations with a knot singularity
be studied by algebraic geometrical method? This may have
the potential to bring knot into algebraic geometry in the
future.

I Currently, the only thing that I can say about the knot
singularity is obtained by an adaption of Taubes’ Analytical
method.
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Taubes’ Analytical Approach

Taubes have also studied the moduli space of the Bogomolny
equations on R3 using an analytical method in his Ph.D. thesis
(Vortices and Monopoles: Structure of Static Gauge Theories).

I Suppose (A, Φ) is a configuration. Let L be the linearization
of the Bogomolny equations with an extra gauge fixing
condition at (A, Φ). Let Q be the quadradic term in the
Bogomolny equations: FA − ∗DAΦ = 0.

I Let S = Λ0(T ∗M)⊕ Λ1(T ∗M) equipped with a “Clifford
multiplication ·”, g be the adjoint su(2) bundle.
Then L : S ⊗ g → S ⊗ g can be written as

L =
3∑

j=1

dxj · ∇Aj
+ [Φ, ].
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Taubes’ Analytical Approach

I Ignoring the boundary, integration by part shows that:

ˆ
|Lψ|2 =

ˆ
|∇Aψ|2 + |[Φ,ψ]|2+ < ψ, ∗[(∗FA + dAΦ)∧ψ] >,

ˆ
|L†ψ|2 =

ˆ
|∇Aψ|2+|[Φ,ψ]|2+ < ψ, ∗[(∗FA−dAΦ)∧ψ] > .

I Define ‖ψ‖H(A,Φ)
= (

ˆ
R3

|∇Aψ|2 + |[Φ,ψ]|2)
1
2 . Immediately,

I L is Fredholm from H(A,Φ) to L2.
I If FA = ∗dAΦ, then the cokernel is 0.
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Taubes’ Analytical Approach

I The quadratic part Q is a bounded map from H(A,Φ) ×H(A,Φ)

to L2.

I A skechy proof:

Write ψ as ψ//+ ψ⊥, where ψ////Φ, ψ⊥ ⊥ Φ.

Note that Q(ψ
//
1, ψ

//
2) = 0. So Q(ψ1, ψ2) = Q(ψ1, ψ

⊥
2 ).

By Sobolev embedding, ψ1 ∈ L6, ψ⊥2 ∈ L6 ∩ L2.

So
∥∥∥Q(ψ1, ψ

⊥
2 )
∥∥∥
L2

is bounded by ‖ψ1‖H(A,Φ)
·‖ψ2‖H(A,Φ)

.

I Corollary(implicit function theorem) The moduli space has a
manifold structure.
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Knot Singularity

I If there is a knot singularity, then the usual integration by part
does not go through: the boundary term near the knot
doesn’t vanish.

I Suppose ρ is the distance to the knot and Nε is the
ε-neighbourhood of the knot.
By examining the scale near the knot, I make the following
adaption:

‖ψ‖2H(A,Φ),ε
= ε(

ˆ
R3\Nε

|∇Aψ|2+|[Φ,ψ]|2)+(

ˆ
Nε

ρ(|∇Aψ|2+|[Φ,ψ]|2)),

‖ψ‖2L2,ε = ε(

ˆ
R3\Nε

|ψ|2) + (

ˆ
Nε

ρ|ψ|2).
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Knot Singularity

I Definition If after a gauge transformation, Ψ = (A, Φ) is close
enough to a model solution Ψγ = (Aγ , Φγ) near the knot

(

ˆ
Nε

ρ(|∇Aγ (Ψ − Ψγ)|2 + |[Φγ , Ψ − Ψγ ]|2) < +∞), then it has

a knot singularity with monodromy γ.
Here Aγ = γσω is the flat connection with γ monodromy ,
Φ = σ is covariantly constant.

I Using SO(3) gauge transformation, one can change γ by any

half integer. So it may be assumed that γ ∈ [0,
1

2
).
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Knot Singularity

I Theorem (Sun20) Suppose (A, Φ) satisfies the assymtotic
conditions and both FA and DAΦ have bounded L2

ε norm.
Then the only possible singularity is a knot singularity.

I The drawback is: the cokernel of L is not guaranteed to be 0.

I Luckily, the quadratic term Q is still a bounded map from
H(A,Φ),ε ×H(A,Φ),ε to L2

ε .
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Fredholm Theory

I Theorem (Sun20) If γ ∈ (0,
1

8
) ∪ (

3

8
,

1

2
), then L is Fredholm.

In this situation, the moduli space has a local “analytical
structure”: Locally it can be identified with the pre-image
f −1(0) of a real analytical map between f Euclidean spaces.

I A sketchy proof:ˆ
Nε

ρ|LΨψ|2 = c‖ψ‖2H(Nε)
+

ˆ
∂Nε

boundary term A + (· · · ),

ε

ˆ
R3\Nε

|LΨψ|2 ≥ ε‖ψ‖HR3\Nε
+

ˆ
∂Nε

boundary term B + (· · · ).

Here

ˆ
∂Nε

(2A + B) is compact relative to ‖ψ‖H(A,Φ),ε
, so

2

ˆ
Nε

ρ|LΨψ|2+ε

ˆ
R3\Nε

|LΨψ|2 ≥ c‖ψ‖2H(A,Φ),ε
−compact terms.

Similar inequality holds for L†Ψ , implying that LΨ is Fredholm.
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Conjecture

I 1. L is also Fredholm when γ ∈ [
1

8
,

3

8
].

I 2. Generically, L also has 0 cokernel (which means, the moduli
space has a manifold structure).
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Examples from gluing

I One way to describe the Prasad-Sommerfield monopole (N =
1) is (in a certain gauge):
A is almost flat and Φ is almost a constant outside of the
Dirac region.



Examples from gluing

I One way to describe the Prasad-Sommerfield monopole (N =
1) is (in a certain gauge):
A is almost flat and Φ is almost a constant outside of the
Dirac region.

I If the Dirac regions and the knot are far away, then it is
possible to “glue” any number of Prasad-Sommerfield
monopoles onto the model solution with knot singularity.
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I (Sun20) If I shrink the knot to be small enough, then the
relative compact term in

‖LΨψ‖2L2
ε
≥ c‖ψ‖2H(A,Φ),ε

− relatively compact term.

can be bounded
c

2
‖ψ‖2H(A,Φ),ε

, which implies that the cokernel

of L is 0. (So the moduli space has a manifold structure
nearby in this situation.)



Thank you!


