Monopoles: construction, dynamics, transforms

Derek Harland University of Leeds

1st February 2021

Save pure maths at Leicester: https://www.ipetitions.com/petition/mathematics-is-not-redundant

< □ > < □ > < Ξ > < Ξ > < Ξ > ① < Ξ

・ロト・日本・ヨト・ヨー シック

$$\begin{array}{lll} \Phi: \mathbb{R}^3 \to \mathfrak{su}(2), \, A \in \Omega^1(\mathbb{R}^3) \otimes \mathfrak{su}(2), \\ \mathsf{d}^A = \mathsf{d} + [A, \cdot], \, F^A = \mathsf{d}A + A \wedge A. \\ \\ \mathsf{d}^A \Phi &= *F^A \\ |\Phi| &= 1 - \frac{N}{2r} + O(r^{-2}) \text{ as } r \to \infty \end{array}$$

 $\mathbb{N} \ni N =$ = # zeros of $\Phi =$ degree of $\Phi_{\infty} =$ Chern number of eigenbundle of $\Phi_{\infty} =$ "charge".

 $\mathbb{N} \ni N =$ = # zeros of $\Phi =$ degree of $\Phi_{\infty} =$ Chern number of eigenbundle of $\Phi_{\infty} =$ "charge".

Monopoles minimise $E = \frac{1}{2} \int_{\mathbb{R}^3} |d^A \Phi|^2 + |F^A|^2$.

$$egin{aligned} \Phi : \mathbb{R}^3 &
ightarrow \mathfrak{su}(2), \, A \in \Omega^1(\mathbb{R}^3) \otimes \mathfrak{su}(2), \ \mathsf{d}^A &= \mathsf{d} + [A, \cdot], \, F^A &= \mathsf{d}A + A \wedge A. \ \mathsf{d}^A \Phi &= *F^A \ &|\Phi| &= & 1 - rac{N}{2r} + O(r^{-2}) ext{ as } r
ightarrow \infty \end{aligned}$$

 $\mathbb{N} \ni N = = \#$ zeros of $\Phi =$ degree of $\Phi_{\infty} =$ Chern number of eigenbundle of $\Phi_{\infty} =$ "charge".

Monopoles minimise $E = \frac{1}{2} \int_{\mathbb{R}^3} |d^A \Phi|^2 + |F^A|^2$.

't Hooft, Polyakov 1974: $*F^A \approx \begin{pmatrix} iN & 0\\ 0 & -iN \end{pmatrix} \frac{dr}{2r^2}$ in gauge where Φ is diagonal

$$\begin{array}{lll} \Phi: \mathbb{R}^3 \to \mathfrak{su}(2), \, A \in \Omega^1(\mathbb{R}^3) \otimes \mathfrak{su}(2), \\ \mathsf{d}^A = \mathsf{d} + [A, \cdot], \, F^A = \mathsf{d}A + A \wedge A. \\ & \mathsf{d}^A \Phi &= *F^A \\ & |\Phi| &= 1 - \frac{N}{2r} + O(r^{-2}) \text{ as } r \to \infty \end{array}$$

 $\mathbb{N} \ni N = = \#$ zeros of $\Phi =$ degree of $\Phi_{\infty} =$ Chern number of eigenbundle of $\Phi_{\infty} =$ "charge".

Monopoles minimise $E = \frac{1}{2} \int_{\mathbb{R}^3} |d^A \Phi|^2 + |F^A|^2$.

't Hooft, Polyakov 1974: $*F^A \approx \begin{pmatrix} iN & 0 \\ 0 & -iN \end{pmatrix} \frac{dr}{2r^2}$ in gauge where Φ is diagonal \implies magnetic pole of charge $2\pi N$ in U(1) gauge theory.

The search for monopoles continues...

Holy grail of particle physics?

The Prasad-Sommerfield solution (1975)

$$\Phi = \left(\coth(2r) - \frac{1}{2r} \right) Q$$
$$A = \frac{1}{2} \left(1 - \frac{2r}{\sinh(2r)} \right) Q dQ$$
$$Q = \frac{x_j}{r} i\sigma_j$$

Spherically symmetric, N = 1.

The set of all charge N monopoles modulo gauge transformations forms a manifold M_N of dimension 4N - 1.

The set of all charge N monopoles modulo gauge transformations forms a manifold M_N of dimension 4N - 1.

Natural Riemannian metric:

$$|(\delta A, \delta \Phi)|^2 = \int_{\mathbb{R}^3} |\delta A^{\perp}| + |\delta \Phi^{\perp}|^2$$

where \perp indicates projection orthogonal to gauge orbit.

The set of all charge N monopoles modulo gauge transformations forms a manifold M_N of dimension 4N - 1.

Natural Riemannian metric:

$$|(\delta A, \delta \Phi)|^2 = \int_{\mathbb{R}^3} |\delta A^{\perp}| + |\delta \Phi^{\perp}|^2$$

where \perp indicates projection orthogonal to gauge orbit.

(There is a circle bundle over M_N with a hyperkähler metric).

The set of all charge N monopoles modulo gauge transformations forms a manifold M_N of dimension 4N - 1.

Natural Riemannian metric:

$$|(\delta A, \delta \Phi)|^2 = \int_{\mathbb{R}^3} |\delta A^{\perp}| + |\delta \Phi^{\perp}|^2$$

where \perp indicates projection orthogonal to gauge orbit.

(There is a circle bundle over M_N with a hyperkähler metric).

 $E = \frac{1}{2} \int_{\mathbb{R}^3} |d^A \Phi|^2 + |F^A|^2$ is the static energy of a (dynamical) Lagrangian field theory.

Theorem (Stuart (1994))

Geodesics on M_N approximate low-energy dynamics of this field theory.

Spectral curves

Minitwistor space = {oriented lines in \mathbb{R}^3 } = $TS^2 = T\mathbb{CP}^1$.

Spectral curves

Minitwistor space = {oriented lines in \mathbb{R}^3 } = $TS^2 = T\mathbb{CP}^1$.

A line *L* with coordinate $s \in \mathbb{R}$ is called *spectral* if

$$\frac{\partial}{\partial s} \lrcorner d^{A}v + i\Phi v = 0$$

has a solution $v: L \to \mathbb{C}^2$ that decays as $s \to \pm \infty$.

Spectral curves

Minitwistor space = {oriented lines in \mathbb{R}^3 } = $TS^2 = T\mathbb{CP}^1$.

A line *L* with coordinate $s \in \mathbb{R}$ is called *spectral* if

$$\frac{\partial}{\partial s} \lrcorner d^{A}v + i\Phi v = 0$$

has a solution $v: L \to \mathbb{C}^2$ that decays as $s \to \pm \infty$.

The *spectral curve* of a monopole is the set of all spectral lines. It is an algebraic variety $S \subset T\mathbb{CP}^1$.

Theorem (Hitchin 1982)

 M_N is in bijection with the set of irreducible curves $S \subset T \mathbb{CP}^1$ of the form

 $\eta^{\mathsf{N}} + \eta^{\mathsf{N}-1} a_1(\zeta) + \ldots + a_{\mathsf{N}}(\zeta) = 0$

for polynomials a_i of degree 2*i*, satsifying:

- 1. S is invariant under the antipodal map;
- **2**. L^2 is trivial and $L^1(N-1)$ is real on S;
- **3**. $H^0(S, L^s(N-2)) = 0$ for 0 < s < 2.

Here $L^s \to T\mathbb{CP}^1$ is the line bundle with transition function $\exp(-s\eta/\zeta)$.

NB S has genus $(N-1)^2$.

Theorem (Hitchin 1982)

 M_N is in bijection with the set of irreducible curves $S \subset T \mathbb{CP}^1$ of the form

 $\eta^{\mathsf{N}} + \eta^{\mathsf{N}-1} a_1(\zeta) + \ldots + a_{\mathsf{N}}(\zeta) = 0$

for polynomials a_i of degree 2*i*, satsifying:

- 1. S is invariant under the antipodal map;
- **2**. L^2 is trivial and $L^1(N-1)$ is real on S;
- **3.** $H^0(S, L^s(N-2)) = 0$ for 0 < s < 2.

Here $L^{s} \to T\mathbb{CP}^{1}$ is the line bundle with transition function $\exp(-s\eta/\zeta)$.

NB S has genus $(N-1)^2$.

Hard to recover monopole from S...

Theorem (Hitchin 1982)

 M_N is in bijection with the set of irreducible curves $S \subset T \mathbb{CP}^1$ of the form

 $\eta^{\mathsf{N}} + \eta^{\mathsf{N}-1} a_1(\zeta) + \ldots + a_{\mathsf{N}}(\zeta) = 0$

for polynomials a_i of degree 2*i*, satsifying:

- 1. S is invariant under the antipodal map;
- **2**. L^2 is trivial and $L^1(N-1)$ is real on S;
- **3.** $H^0(S, L^s(N-2)) = 0$ for 0 < s < 2.

Here $L^s \to T\mathbb{CP}^1$ is the line bundle with transition function $\exp(-s\eta/\zeta)$.

NB S has genus $(N-1)^2$.

Hard to recover monopole from *S*... but can easily recover ϕ s.t. $\Phi = 1 - \phi + O(e^{-\epsilon r})$ (Hurtubise 1985).

$$T_{1}, T_{2}, T_{3}: (-1, 1) \to \mathfrak{u}(N) \text{ are called } Nahm \text{ data if:}$$

$$\frac{\mathrm{d}T_{i}}{\mathrm{d}s} = \frac{1}{2} \varepsilon_{ijk} [T_{j}, T_{k}]$$

$$T_{i}(s) = \frac{R_{i}^{\pm}}{\pm 1 - s} + O(1) \text{ as } s \to \pm 1.$$

Here $R_1^{\pm}, R_2^{\pm}, R_3^{\pm}$ define *N*-dimensional irreps of $\mathfrak{su}(2)$.

$$T_1, T_2, T_3 : (-1, 1) \rightarrow \mathfrak{u}(N)$$
 are called *Nahm data* if:
 $\frac{\mathrm{d}T_i}{\mathrm{d}s} = \frac{1}{2} \varepsilon_{ijk} [T_j, T_k]$
 $T_i(s) = \frac{R_i^{\pm}}{\pm 1 - s} + O(1) \text{ as } s \rightarrow \pm 1.$
Here $R_1^{\pm}, R_2^{\pm}, R_3^{\pm}$ define *N*-dimensional irreps of $\mathfrak{su}(2)$

Nahm data \rightarrow monopole:

$$T_1, T_2, T_3 : (-1, 1) \rightarrow \mathfrak{u}(N) \text{ are called } Nahm \ data \ ext{if:}$$

 $rac{\mathsf{d}T_i}{\mathsf{d}s} = rac{1}{2} arepsilon_{ijk} [T_j, T_k]$
 $T_i(s) = rac{R_i^{\pm}}{\pm 1 - s} + O(1) \ ext{as } s \rightarrow \pm 1.$

Here $R_1^{\pm}, R_2^{\pm}, R_3^{\pm}$ define *N*-dimensional irreps of $\mathfrak{su}(2)$. Nahm data \rightarrow monopole: for $\mathbf{x} \in \mathbb{R}^3$ let

$$E_{\mathbf{x}} = \left\{ \mathbf{v} : [-1, 1] \to \mathbb{C}^{N} \otimes \mathbb{C}^{2} : \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{s}} = (\mathbf{x}_{j}\mathbf{1}_{N} - \mathrm{i}\mathbf{T}_{j}) \otimes \sigma_{j} \mathbf{v} \right\}.$$

Then $E \to \mathbb{R}^3$ is a rank 2 vector bundle. If *A* is the induced connection and $\Phi : E \to E$ is the orthogonal projection of the operator $v(s) \to isv(s)$ then (A, Φ) is a monopole.

$$T_1, T_2, T_3 : (-1, 1) \to \mathfrak{u}(N) \text{ are called } Nahm \text{ data if:}$$
$$\frac{\mathrm{d}T_i}{\mathrm{d}s} = \frac{1}{2} \varepsilon_{ijk} [T_j, T_k]$$
$$T_i(s) = \frac{R_i^{\pm}}{\pm 1 - s} + O(1) \text{ as } s \to \pm 1.$$

Here R_1^{\pm} , R_2^{\pm} , R_3^{\pm} define *N*-dimensional irreps of $\mathfrak{su}(2)$.

- > Nahm data \rightarrow monopoles is a bijection (Hitchin 1983)
- Implementing this requires integration
- The spectral curve $S \subset T \mathbb{CP}^1$ can be written in coordinates (ζ, η) :

$$\det(T_1 + iT_2 - 2iT_3\zeta + (T_1 - iT_2)\zeta^2 + \eta \mathbf{1}_N) = 0$$

Charge 2 monopoles

Up to translations and rotations, the spectral curve of a 2-monopole is (Hurtubise 1983):

$$\eta^{2} + rac{K^{2}}{4} (\zeta^{4} + 2(k^{2} - k'^{2})\zeta^{2} + 1) + 1) = 0.$$

 $k \in [0, 1)$ is a parameter; $k' = \sqrt{1 - k^2}$; K = K(k) is a complete elliptic integral of the 1st kind.

Charge 2 monopoles

Up to translations and rotations, the spectral curve of a 2-monopole is (Hurtubise 1983):

$$\eta^2 + rac{K^2}{4} (\zeta^4 + 2(k^2 - k'^2)\zeta^2 + 1) + 1) = 0.$$

 $k \in [0, 1)$ is a parameter; $k' = \sqrt{1 - k^2}$; K = K(k) is a complete elliptic integral of the 1st kind.

The associated Nahm data are known explicitly: $T_j = \frac{\sigma_j}{2i} f_j(s)$ (no sum) with

$$f_1(s) = K \frac{\operatorname{dn}(Ks)}{\operatorname{cn}(Ks)}, \quad f_2(s) = K k' \frac{\operatorname{sn}(Ks)}{\operatorname{cn}(Ks)}, \quad f_3(s) = K k' \frac{1}{\operatorname{cn}(Ks)}.$$

Charge 2 monopoles

Up to translations and rotations, the spectral curve of a 2-monopole is (Hurtubise 1983):

$$\eta^2 + rac{K^2}{4} (\zeta^4 + 2(k^2 - k'^2)\zeta^2 + 1) + 1) = 0.$$

 $k \in [0, 1)$ is a parameter; $k' = \sqrt{1 - k^2}$; K = K(k) is a complete elliptic integral of the 1st kind.

The associated Nahm data are known explicitly: $T_j = \frac{\sigma_j}{2i} f_j(s)$ (no sum) with

$$f_1(s) = K rac{\mathrm{dn}(Ks)}{\mathrm{cn}(Ks)}, \quad f_2(s) = K k' rac{\mathrm{sn}(Ks)}{\mathrm{cn}(Ks)}, \quad f_3(s) = K k' rac{1}{\mathrm{cn}(Ks)}.$$

What about the associated monopole?

The axially symmetric 2-monopole

When k = 0 the monopole has axial symmetry about the x_2 -axis. Ward (1981) obtained:

where $\rho = \sqrt{\pi^2/4 - 4r^2}$.

The axially symmetric 2-monopole

When k = 0 the monopole has axial symmetry about the x_2 -axis. Ward (1981) obtained:

$$\begin{aligned} |\Phi| &= \left| \tanh(2r) - \frac{16r}{16r^2 + \pi^2} \right| \text{ on the } x_2 \text{-axis} \\ |\Phi| &= 1 + \frac{2\pi^2 \cos \rho (\sin \rho - \rho \cos \rho)}{\rho (\pi^2 \cos^2 \rho - 16r^2)} \text{ in the } x_1, x_3 \text{-plane} \end{aligned}$$

where $\rho = \sqrt{\pi^2/4 - 4r^2}$. This yields a formula for $\mathcal{E} = \frac{1}{2}(|\mathbf{d}^A \Phi|^2 + |F^A|^2)$ at $\mathbf{x} = 0$ using the identity $\mathcal{E} = -\frac{1}{2} \triangle |\Phi|^2$: $\mathcal{E}|_{\mathbf{x}=0} = \frac{8}{\pi^4}(\pi^2 - 8)^2$

Method: construct an associated holomorphic bundle over $T\mathbb{CP}^1$ using the A_k -ansatz.

Constructing the general 2-monopole ($k \in [0, 1)$)

- The A_k-ansatz (1981–1983): Corrigan, Fairlie, Goddard, Yates, Prasad, Rossi, Brown, O Raifeartaigh, Rouhani, Singh.
- Forgács, Horváth, Palla (1980–1983): Ernst equation and Bäcklund transformations. Later used to make first video of 2-monopole scattering.
- Nahm approach: Brown, Prasad, Panagopoulos 1982: |Φ| on a portion of an axis Ercolani, Sinha 1989 (Baker-Akhiezer functions) Houghton, Manton, Romão 2000

Constructing the general 2-monopole ($k \in [0, 1)$)

- The A_k-ansatz (1981–1983): Corrigan, Fairlie, Goddard, Yates, Prasad, Rossi, Brown, O Raifeartaigh, Rouhani, Singh.
- Forgács, Horváth, Palla (1980–1983): Ernst equation and Bäcklund transformations. Later used to make first video of 2-monopole scattering.
- Nahm approach: Brown, Prasad, Panagopoulos 1982: |Φ| on a portion of an axis Ercolani, Sinha 1989 (Baker-Akhiezer functions) Houghton, Manton, Romão 2000

 Φ has zeros (approximately) at ($\pm kK/2, 0, 0$)?

Braden–Enolski (2019) obtained an explicit formula for Φ in the case k = 0.

Braden–Enolski (2019) obtained an explicit formula for Φ in the case k = 0.

In the general case ($k \in [0, 1)$) they have explicit formulae on all three coordinate axes.

Braden–Enolski (2019) obtained an explicit formula for Φ in the case k = 0.

In the general case ($k \in [0, 1)$) they have explicit formulae on all three coordinate axes.

This leads to:

 $\mathcal{E}|_{\mathbf{x}=0} = \frac{32}{k^8 k'^2 K^4} \left[k^2 (K^2 k'^2 + E^2 - 4EK + 2K^2 + k^2) - 2(E - K)^2 \right]^2$

Braden–Enolski (2019) obtained an explicit formula for Φ in the case k = 0.

In the general case ($k \in [0, 1)$) they have explicit formulae on all three coordinate axes.

This leads to:

$$\mathcal{E}|_{\mathbf{x}=0} = \frac{32}{k^8 k'^2 K^4} \left[k^2 (K^2 k'^2 + E^2 - 4EK + 2K^2 + k^2) - 2(E - K)^2 \right]^2$$

The zeros of Φ are *not* at $(\pm kK/2, 0, 0)$.

Rational maps

Given a monopole, construct $R : \mathbb{CP}^1 \to \mathbb{CP}^1$ as follows:

- 1. Let $L \subset \mathbb{R}^3$ be the half-line starting at 0 defined by $\zeta \in \mathbb{CP}^1$.
- 2. Let $v : L \to \mathbb{C}^2$ be a non-zero solution to $\frac{\partial}{\partial r} \lrcorner d^A v \Phi v = 0$ that decays as $r \to \infty$
- **3**. $v(0) \in \mathbb{C}^2 \setminus \{0\}$ determines a point $R(\zeta) \in \mathbb{CP}^1$.

Rational maps

Given a monopole, construct $R : \mathbb{CP}^1 \to \mathbb{CP}^1$ as follows:

- 1. Let $L \subset \mathbb{R}^3$ be the half-line starting at 0 defined by $\zeta \in \mathbb{CP}^1$.
- 2. Let $v : L \to \mathbb{C}^2$ be a non-zero solution to $\frac{\partial}{\partial r} \lrcorner d^A v \Phi v = 0$ that decays as $r \to \infty$
- **3**. $v(0) \in \mathbb{C}^2 \setminus \{0\}$ determines a point $R(\zeta) \in \mathbb{CP}^1$.

Theorem (Jarvis (2000))

The map $(A, \Phi) \mapsto R$ is a bijection from M_N to the space of degree N rational maps $\mathbb{CP}^1 \to \mathbb{CP}^1$, modulo rotations of the target \mathbb{CP}^1 .

[cf. rational maps of Donaldson (1984) and Hurtubise (1985)].

Rational maps

Given a monopole, construct $R : \mathbb{CP}^1 \to \mathbb{CP}^1$ as follows:

- 1. Let $L \subset \mathbb{R}^3$ be the half-line starting at 0 defined by $\zeta \in \mathbb{CP}^1$.
- 2. Let $v : L \to \mathbb{C}^2$ be a non-zero solution to $\frac{\partial}{\partial r} \lrcorner d^A v \Phi v = 0$ that decays as $r \to \infty$
- **3**. $v(0) \in \mathbb{C}^2 \setminus \{0\}$ determines a point $R(\zeta) \in \mathbb{CP}^1$.

Theorem (Jarvis (2000))

The map $(A, \Phi) \mapsto R$ is a bijection from M_N to the space of degree N rational maps $\mathbb{CP}^1 \to \mathbb{CP}^1$, modulo rotations of the target \mathbb{CP}^1 .

[cf. rational maps of Donaldson (1984) and Hurtubise (1985)].

Jarvis' construction allows classification of monopoles invariant under subgroups $\Gamma \subset SO(3)$ (Houghton–Manton–Sutcliffe 1998). Much easier than working with spectral curves (Hitchin–Manton–Murray 1995).

Platonic monopoles

Houghton–Sutcliffe 1996: solve Nahm equation *explicitly*, construct monopole *numerically*

 $\begin{aligned} &\eta^3 - \frac{2i\pi^6}{3^{\frac{9}{2}}\Gamma(\frac{2}{3})^9}\zeta(\zeta^4 - 1) & \eta^4 + \frac{3\pi^6}{2^8\Gamma(\frac{3}{4})^8}(\zeta^8 + 14\zeta^4 + 1) \\ &\eta^5 - \frac{3\pi^6}{2^8\Gamma(\frac{3}{4})^8}(\zeta^8 + 14\zeta^4 + 1)\eta & \eta^7 - \frac{16\pi^{12}}{729\Gamma(\frac{2}{3})^{18}}(\zeta^{11} - 11\zeta^6 - \zeta) \end{aligned}$

Magnetic bags

Bolognesi conjecture (2006): the "smallest" charge N is approximately spherical, with

$$|\Phi| pprox egin{cases} 1 - rac{N}{2r} & r \geq N/2 \ 0 & r \leq N/2 \end{cases}$$

Magnetic bags

Bolognesi conjecture (2006): the "smallest" charge N is approximately spherical, with

$$|\Phi| pprox egin{cases} 1 - rac{N}{2r} & r \ge N/2 \ 0 & r \le N/2 \end{cases}$$

Theorem (Taubes)

Let
$$(A, \Phi)$$
 be a monopole and $\Omega_{\epsilon} = \{ |\Phi| < \epsilon \} \subset \mathbb{R}^3$. Then
diam $(\Omega_{\epsilon}) > \frac{N}{1 - \epsilon}$.

Here diam(Ω) := inf{ $d \in \mathbb{R} : \Omega \subset B_{d/2}$ }. Taubes also constructs monopoles that come close to saturating the bound.

Magnetic bags

Bolognesi conjecture (2006): the "smallest" charge N is approximately spherical, with

$$|\Phi| pprox \begin{cases} 1 - rac{N}{2r} & r \ge N/2 \\ 0 & r \le N/2 \end{cases}$$

Theorem (Taubes)

Let (A, Φ) be a monopole and $\Omega_{\epsilon} = \{ |\Phi| < \epsilon \} \subset \mathbb{R}^3$. Then diam $(\Omega_{\epsilon}) > \frac{N}{1 - \epsilon}$.

Here diam $(\Omega) := \inf\{d \in \mathbb{R} : \Omega \subset B_{d/2}\}.$

Taubes also constructs monopoles that come close to saturating the bound.

Other ways to measure the size of a monopole?

The easiest boundary condition to understand is with *maximal* symmetry breaking: $Stab(\Phi_{\infty}) = T^r \subset G$.

The easiest boundary condition to understand is with *maximal* symmetry breaking: $Stab(\Phi_{\infty}) = T^r \subset G$.

Spectral curve construction (Hurtubise–Murray 1990): curves in $T\mathbb{CP}^1 \leftrightarrow$ nodes in Dynkin diagram of *G*. Intersections \leftrightarrow lines in Dynkin diagram.

The easiest boundary condition to understand is with *maximal* symmetry breaking: $Stab(\Phi_{\infty}) = T^r \subset G$.

Nahm transform for *classical groups* only (Hurtubise–Murray 1989). For SU(n), get Nahm equations on intervals \leftrightarrow nodes, with gluing at ends \leftrightarrow lines.

The easiest boundary condition to understand is with *maximal* symmetry breaking: $Stab(\Phi_{\infty}) = T^r \subset G$.

Nahm transform for *classical groups* only (Hurtubise–Murray 1989). For SU(n), get Nahm equations on intervals \leftrightarrow nodes, with gluing at ends \leftrightarrow lines.

SO(n), Sp(n) work by folding Dynkin diagrams.

The easiest boundary condition to understand is with *maximal* symmetry breaking: $Stab(\Phi_{\infty}) = T^r \subset G$.

Nahm transform for *classical groups* only (Hurtubise–Murray 1989). For SU(n), get Nahm equations on intervals \leftrightarrow nodes, with gluing at ends \leftrightarrow lines.

SO(n), Sp(n) work by folding Dynkin diagrams.

Nahm transform for non-maximal symmetry breaking: work in progress (Charbonneau–Nagy) Nahm transform for non-classical groups unknown (but see Shnir–Zhilin 2015).

Loop groups

Monopoles with gauge group *LG* are instantons on $\mathbb{R}^3 \times S^1$ (Garland–Murray 1988), a.k.a. "calorons" (Gross, Pisarski, Yaffe 1983).

Loop groups

Monopoles with gauge group *LG* are instantons on $\mathbb{R}^3 \times S^1$ (Garland–Murray 1988), a.k.a. "calorons" (Gross, Pisarski, Yaffe 1983).

Nahm transform for LSU(n) (Nye–Singer). This is a bijection for n = 2 (Charbonneau–Hurtubise) (uses spectral curve)

Loop groups

Monopoles with gauge group *LG* are instantons on $\mathbb{R}^3 \times S^1$ (Garland–Murray 1988), a.k.a. "calorons" (Gross, Pisarski, Yaffe 1983).

Nahm transform for LSU(n) (Nye–Singer). This is a bijection for n = 2 (Charbonneau–Hurtubise) (uses spectral curve)

Explicit (1,1)-calorons (Harrington-Shepard 1978; Kraan–van Baal, Lee–Lu 1998)

Classification of charge (N, N) SU(2) calorons with cyclic symmetry (Cork 2018) – involves automorphisms of Dynkin diagram.

Monopoles on $\mathbb{R}^2 \times S^1$ ("monopole chains")

Nahm transform relates monopoles on $\mathbb{R}^2 \times S^1$ to Hitchin's equations on a cylinder (Cherkis–Kapustin 2001) and parabolic Higgs bundles (Harland 2020).

 $\exists N \text{ distinct charge } N \text{ monopoles on} \\ \mathbb{R}^2 \times S^1 \text{ with } \mathbb{Z}_{2N} \text{ symmetry (Harland 2020).} \end{cases}$

Dynamics: Maldonado-Ward 2013

Monopoles on $\mathbb{R} \times T^2$ "monowalls"

Nahm transform: monowalls \leftrightarrow monowalls (Cherkis–Ward 2012).

Nahm transform part of a $SL(2,\mathbb{Z})$ action on moduli spaces of monowalls.

Perturbative explicit solution involving θ -functions.

Monopoles on \mathbb{H}^3 are also integrable (Atiyah 1984).

Monopoles on \mathbb{H}^3 are also integrable (Atiyah 1984). Boundary condition $|\Phi| \rightarrow v > 0$; scalar curvature $-1/R^2$. vR is dimensionless.

Monopoles on \mathbb{H}^3 are also integrable (Atiyah 1984).

Boundary condition $|\Phi| \rightarrow v > 0$; scalar curvature $-1/R^2$. *vR* is dimensionless.

Spectral curves are defined for all vR > 0 (Murray–Singer 1996). Minitwistor space = space of geodesics in $\mathbb{H}^3 = \mathbb{CP}^1 \times \mathbb{CP}^1 \setminus \Delta$.

Monopoles on \mathbb{H}^3 are also integrable (Atiyah 1984).

Boundary condition $|\Phi| \rightarrow v > 0$; scalar curvature $-1/R^2$. *vR* is dimensionless.

Spectral curves are defined for all $\nu R > 0$ (Murray–Singer 1996). Minitwistor space = space of geodesics in $\mathbb{H}^3 = \mathbb{CP}^1 \times \mathbb{CP}^1 \setminus \Delta$.

Spectral curves known for all 2-monopoles and for platonic monopoles of charge 3 and 4 (Norbury–Romão 2005).

Monopoles on \mathbb{H}^3 are also integrable (Atiyah 1984).

Boundary condition $|\Phi| \rightarrow v > 0$; scalar curvature $-1/R^2$. *vR* is dimensionless.

Spectral curves are defined for all vR > 0 (Murray–Singer 1996). Minitwistor space = space of geodesics in $\mathbb{H}^3 = \mathbb{CP}^1 \times \mathbb{CP}^1 \setminus \Delta$.

Spectral curves known for all 2-monopoles and for platonic monopoles of charge 3 and 4 (Norbury–Romão 2005).

If $vR \in \frac{1}{2}\mathbb{N}$ hyperbolic monopoles = circle-invariant instantons on \mathbb{R}^4 , because

$$\mathbb{R}^4 \setminus \mathbb{R}^2 \simeq \mathbb{H}^3 imes S^1.$$

 \implies there is a discrete Nahm equation, derived from the ADHM construction (Braam–Austin 1990, Murray–Singer 2000).

monopoles.

Monopoles on \mathbb{H}^3 are also integrable (Atiyah 1984).

Boundary condition $|\Phi| \rightarrow v > 0$; scalar curvature $-1/R^2$. *vR* is dimensionless.

Spectral curves are defined for all vR > 0 (Murray–Singer 1996). Minitwistor space = space of geodesics in $\mathbb{H}^3 = \mathbb{CP}^1 \times \mathbb{CP}^1 \setminus \Delta$.

Spectral curves known for all 2-monopoles and for platonic monopoles of charge 3 and 4 (Norbury–Romão 2005).

If $vR \in \frac{1}{2}\mathbb{N}$ hyperbolic monopoles = circle-invariant instantons on \mathbb{R}^4 , because

$$\mathbb{R}^4 \setminus \mathbb{R}^2 \simeq \mathbb{H}^3 imes S^1.$$

 \implies there is a discrete Nahm equation, derived from the ADHM construction (Braam–Austin 1990, Murray–Singer 2000). Discrete Nahm data known for 2-monopole, but not platonic

 $vR = \frac{1}{2}$: hyperbolic monopoles constructed from harmonic functions on \mathbb{R}^4 (Manton–Sutcliffe 2014):

 $vR = \frac{1}{2}$: hyperbolic monopoles constructed from harmonic functions on \mathbb{R}^4 (Manton–Sutcliffe 2014):

$$egin{aligned} N &= 2 ext{ axial } (r = x_1^2 + x_2^2 + x_3^2 < 1, \,
ho = x_1^2 + x_2^2) ert \ & |\Phi|^2 = rac{r^2(1+r^2)^2 -
ho^2(1+r^4) + rac{1}{4}
ho^4}{\left((1+r^2)^2 -
ho^2
ight)^2} \end{aligned}$$

N = 11 icosahedral, along x_3 -axis:

$$|\Phi|^2 = \frac{x_3^2 (25x_3^8 + 20x_3^6 - 218x_3^4 + 20x_3^2 + 25)^2}{(75x_3^{10} + 55x_3^8 - 2x_3^6 - 2x_3^4 + 55x_3^2 + 75)^2}.$$

 $vR = \frac{1}{2}$: hyperbolic monopoles constructed from harmonic functions on \mathbb{R}^4 (Manton–Sutcliffe 2014):

$$egin{aligned} \mathcal{N} = 2 ext{ axial } (r = x_1^2 + x_2^2 + x_3^2 < 1, \,
ho = x_1^2 + x_2^2) ert \ & |\Phi|^2 = rac{r^2(1+r^2)^2 -
ho^2(1+r^4) + rac{1}{4}
ho^4}{ig((1+r^2)^2 -
ho^2ig)^2} \end{aligned}$$

N = 11 icosahedral, along x_3 -axis:

$$|\Phi|^{2} = \frac{x_{3}^{2}(25x_{3}^{8} + 20x_{3}^{6} - 218x_{3}^{4} + 20x_{3}^{2} + 25)^{2}}{(75x_{3}^{10} + 55x_{3}^{8} - 2x_{3}^{6} - 2x_{3}^{4} + 55x_{3}^{2} + 75)^{2}}.$$

Further explicit solutions with $vR = \frac{1}{2}$ exploit ADHM and $\mathbb{R}^4 \setminus S^2 \simeq \mathbb{H}^3 \times S^1$.

 $vR = \frac{1}{2}$: hyperbolic monopoles constructed from harmonic functions on \mathbb{R}^4 (Manton–Sutcliffe 2014):

$$N = 2 \text{ axial } (r = x_1^2 + x_2^2 + x_3^2 < 1, \rho = x_1^2 + x_2^2):$$
$$|\Phi|^2 = \frac{r^2(1 + r^2)^2 - \rho^2(1 + r^4) + \frac{1}{4}\rho^4}{\left((1 + r^2)^2 - \rho^2\right)^2}$$

N = 11 icosahedral, along x_3 -axis:

$$|\Phi|^{2} = \frac{x_{3}^{2}(25x_{3}^{8} + 20x_{3}^{6} - 218x_{3}^{4} + 20x_{3}^{2} + 25)^{2}}{(75x_{3}^{10} + 55x_{3}^{8} - 2x_{3}^{6} - 2x_{3}^{4} + 55x_{3}^{2} + 75)^{2}}.$$

Further explicit solutions with $vR = \frac{1}{2}$ exploit ADHM and $\mathbb{R}^4 \setminus S^2 \simeq \mathbb{H}^3 \times S^1$.

These approaches also yield spectral curves (Bolognesi–Cockburn–Sutcliffe 2015, Sutcliffe 2020), e.g. for dodecahedral 7-monopole.