Monopoles: construction, dynamics, transforms

Derek Harland
University of Leeds

1st February 2021

Save pure maths at Leicester:
https://www.ipetitions.com/petition/mathematics-is-not-redundant

The world in 1974

The world in 1974

The world in 1974

The world in 1974

BPS monopoles

$$
\begin{aligned}
\Phi: \mathbb{R}^{3} \rightarrow \mathfrak{s u}(2), A & \in \Omega^{1}\left(\mathbb{R}^{3}\right) \otimes \mathfrak{s u}(2), \\
\mathrm{d}^{A}=\mathrm{d}+[A, \cdot], F^{A} & =\mathrm{d} A+A \wedge A . \\
\mathrm{d}^{A} \Phi & =* F^{A} \\
|\Phi| & =1-\frac{N}{2 r}+O\left(r^{-2}\right) \text { as } r \rightarrow \infty
\end{aligned}
$$

BPS monopoles

$$
\begin{aligned}
\Phi: \mathbb{R}^{3} \rightarrow \mathfrak{s u}(2), A & \in \Omega^{1}\left(\mathbb{R}^{3}\right) \otimes \mathfrak{s u}(2), \\
\mathrm{d}^{A}=\mathrm{d}+[A, \cdot], F^{A} & =\mathrm{d} A+A \wedge A . \\
\mathrm{d}^{A} \Phi & =* F^{A} \\
|\Phi| & =1-\frac{N}{2 r}+O\left(r^{-2}\right) \text { as } r \rightarrow \infty
\end{aligned}
$$

$\mathbb{N} \ni N==\#$ zeros of $\phi=$ degree of $\phi_{\infty}=$ Chern number of eigenbundle of $\Phi_{\infty}=$ "charge".

BPS monopoles

$$
\begin{aligned}
\Phi: \mathbb{R}^{3} \rightarrow \mathfrak{s u}(2), A & \in \Omega^{1}\left(\mathbb{R}^{3}\right) \otimes \mathfrak{s u}(2), \\
\mathrm{d}^{A}=\mathrm{d}+[A, \cdot], F^{A} & =\mathrm{d} A+A \wedge A . \\
\mathrm{d}^{A} \Phi & =* F^{A} \\
|\Phi| & =1-\frac{N}{2 r}+O\left(r^{-2}\right) \text { as } r \rightarrow \infty
\end{aligned}
$$

$\mathbb{N} \ni N==\#$ zeros of $\phi=$ degree of $\phi_{\infty}=$ Chern number of eigenbundle of $\Phi_{\infty}=$ "charge".
Monopoles minimise $E=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|d^{A} \Phi\right|^{2}+\left|F^{A}\right|^{2}$.

BPS monopoles

$$
\begin{aligned}
\Phi: \mathbb{R}^{3} \rightarrow \mathfrak{s u}(2), A & \in \Omega^{1}\left(\mathbb{R}^{3}\right) \otimes \mathfrak{s u}(2), \\
\mathrm{d}^{A}=\mathrm{d}+[A, \cdot], F^{A} & =\mathrm{d} A+A \wedge A . \\
\mathrm{d}^{A} \Phi & =* F^{A} \\
|\Phi| & =1-\frac{N}{2 r}+O\left(r^{-2}\right) \text { as } r \rightarrow \infty
\end{aligned}
$$

$\mathbb{N} \ni N==\#$ zeros of $\phi=$ degree of $\Phi_{\infty}=$ Chern number of eigenbundle of $\Phi_{\infty}=$ "charge".
Monopoles minimise $E=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|d^{A} \Phi\right|^{2}+\left|F^{A}\right|^{2}$.
't Hooft, Polyakov 1974: $* F^{A} \approx\left(\begin{array}{cc}\mathrm{i} N & 0 \\ 0 & -\mathrm{i} N\end{array}\right) \frac{\mathrm{d} r}{2 r^{2}}$ in gauge where Φ is diagonal

BPS monopoles

$$
\begin{aligned}
\Phi: \mathbb{R}^{3} \rightarrow \mathfrak{s u}(2), A & \in \Omega^{1}\left(\mathbb{R}^{3}\right) \otimes \mathfrak{s u}(2), \\
\mathrm{d}^{A}=\mathrm{d}+[A, \cdot], F^{A} & =\mathrm{d} A+A \wedge A . \\
\mathrm{d}^{A} \Phi & =* F^{A} \\
|\Phi| & =1-\frac{N}{2 r}+O\left(r^{-2}\right) \text { as } r \rightarrow \infty
\end{aligned}
$$

$\mathbb{N} \ni N==\#$ zeros of $\phi=$ degree of $\Phi_{\infty}=$ Chern number of eigenbundle of $\Phi_{\infty}=$ "charge".
Monopoles minimise $E=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|d^{A} \Phi\right|^{2}+\left|F^{A}\right|^{2}$.
't Hooft, Polyakov 1974: $* F^{A} \approx\left(\begin{array}{cc}\mathrm{i} N & 0 \\ 0 & -\mathrm{i} N\end{array}\right) \frac{\mathrm{d} r}{2 r^{2}}$ in gauge where Φ is diagonal \Longrightarrow magnetic pole of charge $2 \pi N$ in $U(1)$ gauge theory.

The search for monopoles continues. . .

THE MOEDAL EXPERIMENT AT THE LHC

Holy grail of particle physics?

The Prasad-Sommerfield solution (1975)

$$
\begin{aligned}
\Phi & =\left(\operatorname{coth}(2 r)-\frac{1}{2 r}\right) Q \\
A & =\frac{1}{2}\left(1-\frac{2 r}{\sinh (2 r)}\right) Q \mathrm{~d} Q \\
Q & =\frac{x_{j}}{r} \mathrm{i} \sigma_{j}
\end{aligned}
$$

Spherically symmetric, $N=1$.

Moduli spaces

Theorem (Taubes (1980s))

The set of all charge N monopoles modulo gauge transformations forms a manifold M_{N} of dimension 4N - 1 .

Moduli spaces

Theorem (Taubes (1980s))

The set of all charge N monopoles modulo gauge transformations forms a manifold M_{N} of dimension 4N - 1 .

Natural Riemannian metric:

$$
|(\delta A, \delta \Phi)|^{2}=\int_{\mathbb{R}^{3}}\left|\delta A^{\perp}\right|+\left|\delta \Phi^{\perp}\right|^{2}
$$

where \perp indicates projection orthogonal to gauge orbit.

Moduli spaces

Theorem (Taubes (1980s))

The set of all charge N monopoles modulo gauge transformations forms a manifold M_{N} of dimension 4N - 1 .

Natural Riemannian metric:

$$
|(\delta A, \delta \Phi)|^{2}=\int_{\mathbb{R}^{3}}\left|\delta A^{\perp}\right|+\left|\delta \Phi^{\perp}\right|^{2}
$$

where \perp indicates projection orthogonal to gauge orbit.
(There is a circle bundle over M_{N} with a hyperkähler metric).

Moduli spaces

Theorem (Taubes (1980s))

The set of all charge N monopoles modulo gauge transformations forms a manifold M_{N} of dimension 4N - 1 .

Natural Riemannian metric:

$$
|(\delta A, \delta \Phi)|^{2}=\int_{\mathbb{R}^{3}}\left|\delta A^{\perp}\right|+\left|\delta \Phi^{\perp}\right|^{2}
$$

where \perp indicates projection orthogonal to gauge orbit.
(There is a circle bundle over M_{N} with a hyperkähler metric).
$E=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|\mathrm{~d}^{A} \Phi\right|^{2}+\left|F^{A}\right|^{2}$ is the static energy of a (dynamical) Lagrangian field theory.

Theorem (Stuart (1994))

Geodesics on M_{N} approximate low-energy dynamics of this field theory.

Spectral curves

Minitwistor space $=\left\{\right.$ oriented lines in $\left.\mathbb{R}^{3}\right\}=T S^{2}=T \mathbb{C P}^{1}$.

Spectral curves

Minitwistor space $=\left\{\right.$ oriented lines in $\left.\mathbb{R}^{3}\right\}=T S^{2}=T \mathbb{C P}^{1}$.

A line L with coordinate $s \in \mathbb{R}$ is called spectral if

$$
\left.\frac{\partial}{\partial s}\right\lrcorner \mathrm{d}^{A} v+\mathrm{i} \phi v=0
$$

has a solution $v: L \rightarrow \mathbb{C}^{2}$ that decays as $s \rightarrow \pm \infty$.

Spectral curves

Minitwistor space $=\left\{\right.$ oriented lines in $\left.\mathbb{R}^{3}\right\}=T S^{2}=T \mathbb{C P}^{1}$.

A line L with coordinate $s \in \mathbb{R}$ is called spectral if

$$
\left.\frac{\partial}{\partial s}\right\lrcorner \mathrm{d}^{A} v+\mathrm{i} \phi v=0
$$

has a solution $v: L \rightarrow \mathbb{C}^{2}$ that decays as $s \rightarrow \pm \infty$.
The spectral curve of a monopole is the set of all spectral lines. It is an algebraic variety $S \subset T \mathbb{C P}^{1}$.

Spectral curves

Theorem (Hitchin 1982)

M_{N} is in bijection with the set of irreducible curves $S \subset T \mathbb{C P}^{1}$ of the form

$$
\eta^{N}+\eta^{N-1} a_{1}(\zeta)+\ldots+a_{N}(\zeta)=0
$$

for polynomials a_{i} of degree $2 i$, satsifying:

1. S is invariant under the antipodal map;
2. L^{2} is trivial and $L^{1}(N-1)$ is real on S;
3. $H^{0}\left(S, L^{s}(N-2)\right)=0$ for $0<s<2$.

Here $L^{s} \rightarrow T \mathbb{C P}^{1}$ is the line bundle with transition function $\exp (-S \eta / \zeta)$.
NB S has genus $(N-1)^{2}$.

Spectral curves

Theorem (Hitchin 1982)

M_{N} is in bijection with the set of irreducible curves $S \subset T \mathbb{C P}^{1}$ of the form

$$
\eta^{N}+\eta^{N-1} a_{1}(\zeta)+\ldots+a_{N}(\zeta)=0
$$

for polynomials a_{i} of degree $2 i$, satsifying:

1. S is invariant under the antipodal map;
2. L^{2} is trivial and $L^{1}(N-1)$ is real on S;
3. $H^{0}\left(S, L^{s}(N-2)\right)=0$ for $0<s<2$.

Here $L^{s} \rightarrow T \mathbb{C P}^{1}$ is the line bundle with transition function $\exp (-S \eta / \zeta)$.
NB S has genus $(N-1)^{2}$.
Hard to recover monopole from S...

Spectral curves

Theorem (Hitchin 1982)

M_{N} is in bijection with the set of irreducible curves $S \subset T \mathbb{C P}^{1}$ of the form

$$
\eta^{N}+\eta^{N-1} a_{1}(\zeta)+\ldots+a_{N}(\zeta)=0
$$

for polynomials a_{i} of degree $2 i$, satsifying:

1. S is invariant under the antipodal map;
2. L^{2} is trivial and $L^{1}(N-1)$ is real on S;
3. $H^{0}\left(S, L^{s}(N-2)\right)=0$ for $0<s<2$.

Here $L^{s} \rightarrow T \mathbb{C P}^{1}$ is the line bundle with transition function $\exp (-S \eta / \zeta)$.
NB S has genus $(N-1)^{2}$.
Hard to recover monopole from S. . . but can easily recover ϕ s.t. $\Phi=1-\phi+O\left(e^{-\epsilon r}\right)$ (Hurtubise 1985).

Nahm transform

$T_{1}, T_{2}, T_{3}:(-1,1) \rightarrow \mathfrak{u}(N)$ are called Nahm data if:

$$
\begin{aligned}
\frac{\mathrm{d} T_{i}}{\mathrm{~d} s} & =\frac{1}{2} \varepsilon_{j j k}\left[T_{j}, T_{k}\right] \\
T_{i}(s) & =\frac{R_{i}^{ \pm}}{ \pm 1-s}+O(1) \text { as } s \rightarrow \pm 1 .
\end{aligned}
$$

Here $R_{1}^{ \pm}, R_{2}^{ \pm}, R_{3}^{ \pm}$define N-dimensional irreps of $\mathfrak{s u}(2)$.

Nahm transform

$T_{1}, T_{2}, T_{3}:(-1,1) \rightarrow \mathfrak{u}(N)$ are called Nahm data if:

$$
\begin{aligned}
\frac{\mathrm{d} T_{i}}{\mathrm{ds}} & =\frac{1}{2} \varepsilon_{j j k}\left[T_{j}, T_{k}\right] \\
T_{i}(s) & =\frac{R_{i}^{ \pm}}{ \pm 1-s}+O(1) \text { as } s \rightarrow \pm 1 .
\end{aligned}
$$

Here $R_{1}^{ \pm}, R_{2}^{ \pm}, R_{3}^{ \pm}$define N-dimensional irreps of $\mathfrak{s u}(2)$.
Nahm data \rightarrow monopole:

Nahm transform

$T_{1}, T_{2}, T_{3}:(-1,1) \rightarrow \mathfrak{u}(N)$ are called Nahm data if:

$$
\begin{aligned}
\frac{\mathrm{d} T_{i}}{\mathrm{~d} s} & =\frac{1}{2} \varepsilon_{i j k}\left[T_{j}, T_{k}\right] \\
T_{i}(s) & =\frac{R_{i}^{ \pm}}{ \pm 1-s}+O(1) \text { as } s \rightarrow \pm 1 .
\end{aligned}
$$

Here $R_{1}^{ \pm}, R_{2}^{ \pm}, R_{3}^{ \pm}$define N-dimensional irreps of $\mathfrak{s u}(2)$.
Nahm data \rightarrow monopole: for $\mathbf{x} \in \mathbb{R}^{3}$ let

$$
E_{\mathrm{x}}=\left\{v:[-1,1] \rightarrow \mathbb{C}^{N} \otimes \mathbb{C}^{2}: \frac{\mathrm{d} v}{\mathrm{~d} s}=\left(x_{j} 1_{N}-\mathrm{i} T_{j}\right) \otimes \sigma_{j} v\right\} .
$$

Then $E \rightarrow \mathbb{R}^{3}$ is a rank 2 vector bundle. If A is the induced connection and $\Phi: E \rightarrow E$ is the orthogonal projection of the operator $v(S) \rightarrow \operatorname{isv}(S)$ then (A, Φ) is a monopole.

Nahm transform

$T_{1}, T_{2}, T_{3}:(-1,1) \rightarrow \mathfrak{u}(N)$ are called Nahm data if:

$$
\begin{aligned}
\frac{\mathrm{d} T_{i}}{\mathrm{~d} s} & =\frac{1}{2} \varepsilon_{i j k}\left[T_{j}, T_{k}\right] \\
T_{i}(s) & =\frac{R_{i}^{ \pm}}{ \pm 1-s}+O(1) \text { as } s \rightarrow \pm 1 .
\end{aligned}
$$

Here $R_{1}^{ \pm}, R_{2}^{ \pm}, R_{3}^{ \pm}$define N-dimensional irreps of $\mathfrak{s u}(2)$.

- Nahm data \rightarrow monopoles is a bijection (Hitchin 1983)
- Implementing this requires integration
- The spectral curve $S \subset T \mathbb{C P}^{1}$ can be written in coordinates (ζ, η) :

$$
\operatorname{det}\left(T_{1}+\mathrm{i} T_{2}-2 \mathrm{i} T_{3} \zeta+\left(T_{1}-\mathrm{i} T_{2}\right) \zeta^{2}+\eta{ }^{1} N\right)=0
$$

Charge 2 monopoles

Up to translations and rotations, the spectral curve of a 2-monopole is (Hurtubise 1983):

$$
\left.\eta^{2}+\frac{K^{2}}{4}\left(\zeta^{4}+2\left(k^{2}-k^{\prime 2}\right) \zeta^{2}+1\right)+1\right)=0
$$

$k \in[0,1)$ is a parameter; $k^{\prime}=\sqrt{1-k^{2}} ; K=K(k)$ is a complete elliptic integral of the 1 st kind.

Charge 2 monopoles

Up to translations and rotations, the spectral curve of a 2-monopole is (Hurtubise 1983):

$$
\left.\eta^{2}+\frac{K^{2}}{4}\left(\zeta^{4}+2\left(k^{2}-k^{\prime 2}\right) \zeta^{2}+1\right)+1\right)=0
$$

$k \in[0,1)$ is a parameter; $k^{\prime}=\sqrt{1-k^{2}} ; K=K(k)$ is a complete elliptic integral of the 1 st kind.
The associated Nahm data are known explicitly: $T_{j}=\frac{\sigma_{j}}{2 i} f_{j}(s)$ (no sum) with

$$
f_{1}(s)=K \frac{\operatorname{dn}(K s)}{\operatorname{cn}(K s)}, \quad f_{2}(s)=K k^{\prime} \frac{\operatorname{sn}(K s)}{\operatorname{cn}(K s)}, \quad f_{3}(s)=K k^{\prime} \frac{1}{\operatorname{cn}(K s)}
$$

Charge 2 monopoles

Up to translations and rotations, the spectral curve of a 2-monopole is (Hurtubise 1983):

$$
\left.\eta^{2}+\frac{K^{2}}{4}\left(\zeta^{4}+2\left(k^{2}-k^{\prime 2}\right) \zeta^{2}+1\right)+1\right)=0
$$

$k \in[0,1)$ is a parameter; $k^{\prime}=\sqrt{1-k^{2}} ; K=K(k)$ is a complete elliptic integral of the 1 st kind.
The associated Nahm data are known explicitly: $T_{j}=\frac{\sigma_{j}}{2 i} f_{j}(s)$ (no sum) with

$$
f_{1}(s)=K \frac{\operatorname{dn}(K s)}{\operatorname{cn}(K s)}, \quad f_{2}(s)=K k^{\prime} \frac{\operatorname{sn}(K s)}{\operatorname{cn}(K s)}, \quad f_{3}(s)=K k^{\prime} \frac{1}{\operatorname{cn}(K s)}
$$

What about the associated monopole?

The axially symmetric 2-monopole

When $k=0$ the monopole has axial symmetry about the x_{2}-axis. Ward (1981) obtained:

$$
\begin{aligned}
& |\Phi|=\left|\tanh (2 r)-\frac{16 r}{16 r^{2}+\pi^{2}}\right| \text { on the } x_{2} \text {-axis } \\
& |\Phi|=1+\frac{2 \pi^{2} \cos \rho(\sin \rho-\rho \cos \rho)}{\rho\left(\pi^{2} \cos ^{2} \rho-16 r^{2}\right)} \text { in the } x_{1}, x_{3} \text {-plane }
\end{aligned}
$$

where $\rho=\sqrt{\pi^{2} / 4-4 r^{2}}$.

The axially symmetric 2-monopole

When $k=0$ the monopole has axial symmetry about the x_{2}-axis. Ward (1981) obtained:

$$
\begin{aligned}
& |\Phi|=\left|\tanh (2 r)-\frac{16 r}{16 r^{2}+\pi^{2}}\right| \text { on the } x_{2} \text {-axis } \\
& |\Phi|=1+\frac{2 \pi^{2} \cos \rho(\sin \rho-\rho \cos \rho)}{\rho\left(\pi^{2} \cos ^{2} \rho-16 r^{2}\right)} \text { in the } x_{1}, x_{3} \text {-plane }
\end{aligned}
$$

where $\rho=\sqrt{\pi^{2} / 4-4 r^{2}}$. This yields a formula for $\mathcal{E}=\frac{1}{2}\left(\left|\mathrm{~d}^{A} \Phi\right|^{2}+\left|F^{A}\right|^{2}\right)$ at $\mathbf{x}=0$ using the identity $\mathcal{E}=-\frac{1}{2} \triangle|\Phi|^{2}$:

$$
\left.\mathcal{E}\right|_{\mathbf{x}=0}=\frac{8}{\pi^{4}}\left(\pi^{2}-8\right)^{2}
$$

Method: construct an associated holomorphic bundle over $T \mathbb{C P}^{1}$ using the \mathcal{A}_{k}-ansatz.

Constructing the general 2-monopole $(k \in[0,1))$

- The \mathcal{A}_{k}-ansatz (1981-1983): Corrigan, Fairlie, Goddard, Yates, Prasad, Rossi, Brown, O Raifeartaigh, Rouhani, Singh.
- Forgács, Horváth, Palla (1980-1983): Ernst equation and Bäcklund transformations. Later used to make first video of 2-monopole scattering.
- Nahm approach: Brown, Prasad, Panagopoulos 1982: |Ф| on a portion of an axis
Ercolani, Sinha 1989 (Baker-Akhiezer functions) Houghton, Manton, Romão 2000

Constructing the general 2-monopole $(k \in[0,1))$

- The \mathcal{A}_{k}-ansatz (1981-1983): Corrigan, Fairlie, Goddard, Yates, Prasad, Rossi, Brown, O Raifeartaigh, Rouhani, Singh.
- Forgács, Horváth, Palla (1980-1983): Ernst equation and Bäcklund transformations. Later used to make first video of 2-monopole scattering.
- Nahm approach: Brown, Prasad, Panagopoulos 1982: |Ф| on a portion of an axis Ercolani, Sinha 1989 (Baker-Akhiezer functions) Houghton, Manton, Romão 2000
Φ has zeros (approximately) at ($\pm k K / 2,0,0$)?

New formulae for the 2-monopole

Braden-Enolski (2019) obtained an explicit formula for Φ in the case $k=0$.

New formulae for the 2-monopole

Braden-Enolski (2019) obtained an explicit formula for Φ in the case $k=0$.

In the general case $(k \in[0,1))$ they have explicit formulae on all three coordinate axes.

New formulae for the 2-monopole

Braden-Enolski (2019) obtained an explicit formula for Φ in the case $k=0$.

In the general case $(k \in[0,1))$ they have explicit formulae on all three coordinate axes.
This leads to:

$$
\left.\mathcal{E}\right|_{\mathbf{x}=0}=\frac{32}{k^{8} k^{\prime 2} K^{4}}\left[k^{2}\left(K^{2} k^{\prime 2}+E^{2}-4 E K+2 K^{2}+k^{2}\right)-2(E-K)^{2}\right]^{2}
$$

New formulae for the 2-monopole

Braden-Enolski (2019) obtained an explicit formula for Φ in the case $k=0$.

In the general case $(k \in[0,1))$ they have explicit formulae on all three coordinate axes.
This leads to:

$$
\left.\mathcal{E}\right|_{\mathbf{x}=0}=\frac{32}{k^{8} k^{\prime 2} K^{4}}\left[k^{2}\left(K^{2} k^{\prime 2}+E^{2}-4 E K+2 K^{2}+k^{2}\right)-2(E-K)^{2}\right]^{2}
$$

The zeros of ϕ are not at $(\pm k K / 2,0,0)$.

Rational maps

Given a monopole, construct $R: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ as follows:

1. Let $L \subset \mathbb{R}^{3}$ be the half-line starting at 0 defined by $\zeta \in \mathbb{C P}^{1}$.
2. Let $v: L \rightarrow \mathbb{C}^{2}$ be a non-zero solution to $\left.\frac{\partial}{\partial r}\right\lrcorner \mathrm{d}^{A} v-\Phi v=0$ that decays as $r \rightarrow \infty$
3. $v(0) \in \mathbb{C}^{2} \backslash\{0\}$ determines a point $R(\zeta) \in \mathbb{C P}^{1}$.

Rational maps

Given a monopole, construct $R: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ as follows:

1. Let $L \subset \mathbb{R}^{3}$ be the half-line starting at 0 defined by $\zeta \in \mathbb{C P}^{1}$.
2. Let $v: L \rightarrow \mathbb{C}^{2}$ be a non-zero solution to $\left.\frac{\partial}{\partial r}\right\lrcorner \mathrm{d}^{A} v-\Phi v=0$ that decays as $r \rightarrow \infty$
3. $v(0) \in \mathbb{C}^{2} \backslash\{0\}$ determines a point $R(\zeta) \in \mathbb{C P}^{1}$.

Theorem (Jarvis (2000))

The map $(A, \Phi) \mapsto R$ is a bijection from M_{N} to the space of degree N rational maps $\mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$, modulo rotations of the target $\mathbb{C P}^{1}$.
[cf. rational maps of Donaldson (1984) and Hurtubise (1985)].

Rational maps

Given a monopole, construct $R: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ as follows:

1. Let $L \subset \mathbb{R}^{3}$ be the half-line starting at 0 defined by $\zeta \in \mathbb{C P}^{1}$.
2. Let $v: L \rightarrow \mathbb{C}^{2}$ be a non-zero solution to $\left.\frac{\partial}{\partial r}\right\lrcorner \mathrm{d}^{A} v-\Phi v=0$ that decays as $r \rightarrow \infty$
3. $v(0) \in \mathbb{C}^{2} \backslash\{0\}$ determines a point $R(\zeta) \in \mathbb{C P}^{1}$.

Theorem (Jarvis (2000))

The map $(A, \Phi) \mapsto R$ is a bijection from M_{N} to the space of degree N rational maps $\mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$, modulo rotations of the target $\mathbb{C P}^{1}$.
[cf. rational maps of Donaldson (1984) and Hurtubise (1985)]. Jarvis' construction allows classification of monopoles invariant under subgroups $\Gamma \subset$ SO(3) (Houghton-Manton-Sutcliffe 1998). Much easier than working with spectral curves (Hitchin-Manton-Murray 1995).

Platonic monopoles

Houghton-Sutcliffe 1996: solve Nahm equation explicitly, construct monopole numerically

$$
\begin{array}{cc}
\eta^{3}-\frac{2 i \pi^{6}}{3^{\frac{2}{3}} \pi_{\left(\frac{2}{3} 9^{9}\right.}^{9^{9}}} \zeta\left(\zeta^{4}-1\right) & \eta^{4}+\frac{3 \pi^{6}}{2^{8} \Gamma\left(\frac{3}{4}\right)^{8}}\left(\zeta^{8}+14 \zeta^{4}+1\right) \\
\left.\eta^{5}-\frac{3 \pi^{6}}{2^{6} \Gamma\left(\frac{3}{4}\right)^{8}} \zeta^{8}+14 \zeta^{4}+1\right) \eta & \eta^{7}-\frac{16 \pi^{12}}{729 \Gamma\left(\frac{2}{3}\right)^{18}}\left(\zeta^{11}-11 \zeta^{6}-\zeta\right)
\end{array}
$$

Magnetic bags

Bolognesi conjecture (2006): the "smallest" charge N is approximately spherical, with

$$
|\Phi| \approx \begin{cases}1-\frac{N}{2 r} & r \geq N / 2 \\ 0 & r \leq N / 2\end{cases}
$$

Magnetic bags

Bolognesi conjecture (2006): the "smallest" charge N is approximately spherical, with

$$
|\Phi| \approx \begin{cases}1-\frac{N}{2 r} & r \geq N / 2 \\ 0 & r \leq N / 2\end{cases}
$$

Theorem (Taubes)

Let (A, ϕ) be a monopole and $\Omega_{\epsilon}=\{|\Phi|<\epsilon\} \subset \mathbb{R}^{3}$. Then

$$
\operatorname{diam}\left(\Omega_{\epsilon}\right)>\frac{N}{1-\epsilon} .
$$

Here $\operatorname{diam}(\Omega):=\inf \left\{d \in \mathbb{R}: \Omega \subset B_{d / 2}\right\}$.
Taubes also constructs monopoles that come close to saturating the bound.

Magnetic bags

Bolognesi conjecture (2006): the "smallest" charge N is approximately spherical, with

$$
|\Phi| \approx \begin{cases}1-\frac{N}{2 r} & r \geq N / 2 \\ 0 & r \leq N / 2\end{cases}
$$

Theorem (Taubes)

Let (A, ϕ) be a monopole and $\Omega_{\epsilon}=\{|\Phi|<\epsilon\} \subset \mathbb{R}^{3}$. Then

$$
\operatorname{diam}\left(\Omega_{\epsilon}\right)>\frac{N}{1-\epsilon} .
$$

Here $\operatorname{diam}(\Omega):=\inf \left\{d \in \mathbb{R}: \Omega \subset B_{d / 2}\right\}$.
Taubes also constructs monopoles that come close to saturating the bound.
Other ways to measure the size of a monopole?

Simple gauge groups G

The easiest boundary condition to understand is with maximal symmetry breaking: $\operatorname{Stab}\left(\Phi_{\infty}\right)=T^{r} \subset G$.

Simple gauge groups G

The easiest boundary condition to understand is with maximal symmetry breaking: $\operatorname{Stab}\left(\Phi_{\infty}\right)=T^{r} \subset G$.
Spectral curve construction (Hurtubise-Murray 1990): curves in $T \mathbb{C P}^{1} \leftrightarrow$ nodes in Dynkin diagram of G. Intersections \leftrightarrow lines in Dynkin diagram.

Simple gauge groups G

The easiest boundary condition to understand is with maximal symmetry breaking: $\operatorname{Stab}\left(\Phi_{\infty}\right)=T^{r} \subset G$.

Nahm transform for classical groups only (Hurtubise-Murray 1989). For $\operatorname{SU}(n)$, get Nahm equations on intervals \leftrightarrow nodes, with gluing at ends \leftrightarrow lines.

Simple gauge groups G

The easiest boundary condition to understand is with maximal symmetry breaking: $\operatorname{Stab}\left(\Phi_{\infty}\right)=T^{r} \subset G$.
Nahm transform for classical groups only (Hurtubise-Murray 1989). For $\operatorname{SU}(n)$, get Nahm equations on intervals \leftrightarrow nodes, with gluing at ends \leftrightarrow lines.

$\mathrm{SO}(n), \mathrm{Sp}(n)$ work by folding Dynkin diagrams.

Simple gauge groups G

The easiest boundary condition to understand is with maximal symmetry breaking: $\operatorname{Stab}\left(\Phi_{\infty}\right)=T^{r} \subset G$.
Nahm transform for classical groups only (Hurtubise-Murray 1989). For $\operatorname{SU}(n)$, get Nahm equations on intervals \leftrightarrow nodes, with gluing at ends \leftrightarrow lines.

$\mathrm{SO}(n), \mathrm{Sp}(n)$ work by folding Dynkin diagrams.
Nahm transform for non-maximal symmetry breaking: work in progress (Charbonneau-Nagy)
Nahm transform for non-classical groups unknown (but see Shnir-Zhilin 2015).

Loop groups

Monopoles with gauge group $L G$ are instantons on $\mathbb{R}^{3} \times S^{1}$ (Garland-Murray 1988), a.k.a. "calorons" (Gross, Pisarski, Yaffe 1983).

Loop groups

Monopoles with gauge group $L G$ are instantons on $\mathbb{R}^{3} \times S^{1}$ (Garland-Murray 1988), a.k.a. "calorons" (Gross, Pisarski, Yaffe 1983).
Nahm transform for LSU(n) (Nye-Singer). This is a bijection for $n=2$ (Charbonneau-Hurtubise) (uses spectral curve)

Loop groups

Monopoles with gauge group $L G$ are instantons on $\mathbb{R}^{3} \times S^{1}$ (Garland-Murray 1988), a.k.a. "calorons" (Gross, Pisarski, Yaffe 1983).
Nahm transform for LSU(n) (Nye-Singer). This is a bijection for $n=2$ (Charbonneau-Hurtubise) (uses spectral curve)

Explicit (1,1)-calorons (Harrington-Shepard 1978; Kraan-van Baal, Lee-Lu 1998)
Classification of charge (N, N) SU(2) calorons with cyclic symmetry (Cork 2018) - involves automorphisms of Dynkin diagram.

Monopoles on $\mathbb{R}^{2} \times S^{1}$ ("monopole chains")

Nahm transform relates monopoles on $\mathbb{R}^{2} \times S^{1}$ to Hitchin's equations on a cylinder (Cherkis-Kapustin 2001) and parabolic Higgs bundles (Harland 2020).
$\exists N$ distinct charge N monopoles on $\mathbb{R}^{2} \times S^{1}$ with $\mathbb{Z}_{2 N}$ symmetry (Harland 2020).

Dynamics: Maldonado-Ward 2013

Monopoles on $\mathbb{R} \times T^{2}$ "monowalls"

Nahm transform: monowalls \leftrightarrow monowalls (Cherkis-Ward 2012).

Nahm transform part of a $\mathrm{SL}(2, \mathbb{Z})$ action on moduli spaces of monowalls.
Perturbative explicit solution involving θ-functions.

Hyperbolic monopoles

Monopoles on \mathbb{H}^{3} are also integrable (Atiyah 1984).

Hyperbolic monopoles

Monopoles on \mathbb{H}^{3} are also integrable (Atiyah 1984).
Boundary condition $|\Phi| \rightarrow v>0$; scalar curvature $-1 / R^{2}$. $v R$ is dimensionless.

Hyperbolic monopoles

Monopoles on \mathbb{H}^{3} are also integrable (Atiyah 1984).
Boundary condition $|\Phi| \rightarrow v>0$; scalar curvature $-1 / R^{2}$. $v R$ is dimensionless.

Spectral curves are defined for all $v R>0$ (Murray-Singer 1996). Minitwistor space $=$ space of geodesics in $\mathbb{H}^{3}=$ $\mathbb{C P}^{1} \times \mathbb{C P}^{1} \backslash \Delta$.

Hyperbolic monopoles

Monopoles on \mathbb{H}^{3} are also integrable (Atiyah 1984).
Boundary condition $|\Phi| \rightarrow v>0$; scalar curvature $-1 / R^{2}$. $v R$ is dimensionless.

Spectral curves are defined for all $v R>0$ (Murray-Singer 1996). Minitwistor space $=$ space of geodesics in $\mathbb{H}^{3}=$ $\mathbb{C P}^{1} \times \mathbb{C P}^{1} \backslash \Delta$.
Spectral curves known for all 2-monopoles and for platonic monopoles of charge 3 and 4 (Norbury-Romão 2005).

Hyperbolic monopoles

Monopoles on \mathbb{H}^{3} are also integrable (Atiyah 1984).
Boundary condition $|\Phi| \rightarrow v>0$; scalar curvature $-1 / R^{2}$. $v R$ is dimensionless.
Spectral curves are defined for all $v R>0$ (Murray-Singer 1996). Minitwistor space $=$ space of geodesics in $\mathbb{H}^{3}=$ $\mathbb{C P}^{1} \times \mathbb{C P}^{1} \backslash \Delta$.
Spectral curves known for all 2-monopoles and for platonic monopoles of charge 3 and 4 (Norbury-Romão 2005).
If $v R \in \frac{1}{2} \mathbb{N}$ hyperbolic monopoles $=$ circle-invariant instantons on \mathbb{R}^{4}, because

$$
\mathbb{R}^{4} \backslash \mathbb{R}^{2} \simeq \mathbb{H}^{3} \times S^{1} .
$$

\Longrightarrow there is a discrete Nahm equation, derived from the ADHM construction (Braam-Austin 1990, Murray-Singer 2000).

Hyperbolic monopoles

Monopoles on \mathbb{H}^{3} are also integrable (Atiyah 1984).
Boundary condition $|\Phi| \rightarrow v>0$; scalar curvature $-1 / R^{2}$. $v R$ is dimensionless.
Spectral curves are defined for all $v R>0$ (Murray-Singer 1996). Minitwistor space $=$ space of geodesics in $\mathbb{H}^{3}=$ $\mathbb{C P}^{1} \times \mathbb{C P}^{1} \backslash \Delta$.
Spectral curves known for all 2-monopoles and for platonic monopoles of charge 3 and 4 (Norbury-Romão 2005).
If $v R \in \frac{1}{2} \mathbb{N}$ hyperbolic monopoles $=$ circle-invariant instantons on \mathbb{R}^{4}, because

$$
\mathbb{R}^{4} \backslash \mathbb{R}^{2} \simeq \mathbb{H}^{3} \times S^{1} .
$$

\Longrightarrow there is a discrete Nahm equation, derived from the ADHM construction (Braam-Austin 1990, Murray-Singer 2000).
Discrete Nahm data known for 2-monopole, but not platonic monopoles.

Some monopoles are more integrable than others

$v R=\frac{1}{2}$: hyperbolic monopoles constructed from harmonic functions on \mathbb{R}^{4} (Manton-Sutcliffe 2014):

Some monopoles are more integrable than others

$v R=\frac{1}{2}$: hyperbolic monopoles constructed from harmonic functions on \mathbb{R}^{4} (Manton-Sutcliffe 2014):

$$
\begin{aligned}
& N=2 \operatorname{axial}\left(r=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<1, \rho=x_{1}^{2}+x_{2}^{2}\right): \\
& \qquad|\Phi|^{2}=\frac{r^{2}\left(1+r^{2}\right)^{2}-\rho^{2}\left(1+r^{4}\right)+\frac{1}{4} \rho^{4}}{\left(\left(1+r^{2}\right)^{2}-\rho^{2}\right)^{2}}
\end{aligned}
$$

$N=11$ icosahedral, along x_{3}-axis:

$$
|\Phi|^{2}=\frac{x_{3}^{2}\left(25 x_{3}^{8}+20 x_{3}^{6}-218 x_{3}^{4}+20 x_{3}^{2}+25\right)^{2}}{\left(75 x_{3}^{10}+55 x_{3}^{8}-2 x_{3}^{6}-2 x_{3}^{4}+55 x_{3}^{2}+75\right)^{2}}
$$

Some monopoles are more integrable than others

$v R=\frac{1}{2}$: hyperbolic monopoles constructed from harmonic functions on \mathbb{R}^{4} (Manton-Sutcliffe 2014):

$$
\begin{aligned}
& N=2 \text { axial }\left(r=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<1, \rho=x_{1}^{2}+x_{2}^{2}\right): \\
& \qquad|\Phi|^{2}=\frac{r^{2}\left(1+r^{2}\right)^{2}-\rho^{2}\left(1+r^{4}\right)+\frac{1}{4} \rho^{4}}{\left(\left(1+r^{2}\right)^{2}-\rho^{2}\right)^{2}}
\end{aligned}
$$

$N=11$ icosahedral, along x_{3}-axis:

$$
|\Phi|^{2}=\frac{x_{3}^{2}\left(25 x_{3}^{8}+20 x_{3}^{6}-218 x_{3}^{4}+20 x_{3}^{2}+25\right)^{2}}{\left(75 x_{3}^{10}+55 x_{3}^{8}-2 x_{3}^{6}-2 x_{3}^{4}+55 x_{3}^{2}+75\right)^{2}}
$$

Further explicit solutions with $v R=\frac{1}{2}$ exploit ADHM and $\mathbb{R}^{4} \backslash S^{2} \simeq \mathbb{H}^{3} \times S^{1}$.

Some monopoles are more integrable than others

$v R=\frac{1}{2}$: hyperbolic monopoles constructed from harmonic functions on \mathbb{R}^{4} (Manton-Sutcliffe 2014):

$$
\begin{aligned}
& N=2 \text { axial }\left(r=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<1, \rho=x_{1}^{2}+x_{2}^{2}\right): \\
& \qquad|\Phi|^{2}=\frac{r^{2}\left(1+r^{2}\right)^{2}-\rho^{2}\left(1+r^{4}\right)+\frac{1}{4} \rho^{4}}{\left(\left(1+r^{2}\right)^{2}-\rho^{2}\right)^{2}}
\end{aligned}
$$

$N=11$ icosahedral, along x_{3}-axis:

$$
|\Phi|^{2}=\frac{x_{3}^{2}\left(25 x_{3}^{8}+20 x_{3}^{6}-218 x_{3}^{4}+20 x_{3}^{2}+25\right)^{2}}{\left(75 x_{3}^{10}+55 x_{3}^{8}-2 x_{3}^{6}-2 x_{3}^{4}+55 x_{3}^{2}+75\right)^{2}}
$$

Further explicit solutions with $v R=\frac{1}{2}$ exploit ADHM and $\mathbb{R}^{4} \backslash S^{2} \simeq \mathbb{H}^{3} \times S^{1}$.

These approaches also yield spectral curves (Bolognesi-Cockburn-Sutcliffe 2015, Sutcliffe 2020), e.g. for dodecahedral 7-monopole.

