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The 2011 Nobel Prize in Chemistry was awarded to Dan Shechtman for ”the discovery of quasicrystals”
— materials with unusual structure, interesting from the point of view of chemistry, physics, and mathemat-
ics. In order to study electronic properties of quasicrystals, one considers Hamiltonians where the aperiodic
order features are reflected either through the configuration of position space or the arrangement of the po-
tential values. The spectral and quantum dynamical analysis of these Hamiltonians is mathematically very
challenging. On the other hand, investigations of this nature are fascinating as one is invariably led to em-
ploy methods from a wide variety of mathematical subdisciplines. At present one understands very well the
key quasicrystal models in one space dimension and the community is finally on the verge of making seri-
ous progress in the much more challenging higher-dimensional case by drawing on a new connection to yet
another mathematical subdiscipline.

At this meeting, mathematicians from various areas and also some physicists came together to push the
boundaries of our understanding of mathematical quasicrystal models and other closely related topics. While
it is impossible to give a comprehensive summary of the numerous talks and the results that were discussed
during the meeting in a short note, we will provide here an overview of four different topics to show how the
different approaches interconnect and influence each other. In the first section we briefly discuss some recent
results on spectral properties of one dimensional quasicrystals obtained using the dynamical properties of the
corresponding polynomial trace maps, and the way these results can be applied to study spectral properties
of the Square and Cubic Fibonacci Hamiltonians. Then in the section ”Some Aspects of Quantum Walks in
a Fibonacci Environment” (written by Jake Fillman) the properties of Fibonacci quantum walks and related
CMV matrices are discussed. The section ”Spectral Calculations for Discrete Schrödinger Operators with
Quasiperiodic Potentials” (written by Mark Embree) describes some numerical methods that can be used
to study spectral properties of quasicrystals. Finally, the section ”Polynomial Dynamics and Trace Maps”
(written by Eric Bedford) consists of a very short survey of the modern theory of polynomial dynamical
systems that can be applied to study the properties of the trace maps that appeared in the previous sections.

Spectral properties of Square and Cubic Fibonacci Hamiltonian

The spectral properties of the Fibonacci Hamiltonian Hλ,ω : l2(Z)→ l2(Z),

[Hλ,ωψ](n) = ψ(n+ 1) + ψ(n− 1) + λχ[1−α,1)(nα+ ω mod 1)ψ(n),

where the parameter λ is a coupling constant, α =
√
5−1
2 is the frequency, and ω ∈ S1 is the phase, have

recently been studied in detail [13, 14, 15, 16, 37, 38]. In particular, it is known that its spectrum Σλ is
a dynamically defined Cantor set for all λ > 0 (see [17]). Many of the methods that were used to study
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the Fibonacci Hamiltonian on the one dimensional lattice cannot be directly extended to two- (or higher-)
dimensional quasicrystals. For example, the results on existence of the integrated density of states [28, 29, 31]
are the only rigorous results on spectral properties of Laplacian on Penrose tilings (see the section ”Spectral
Calculations for Discrete Schrödinger Operators with Quasiperiodic Potentials” below for a discussion of
some numerical experiments related to this operator). One of the ways to gain some intuition on spectral
properties of two-dimensional quasicrystals is to consider the Square and Cubic Fibonacci Hamiltonians.
Namely, one can consider the bounded self-adjoint operator

[H
(2)
λ1,λ2,ω1,ω2

ψ](m,n) = ψ(m+ 1, n) + ψ(m− 1, n) + ψ(m,n+ 1) + ψ(m,n− 1) +

+
(
λ1χ[1−α,1)(mα+ ω1mod 1) + λ2χ[1−α,1)(nα+ ω2mod 1)

)
ψ(m,n) (1)

in l2(Z2), with α = (
√

5 − 1)/2, coupling constants λ1, λ2 > 0 and phases ω1, ω2 ∈ S1. The theory of
separable operators (cf. [34]) quickly implies that

Σλ1,λ2 = Σλ1 + Σλ2 , and νλ1,λ2 = νλ1 ∗ νλ2 , (2)

where the set sum and the convolution of measures are defined by

A+B = {a+ b : a ∈ A, b ∈ B},
∫
R
g(E) d(µ ∗ ν)(E) =

∫
R

∫
R
g(E1 + E2) dµ(E1) dν(E2).

Square operators (sometimes called operators with separable potentials) were suggested by physicists [23,
24, 25] as a reasonably approachable model for higher dimensional quasicrystals. Cubic models follow
analogously, though now on a three-dimensional lattice, giving Σλ1,λ2,λ3 = Σλ1 + Σλ2 + Σλ3 . The closely
related labyrinth model (where the spectrum is the product of the spectra of the one-dimensional models
instead of the sum) was considered in [35, 36]. Combining results from [15] and [7] we get the following
result.

Theorem 1. For all sufficiently small λ1, λ2 > 0 the spectrum Σλ1,λ2
of the operator (1) is an interval.

For all sufficiently large λ1, λ2 > 0 it is a Cantor set of zero measure.

In [18] the following result regarding the density of states of the operator (1) is proven.

Theorem 2. For almost all (with respect to the Lebesgue measure) sufficiently small λ1, λ2 > 0 the
density of states measure νλ1,λ2

of the operator (1) is absolutely continuous. For all sufficiently large λ1, λ2 >
0 it is singular.

These results leave open the question on the structure of the spectrum of (1) in the intermediate regimes
of couplings. Due to (2), this question is directly related to the notoriously hard questions on sums of dy-
namically defined Cantor sets that also have applications in dynamical systems and number theory, and were
heavily studied. In particular, the results from [32] motivate the following conjecture.

Conjecture. There exists a domain U ⊂ R2 such that for almost all (with respect to the Lebesgue
measure) (λ1, λ2) ∈ U the spectrum Σλ1,λ2

of the operator (1) is a Cantorval (i.e. it is a compact subset of
R1 that has a dense interior, has a continuum of connected components, and none of them is isolated).

This suggests a completely new topological type of spectrum of a ”natural” operator.

Some Aspects of Quantum Walks in a Fibonacci Environment
Jake Fillman (Virginia Tech, USA)

A quantum walk is described by a unitary operator on the Hilbert space H = `2(Z)⊗ C2, which models
a state space in which a wave packet comes equipped with a “spin” at each integer site. To specify a quantum
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walk, one chooses quantum coins, i.e., 2× 2 unitaries:

Cn =

(
c11n c12n
c21n c22n

)
∈ U(2), n ∈ Z. (3)

As one passes from time t to time t+ 1, the update rule of the quantum walk is:

δn ⊗ e↑ 7→ c11n δn+1 ⊗ e↑ + c21n δn−1 ⊗ e↓, (4)

δn ⊗ e↓ 7→ c12n δn+1 ⊗ e↑ + c22n δn−1 ⊗ e↓. (5)

If we extend (4) and (5) by linearity and continuity to general elements of H, this defines a unitary operator
U on H. Now, if we order the basis of H via ϕ2m−1 = δm ⊗ e↑, ϕ2m = δm ⊗ e↓ for m ∈ Z, then U is
represented by the matrix

U =



. . . . . . . . . . . .
0 0 c211 c221
c110 c120 0 0

0 0 c212 c222
c111 c121 0 0

0 0 c213 c223
c112 c122 0 0

. . . . . . . . . . . .


. (6)

We can connect quantum walks to CMV matrices using the following observation. If E is an extended CMV
matrix for which all Verblunsky coefficients with even index vanish, then E takes the form.

E =



. . . . . . . . . . . .
0 0 α1 ρ1
ρ−1 −α−1 0 0

0 0 α3 ρ3
ρ1 −α1 0 0

0 0 α5 ρ5
ρ3 −α3 0 0

. . . . . . . . . . . .


. (7)

Since ρn ≥ 0 for CMV matrices, one has to tweak this a bit (but not much); namely, it is easy to inductively
defined a diagonal unitary matrix Λ so that ΛUΛ∗ is a CMV matrix of the form (7).

Naturally, one can consider the family of quantum walks generated by the Fibonacci sequence. Con-
cretely, let ω ∈ {0, 1}Z be a Fibonacci sequence, choose quantum coins θ0 6= θ1 ∈ (−π2 ,

π
2 ), and define a

quantum walk operator U = Uω via

Q0 =

(
cos θ0 − sin θ0
sin θ0 cos θ0

)
, Q1 =

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
, Cn = Qω(n).

One has a transfer matrix formalism for this operator family much like the transfer matrix formalism for the
Fibonacci Hamiltonian. Specifically, define

M−1(z) = sec θ1

(
z − sin θ1

− sin θ1 z−1

)
, M0(z) = sec θ0

(
z − sin θ0

− sin θ0 z−1

)
andMn = Mn−1Mn−2 for n ≥ 1. One then considers xn(z) = 1

2 tr(Mn(z), which obeys the usual recursion

xn+1 = 2xnxn−1 − xn−2.

As in the Schrödinger case, the spectrum of Uω is characterized as the set of parameters at which the trace-
map orbit is bounded:

σ(Uω) = {z ∈ C : {xn(z)}∞n=1 is a bounded sequence}.



4

One distinction here is that the Fricke–Vogt character is not constant on the spectrum. Instead, one has

I(z) := I(xn−1(z), xn(z), xn+1(z)) = sec2 θ0 sec2 θ1(sin θ0 − sin θ1)2(Im(z))2.

Using the transfer matrix formalism, one can show (much as in the Fibonacci case) that σ(Uω) is a Cantor
set of zero Lebesgue measure and that the spectral type of Uω is purely singular continuous for all ω and all
choices of θ0 6= θ1.

In this setting, the role of the coupling constant is (roughly) played by

µ = µ(θ1, θb) := inf
k≥−1

min
z∈σk

I(z). (8)

Let us also define

κ = κ(θ1, θb) = | sec θ1 tan θb − tan θ1 sec θb| = | sec θ1|| sec θb|| sin θ1 − sin θb|. (9)

The main result on the unitary dynamics of Uω is the following theorem:

Theorem 1. Let π/4 < θ0 < π/2 be given. There exist constants m = m(θ0), M = M(θ0), and
λ = λ(θ0) such that if θ0 < θ1 < π/2 with µ ≥ λ, one has

1

1 + τ
− 3τ + η

p(1 + τ)
=
p− 3τ − η
p(1 + τ)

≤ β̃−δ0(p) ≤ β+
δ0

(p) ≤ 2 logϕ

log ξ
, (10)

where

ξ = m
√
µ, Ξ = M

√
µ, η =

log Ξ

logϕ
− 1, τ =

2 log
(
(κ+ 2)(2κ+ 5)2

)
logϕ

, (11)

and κ is as in (9).
One can roughly summarize the theorem by saying that the exponents β±δ0(p) converge to zero roughly

like constant/ log κ as θ1 ↑ π/2, which constitutes a natural analog of the large-coupling asymptotics of the
dynamics of the Schrödinger group associated with the Fibonacci Hamiltonian. The key to thes dynamical
analysis is the following consequence of the Parseval formula, which enables one to estimate dynamical
quantities via estimates on the matrix elements of the resolvent: Given any unitary operator U on a Hilbert
spaceH, and any two elements ϕ,ψ ∈ H, one has

∞∑
`=0

e−2`/L|〈ϕ,U `ψ〉|2 = e2/L
∫ 2π

0

|〈ϕ, (U − eiθ+1/L)−1ψ〉|2 dθ
2π
. (12)

The proof of Theorem 1 then proceeds by proving careful estimates on the trace map orbit at energies just off
the unit circle, which provides estimates on transfer matrices, and hence on the resolvent of Uω . Using (12),
the resolvent estimates yield estimates on the dynamics.

Of course, this sketch is painting with a rather broad brush – the analysis is fairly delicate, and many
further things come into play. In particular, one also needs a careful combinatorial analysis of the band
structure of periodic approximants, as well as good estimates on the Lebesgue measure of the spectra of such
approximants.

The connection between 1D coined quantum walks and CMV matrices was first observed in [5], and has
since led to some interesting discoveries in that setting; see [6] and references therein for general quantum
walks and [9, 10, 19] for the Fibonacci quantum walk.

The characterization of the spectrum ofUω via bounded trace orbits and the zero-measure Cantor structure
thereof comes from [19]. However, they do not characterize the spectral type as purely continuous. In fact, I
can’t find that statement in any of the usual papers on this topic. In any case, it follows easily from Gordon-
type arguments, e.g. [26].

The formula (12) was first observed in [10], in the hopes of working out general resolvent estimates
schemes in the spirit of [20, 21, 22]; this vision was realized in [9] by using the key formula of [11] which
relates the two families of GL(2,C) cocycles associated to a CMV matrix.
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The trace-map estimates used in the proof of Theorem 1 come from [12]. One really needs this, and not
earlier results, because [12] is able to deal with complex orbits.

The combinatorial analysis of the band structure of the periodic approximants is spiritually related to
[33], but follows the arguments of [30] (in fact, this is the main place where the large coupling assumption is
necessary).

Spectral Calculations for Discrete Schrödinger Operators with Quasiperiodic Potentials
Mark Embree (Virginia Tech, USA)

The spectra for Schrödinger operators with quasiperiodic potentials exhibit a variety of inscrutable prop-
erties. Numerical computations can help one develop insight and intuition, and eventually formulate con-
jectures. However, many of the same factors that make these spectral problems mathematically challenging
also tax conventional algorithms for computing eigenvalues. For example, to approximate a spectrum that is a
Cantor set, one seeks all the eigenvalues of large symmetric matrices; given the Cantor structure, these eigen-
values are often quite close together, implying that they should computed to high relative accuracy, and this
challenge becomes particularly acute when the potential is scaled by a large coupling constant. Furthermore,
one often seeks to cover the spectrum with a union of intervals: imprecise knowledge of the ends of these
intervals complicates the calculation of their unions (for covers) and sums (for higher dimensional models),
as well as the numerical estimation of the fractal dimension of the spectrum.

Often upper bounds on the spectrum can be obtained by approximating the quasiperiodic potential with a
related potential having period p, whose spectrum (the union of p intervals) can be computed using tools from
Floquet theory. To determine the endpoints of these p intervals, one must compute all the eigenvalues of two
p× p symmetric matrices J± that are zero everywhere but the main diagonal, first super- and sub-diagonals,
and the corner entries. The first step in a symmetric eigenvalue computation reduces the matrix to tridiagonal
form via a unitary similarity transformation, which, given the structure of J±, will require O(p3) operations.

This talk (based on joint work with Charles Puelz and Jake Fillman) described several techniques to im-
prove the computation of spectra for periodic potentials with large p. By reordering the rows and columns
of J±, we can reduce the complexity of the eigenvalue computations to O(p2) operations. This acceleration
makes the computation of eigenvalues in extended (quadruple precision) arithmetic more tractable, thus miti-
gating accuracy limitations and enabling numerical calculations in parameter regimes (approximation lengths
p and coupling constants λ) for which the conventional approach would be too slow or inaccurate.

To illustrate the utility of the algorithm, we showed numerically computed covers of the spectrum of the
period doubling and Thue–Morse potentials, and discussed attempts to estimate the Hausdorff dimension of
the spectra of these operators as a function of the coupling constant These potentials conventionally act on a
one-dimensional lattice, but it is natural to extend them to two- and three-dimensional lattices. The spectra of
these higher dimensional models – sums of Cantor sets – can be approximated by summing covers of the one-
dimensional models. We presented numerically computed covers for the period doubling and Thue–Morse
examples on a two-dimensional lattice, as illustrated in Figure 1.

λ

E

λ

E

Figure 1: Numerically computed covers of the spectra of the period doubling (left) and Thue–Morse (right)
model on a two-dimensional lattice, as a function of the coupling constant λ.
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Figure 2: Levels 5 and 6 of the substitution rule applied to Robinson triangular tiles.
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Figure 3: Left: integrated density of states for the graph Laplacian for the Robinson stone construction of the
Penrose aperiodic tiling, levels 1 through 10. Right: a close-up of levels 7 (magneta), 8, 9 and 10 (black),
suggesting a potential gap in the spectrum of the infinite tiling.

The talk closed with a discussion of model with more challenging two-dimensional structure, the graph
Laplacian on the Penrose aperiodic tiling of the plane. Following earlier spectral calculations conducted by
May Mei and her students, we use a substitution rule applied to Robinson’s triangular tiles to recursively
construct increasingly large portions of the Penrose tiling. Figure 2 shows levels 5 and 6 of this construction.
At the end of the workshop we computed all eigenvalues of the graph Laplacian for the tenth level of this tiling
(comprising 177,110 tiles, generated by nine iterations of the level 1 base case that starts with 10 triangular
tiles), made possible by applying a row/column reordering scheme similar to the one described above for
one-dimensional problems. (Equivalently, index the tiles in manner that gives particularly efficient numerical
calculations.) Figure 3 shows a superposition of the integrated density of states for the first ten levels, and
zooms in around one region in the spectrum for which the numerical evidence suggests there might be gaps.
It is too early to shape these calculations into a robust conjecture, but these results show the potential for
numerical calculations to yield some insight into these challenging higher dimensional models.

Polynomial Dynamics and Trace Maps
Eric Bedford (Indiana University, USA)

We will discuss some aspects of complex dynamics that should be relevant for the study of trace maps,
which are polynomial self-maps of Rk. Here we will extend the trace maps to all of Ck. A basic characteristic
of a polynomial p(x1, . . . , xk) =

∑
i1,...,ik

ai1,...,ikx
i1
1 · · ·x

ik
k is its degree: deg(p) = max(i1 + · · · + ik),

where the maximum is taken over all k-tuples (i1, . . . , ik) such that ai1,...,ik 6= 0.
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On the other hand, if f = (f1, . . . , fk) is a polynomial mapping, i.e., all the coordinate functions fj are
given by polynomials, there is more than one way to define the degree. First, there is the algebraic degree
degalg(f) := max1≤j≤k deg(fj). Under composition, we have deglag(f ◦ g) ≤ deglag(f)deglag(g), and in
general this inequality is strict.

There is also the mapping degree or topological degree, which is the number or preimages degtop(f) :=

#f−1(y), where y is a generic point. This has the property that degtop(f ◦ g) = degtop(f)degtop(g).
For example, we consider two maps:

s(x, y) = (x, y + x2), h(x, y) = (x2 − y, x)

These maps have polynomial inverses. In both cases, the algebraic degree is 2, and the topological degree
is 1. However, we are interested in the iterates fn := f ◦ · · · ◦ f , and we see that deg(sn) = 2, whereas
deg(hn) = 2n. This leads us to define the dynamical degree

δ(f) = lim
n→∞

(deg(fn))
1/n

which has the essential propery of being invariant under conjugation: δ(f) = δ(g−1 ◦ f ◦ g). The dynamical
degree is also known as degree complexity of the map.

Examples. In the case of the Fibonacci trace map, we have ffib(x, y, z) = (y, xy − z, x), which is an
automorphism of C3, and the dynamical degree is δ(ffib) = φ, the golden ratio.

In the case of Period Doubling, the trace map is fPD : (x, y) 7→ (xy − 2, x2 − 2). In this case we have
degtop(fPD) = 2 and δ(fPD) = 2.

In the case of Thue-Morse, the trace map is fTM : (x, v) 7→ (x2 − 2 − v, v(x + 4 − x2). We have
deglag(fnTM) = 2n+1 − 1, so δ(fTM) = 2, and degtop(fTM) = 5.

Intermediate degrees. Another way to think of degrees is as follows. Let H = {
∑
ajxj = 0} ⊂ Ck be

a linear hypersurface. Then for generic H , the degree of f−1(H) = {
∑
ajfj(x) = 0} is just deglag(f). And

a linear subspace P of codimension k is just a point, so degtop(f) is just the degree (= number of points) of
f−1(P ). Motivated by this, we can define a degree deg`(f) to be the degree of f−1(L) for a generic linear
subspace L ⊂ Ck of codimension `. The degree in this case is the number of points #(V ∩ f−1(L)), for
generic linear subspaces V and L where V has dimension `, and L has codimension `. A number of the
properties of the degrees δ`, 1 ≤ ` ≤ k, are given in the survey paper [27]. However, it is currently challenge
to actually evaluate the dynamical degrees; at present, there are very few nontrivial examples f for which δ`
has been computed for 1 < ` < k.

Approaches to understanding the dynamics of a polynomial (or rational) map: large topological
degree. A k dimensional mapping is said to be of large topological degree if δk > δk−1. The Thue-Morse
map is an example of a map with large topological degree. In this case, the dynamical degrees are dominated
by the topological degree: δ` < δtop for all 1 ≤ ` < k, and the dynamics is described by the pullbacks of
zero-dimensional objects (points) in the following way: There is an exceptional set E and a measure µ such
that for x0 /∈ E ,

lim
n→∞

(δtop)−n
∑

a∈f−n(x0)

δa = µ

There are several theorems to say that E is “small” when f satisfies various hypotheses (see the survey article
[27]).

Dynamics of surface maps with small topological degree. If we consider the case of dimension k = 2,
then there are only two dynamical degrees of interest: δ1 = δ and δ2 = degtop. The case of low topological
degree is δ1 > δ2, which includes all surface diffeomorphisms for which δ1 > 1. For instance, the Fibonacci
trace map is a diffeomorphism of C3, and C3 is filled out by a family {St : t ∈ C} of invariant surfaces. The
restriction ffib|St is such a surface diffeomorphism.

In this case, the dynamics is described by the pullback of an object of codimension 1, say a (complex)
line L. In this case, we pull back the current of integration [L] and obtain an invariant current:

µ+ := lim
n→∞

δ−n1 [f−nL]

A special feature of a surface diffeomorphism is that δ1(f) = δ1(f−1). We may pull back a line under f−1

and obtain an invariant current µ−. The wedge (intersection) product µ := µ+ ∧ µ− is an invariant measure,
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which has a number of dynamically interesting properties. These are described in [3] and subsequent papers.
For a recent survey of the subject, we recommend [4].

Enumerative dynamics: the study of the complexifications of real maps. There is another approach
which may be applicable to the study of trace maps. A real polynomial (or rational) map be considered
simultaneously as a map of R2 and a map of C2. In [1] and [2] this approach was applied to the family:

fa(x, y) =

(
y
x+ a

x− 1
, x+ a− 1

)
As we mentioned in the previous paragraph, the complex approach is to consider the current µ+ which given
by the limit of the curves which are preimages f−na (L). The invariant measure µ is the limit of the average of
point masses over the discrete set f−na (L1)∩ fna (L2) for general real lines L1 and L2. Here we can consider
Lj as real lines, and we also consider their complexifications. When we consider fa as a real map of real
lines, we use the geometry of how f−na (L) lies in R2, and we can say, for instance, that f−na (L) must cross
an arbitrary vertical line V in at least d′ points. Thus we have f−na (L) ∩ V ≥ d′.

On the other hand, we may compactify C as the Riemann sphere P1, which is the same as projective space
in complex dimension 1. For the map fa, it is natural to compactify C2 = C×C as P1 × P1. A natural basis
for the cohomology group H2(P1 × P1) is given by the classes H (resp. V ), corresponding to a horizontal
(resp. vertical) complex line. If we write Fa for the extension of fa to P1 × P1, then the action of Fa on

cohomology is given by the matrix
(

1 1
1 0

)
. Thus if H is a horizontal line, its class will be given in this

basis as (1, 0), and the image under F ∗na will be given in this basis as
(
φn
φn−1

)
:=

(
1 1
1 0

)n
·
(

1
0

)
. In other

words, this is the cohomology class of F−na (H). Now the intersection of cohomology classes corresponds to
the intersection of curves according to the rule:

H ·H = 0 V · V = 0 H · V = 1 (∗)

Here “intersection” refers to all intersections inside P1 × P1, counted with multiplicity. And in the complex
domain, all intersection multiplicities are ≥ 1. Thus, the number of complex intersections (counted with

multiplicity) between V and F−na (L) is given by the rule (∗):
(

0
1

)
·
(
φn
φn−1

)
= φn.

If we return to the previous paragraph, then we know that φn ≥ d′. If, in our situation, we find sufficiently
many real intersections that d′ = φn, then we know that there can be no further intersections. This technique
can be versatile. It has been used to study the family {fa : a < −1}, which is a family of real maps with
(maximal) entropy equal to log φ (see [2]), and it was also used to show that the real map fa has zero entropy
when a = 3 (see [2]).
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random walks, Comm. Pure Appl. Math. 63 (2010), 464–507.
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[37] A. Sütő, The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys. 111 (1987),
409–415.
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