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1 Overview of the Field
The distinguishing number or asymmetric coloring number of a group G on
the set Ω, denoted D(G,Ω) or ACN(G,Ω) is the smallest k such that there
is a coloring of Ω by k colors such that the only color-preserving elements
of G fix all elements of Ω. In most instances, the action of G is faithful,
so G is assumed to be a permutation group and we simply write D(G) in-
stead of D(G,Ω), and, for convenience, use D(G) rather than ACN(G).
Albertson and Collins [1] introduced the concept in the context of the auto-
morphism group of a graph Γ acting on the vertex set; in the case of graphs
one says that a graph Γ has distinguishing number k, written D(Γ) = k,
if D(Aut(Γ)) = k. The Albertson–Collins paper has spawned hundreds of
publications in the last 15 years, nearly all in the context of graphs.

On the other hand, the case D(G) = 2 has a longer history. In 1977,
Babai proved [2] that all infinite leafless trees have distinguishing number
two. In 1981, Gluck [9] showed that if |G| is odd, then D(G) = 2. In
permutation group terms, D(G) = 2 if and only if G has a regular orbit on
the power set of Ω. In 1984, Cameron, Neumann, and Saxl [7] showed that
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all but finitely many primitive permutation groups other than An, Sn have
distinguishing number two; in 1997, Seress [20] classified those that do not.

The distinguishing concept has been applied to finite group actions aris-
ing as automorphism groups of various combinatorial or algebraic structures
other than graphs: vector spaces over finite fields, automorphism groups of
groups, maps, partitions (but not yet partially ordered sets in general or poly-
topes in particular). In most cases, the generic situation is that all but finitely
many structures, perhaps with some restriction, have distinguishing number
two. The reason is often related to the following observation of Russell and
Sundaram [19], usually called the Motion Lemma: if every non-identity el-
ement of G moves at least m elements (has support of size at least m) and
m > 2 log2(|G|), then D(G) = 2. For permutation groups, motion is called
minimal degree and goes back to the 19th century. Again, a version of the
Motion Lemma appeared 12 years earlier in [7].

There has also been interest in symmetry breaking for infinite permu-
tation groups. Motion/minimal degree plays an important role here, just
as in the finite case. In analogy to the Motion Lemma, we have the Infi-
nite Motion Conjecture: for infinite, locally finite graphs (all vertices have
finite valence), infinite motion of the automorphism group implies distin-
guishing number two. Certain classes of graphs automatically have infinite
motion, such as leafless trees and certain products, and in these cases the
conjecture is true. As with the Motion Lemma, the size of Aut(Γ) also mat-
ters: the conjecture holds when |Aut(Γ)| is countably infinite. This implies
D(G) = 2 when G is the automorphism group of a map or a finitely gener-
ated group. It also hold for graphs with subexponential growth. The local
finiteness condition (for permutation groups, one needs all point stabilizers
to have finite orbits) is necessary: a modification of Cantor’s back-and-forth
proof that the rationals are the only linearly ordered infinite set without end-
points, gives a counterexample when valences are allowed to be countably
infinite [15].

As with all work in infinite permutation groups, logic and topology play
an important role. Here too, many results were found independently. For
example some of the essentially topological results of Halin [10] from 1973
on the base size of an automorphism group were found previously by the
logicians Kueker [14] (1968) and Reyes [18] (1970). In these cases the
groups always act on countable sets. But, there are also numerous results
on distinguishing numbers of groups acting on larger sets, in particular for
graphs on uncountable vertex-sets, but these results still are more-or-less
isolated, and the open problems deeply entrenched in set theory and logic.

As we have indicated, a larger issue here is that different communities
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of mathematicians studying the same idea, but with different language and
notation and with no communication between the communities. Bailey and
Cameron [6] cite distinguishing number as one of many cases where re-
searchers in graph theory and permutation groups have not been talking to
each other. For infinite permutation groups, the situation is exacerbated by
topological and logical issues.

2 Aim of the workshop
The aim of the workshop was to bring together researchers in symmetry
breaking, from both the graph theory and the permutation group commu-
nities. There has not been any other conference focussing on this topic,
although a few other conferences have included talks or special sessions on
the subject.

The workshop had three themes. One was applications to graph theory.
Another is to apply symmetry breaking to other areas of mathematics be-
sides graph theory: other discrete structures, group theory, logic, computer
science. The third theme was to provide a coherent vision of symmetry
breaking, developing tools and general structure theorems that can be used
in a variety of contexts.

3 Recent Developments and Open Problems
One of the fundamental early results for symmetry breaking in graphs is
due to Collins and Trenk [8]: if the finite graph Γ has maximum valence
∆(Γ) = d, then D(Γ) ≤ d + 1 with equality only for the complete graph
Kd+1, the complete bipartite graph Kd,d and the cycle C5. For d = 3, this
means if Γ is a “subcubic” connected graph other than K4 or K3,3, then
either Γ is asymmetric (no nontrivial automorphism) or D(Γ) is 2 or 3.
As there are various reasons to think D = 2 is the generic situation for
all graphs that are not asymmetric, one expects the subcubic graphs with
D(Γ) = 3 to be classifiable in some way. A very recent paper [11] gives
that classification. A subcubic graph Γ has D(Γ) = 3 if and only if it is the
cube, the Petersen graph, or a balanced binary tree Tn to which “gadgets”
have been added between sibling pairs of valence 1 vertices; in addition to
the possibility of no gadget at all or a single edge, the three other gadgets
are K2,2, K4 with an edge removed, and the cycle C6 with two diagonals.

One problem with distinguishing is that a small modification in the local
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structure of a graph can lead to a big change in D: taking a single edge of an
asymmetric graph with ∆(Γ) = d and replacing the middle third by K2,d−1

increases D(Γ) from 1 to d − 1. There are various ways to restrict such
structure:

1. require Γ to have large motion;

2. require Γ to be vertex or edge transitive;

3. require Γ to have large girth (no short cycles).

An immediate corollary of the above classification for subcubic graphs
Γ is that D(Γ) ≤ 2 whenever Γ has motion at least 3, or has girth at least 5,
or is vertex transitive, with the exception of the cube and Petersen graph.

Question. What about ∆(Γ) > 3?

Lehner and Verret [16] have obtained a classification for vertex transitive
graphs with ∆(Γ) = 4. Lehner, Pilśniak, and Stawiski have confirmed the
Infinite Motion Conjecture for graphs of maximum valence 5. On the other
hand, they warn that their results do not generalize to ∆(Γ) > 5.

It is restriction (1) on motion that may have the most promise. Babai
asked at the conference:

Question. Is there a function f(d) such that if ∆(Γ) = d, Γ is connected,
and Γ has motion at least f(d), then D(Γ) = 2 (possibly with known excep-
tions)?

Obviously, one might ask whether f(d) is a polynomial, say quadratic.
Note that this question subsumes the Infinite Motion Conjecture for infinite
graphs with bounded valence1.

There are various refinements and extensions of distinguishing number.
When D(G) = 2, one can consider the cost, that is, the least number of
times one color is used. For graphs, there is the distinguishing chromatic
number, where the coloring is required to be proper, that is, is adjacent ver-
tices get different colors. Again for graphs, there is the edge-distinguishing
number, also called the distinguishing index, where the coloring is on edges
instead of vertices. One interesting aspect of this is that if a graph has a
hamiltonian path of length at least 7, then its edge-distinguishing number
is two. Thus for vertex transitive graphs, there is a connection to Lovász’s
conjecture.

1In the meantime Imrich and Tucker showed that f(d) = 2dlog2 de + 1 for finite or
infinite trees [12].
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The other important recent development is László Babai’s work on the
Graph Isomorphism Problem using symmetry breaking ideas, like individ-
ualization of vertices. Although he was not on the original list of projected
participants, the workshop was very fortunate that he agreed to attend and
give a series of talks. These talks were the highlight of the workshop.

In this context it turned out that the cost, called Boutin-Imrich cost
BI(G) by Babai, was a rather useful in his investigations. He presented a
cost-aware version of the Motion Lemma and asked, for example, whether
BI(G) = O(b(G)) if m(G) = Ω(n), where b(G) is the minimum size of a
base of G and n the order of G.

4 Presentation Highlights
Each day of the workshop began with a morning of introductory lectures,
presented by experts in the area. Since the audience included researchers
from different fields, these talks were as general as possible, employing
language, notation, and examples that are consistent and widely used. The
remaining sessions were organized by topic: graphs, other combinatorial
structures, permutation groups, refinements or extensions of distinguishing
number.

The first day, Thomas Tucker began with an overview of symmetry
breaking, with particular attention to motion/minimal degree as an over-
arching concept. He was followed by Florian Lehner, who talked about
symmetry breaking for infinite graphs with bounded degree, and Gabriel
Verret, who talk about the valence four case for vertex transitive graphs.
The afternoon saw a series of shorter talks by Rafal Kalinowski on bounds
for the distinguishing index, Mariusz Woźniak on distinguishing vertices
with palettes, Mohammad Hadi Shekarriz on counting the number of dis-
tinguishing colorings, and Saeid Alikhani on symmetry breaking in various
families of graphs.

The second day, László Babai gave a series of three talks on symmetry
breaking as it relates to Graph Isomorphism [5, 3]. These lectures gave a
vision that raised symmetry breaking from a small niche in graph theory
to an overarching approach to the larger problems of graph theory and per-
mutation groups. That afternoon, his student Bohdan Kivva gave a series
of two lectures on coherent configurations, which can be viewed as highly
regular colorings of the arcs of the directed complete graph; these arise nat-
urally from the orbits of permutation groups on ordered pairs. The first [13]
extended Babai’s lower bound [4] on minimal degree for strongly regular
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graphs to primitive coherent configurations of rank 4. His second talk pre-
sented work by Xiaorui Sun and John Wilmes [21], also students of Babai,
on bounds on base size for primitive coherent configurations. Both talks
were algorithmic and both gave striking examples of computations that had
been achieved before for permutation groups in a weaker form and only by
using the Classification of Finite Simple Groups.

For the half-day of talks on the third day, Claude Laflamme applied sym-
metry breaking to homogeneous structures, Thomas Lachmann gave bounds
of the cost of symmetry breaking for cubic vertex transitive graphs, Svenja
Hüning addressed locally finite trees, and Sara Sabrina Zemljič discussed
distinguishing Sierpinski products of graphs.

For the fourth day, Joy Morris viewed symmetry breaking in terms of
edge-colorings of an oriented Cayley graph invariant under automorphisms
of the graph. Luke Morgan and Scott Harper gave talks on their work semi-
primitive permutation groups. In the afternoon, Marston Conder presented
work by Verret, Lehner, Pablo Spiga and Primoz Potočnik on lower bounds
on minimal motion for vertex transitive cubic graphs. Mark Ellingham
presented a variation on symmetry breaking where one is allowed to in-
terchange colors, in effect breaking symmetry with a partition, rather than a
coloring. Ann Trenk and Karen Collins presented their work on distinguish-
ing partially ordered sets. That evening participants presented various open
problems.

Friday, Conder looked at restricting symmetry, rather than breaking all
symmetry, with emphasis on examples from maps, such as chirality. Wil-
fried Imrich concluded the workshop with a talk on symmetry breaking for
uncountable graphs.

5 Outcome of the Meeting
The purpose of the meeting was to raise symmetry breaking from a niche
area of graph theory to a larger vision of symmetry breaking in permuta-
tion groups and combinatorics. It is clear the workshop succeeded in that
purpose: indeed, fewer than one quarter of the talks could be considered
graph-distinguishing.

A second purpose, was to bring together the different mathematical com-
munities doing symmetry breaking, who have not, to this point, been com-
municating with each other. The list of participants alone guaranteed the
success of the workshop. The organizers are grateful that so many were
willing to attend, including the senior mathematicians who did not make
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presentations: Chris Godsil, Richard Hammack, Alexander Hulpke, and
Andrew Vince.
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