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Alfredo Nájera Chávez (Universidad Nacional Autnoma de Mxico),
David Hernandez (Universit de Paris),
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1 Overview of the Field
Cluster algebras were defined by Fomin and Zelevinsky [18] in the year 2000 in a long-term project aimed
to develop an algebraic/combinatorial approach for two important subjects: the theory of total positivity in
algebraic groups developed by Lusztig [42] on the one hand, and the theory of canonical bases in quantum
groups initiated by Kashiwara [32] and Lusztig [41] on the other hand. Since then, the theory of cluster
algebras has witnessed spectacular growth thanks to the abundant links that have been discovered with a
wide range of subjects including representation theory of quivers, algebraic geometry, mirror symmetry,
Poisson geometry, integrable systems, tropical geometry and Teichmüller theory among many others. Due
to this outstanding development, cluster algebras became in 2010 item 13F60 of the Mathematics Subject
Classification.

Every cluster algebra is a subalgebra of a field of rational functions C(x1, . . . , xn) in n commuting
variables. By definition, a cluster algebra is endowed with a distinguished set of generators, called the cluster
variables. These generators are grouped into overlapping subsets of cardinality n, called the clusters. The
clusters are constructed inductively by a combinatorial procedure called mutation from the initial cluster
{x1, . . . , xn}. This procedure is completely determined by an initial n × n skew-symmetrizble matrix B.
We denote by ord(B) the (ordinary) cluster algebra associated to B. A cluster monomial is a monomial in
the cluster variables of a given cluster. The upper cluster algebra up(B) is the subalgebra of C(x1, . . . , xn)
generated by all rational functions that can be expressed as a Laurent polynomial on the variables of every
cluster. The Laurent phenomenon is a fundamental result proved by Fomin and Zelevinsky that ensures
ord(B) ⊆ up(B). The notion of quantum cluster algebras, introduced by Berenstein and Zelevinsky in [5],
can be considered as a non-commutative q-analogue of cluster algebras.

Finding vector space bases for both commutative and quantum cluster algebras is a central problem in
cluster theory. Moreover, one would like to construct bases with positive structure constants, that contain
all (quantum) cluster monomials and that are parametrized by nice subsets of lattices. Moreover, for nearly
20 years it was an open problem to relate bases for cluster algebras to the canonical bases constructed by
Kashiwara and Lusztig and recently there has been significant progress in this direction [31, 33, 34, 39, 53,
55]. The work of Qin [54] shows the existence of a moduli space of bases for cluster algebras with the
desired parametrization. Hence comparing the different bases is a very interesting problem. There are three
approaches available to construct bases for cluster algebras that have been intensely developed: monoidal
categorification, cluster characters and mirror symmetry.
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1.1 Monidal categorification
Monoidal categorification of cluster algebras was introduced by Hernandez and Leclerc [29]. Since then,
this notion has evolved and has lead to strong results concerning the connection between cluster algebras and
canonical bases for quantum groups. The core idea of this approach is to construct a monoidal category whose
Grothendieck ring is isomorphic to a cluster algebra of interest. Constructing such a categorification for a
cluster algebra has very strong consequences. For instance, it was shown in [29] that the Grothendieck ring
of the monoidal category of finite-dimensional representations of a quantum affine algebra can be endowed
with the structure of a cluster algebra. Such a Grothendieck ring has a basis of simple modules. It was proved
in [30] that, for quantum affine algebras of Cartan typeADE, the simple modules correspond precisely to the
elements of Lusztig’s dual canonical basis. In the general case, Hernandez and Leclerc conjectured that all
cluster monomials belong to the basis of the simple modules. In [53], Qin constructed the so-called common
triangular bases for this kind of cluster algebras. By construction, the common triangular basis contains all
quantum cluster monomials and the Hernandez-Leclerc conjecture is reduced to show that the basis consisting
of the simple modules produces the common triangular basis.

Another remarkable instance of monoidal categorification is the following. Let g be a simple Lie algebra
associated to a symmetric Cartan matrix and g = n−⊕h⊕n a triangular decomposition. Let G and N be the
Lie groups associated with g and n, respectively. In [20], Geiss, Leclerc and Schröer proved that C[N ] is a
cluster algebra. The unipotent quantum coordinate ring Aq(n) is a q-deformation of the coordinate ring C[N ]
and is isomorphic to the negative half of the quantum group Uq(g) as a Q(q)-algebra. Geiss, Leclerc and
Schröer also showed [19, 20, 21] that Aq(n) has the structure of a quantum cluster algebra. Kashiwara and
Lusztig constructed simultaneously and independently a distinguished basis forAq(n) called the upper global
basis or dual canonical basis. In [31], Kang, Kashiwara, Kim and Oh showed that Aq(n) can be categorified
via the representations of symmetric Khovanov-Lauda-Rouquier algebras. They used this to show that every
quantum cluster monomial in Aq1/2(n) := Q(q1/2) ⊗Q(q) Aq(n) belongs to the upper global basis up to a
power of q1/2. These results can be generalized (see [31, 55]) for quantum coordinate rings of the form
Aq(n(w)) for w an element of the Weyl group of a symmetric Kac-Moody Lie algebra g, where the algebra
Aq(n(w)) is a Q(q)- subalgebra of Aq(n) generated by a set of the dual PBW basis elements associated
with w. However, there are very subtle problems arising for non-symmetric Kac-Moody Lie algebras and
the categorification picture has not been worked out in this case. Let us stress that all these results can be
generalized for quantum coordinate rings of the form Aq(n(w)) for w an element of the Weyl group of a
symmetric Kac-Moody Lie algebra g, where the algebra Aq(n(w)) is a Q(q)- subalgebra of Aq(n) generated
by a set of the dual PBW basis elements associated with w. Moreover, there are very subtle problems arising
for non-symmetric Kac-Moody Lie algebras and the categorification picture has not been worked out in this
case.

Monoidal categorification of cluster algebras has been further developed using categories of perverse
sheaves. For example, Nakajima constructed monidal categorifications by means of perverse sheaves on
quiver varieties [48] and Cautis-Williams used equivariant perverse sheaves on the affine Grassmannian [10].

1.2 Cluster algebras and quiver representations
The theory of quiver representations has a deep connection with cluster theory (see [17, 37] and the references
therein). The discovery of this connection had a very strong impact in tilting theory and gave rise to cluster-
tilting theory and subsequently to τ -tilting theory. Since then, cluster algebras have been extensively studied
via homological properties of quiver representations.

Let now ord(Q) be the cluster algebra associated to a quiverQ (corresponding to a skew-symmetric matrix
B). Derksen, Weyman and Zelevinsky introduced the Jacobian algebra J(Q,W ). This is by definition the
completed path algebra of Q (over C) modulo the closure of an ideal I(W ) defined by a non-degenerate
potential W .

Let d ∈ Nn be a dimension vector and M a J(Q,W )-module. The quiver Grassmannian Grd(M) is
the projective variety parametrizing the submodules of M of dimension vector d. The Caldero-Chapoton
function is the Laurent polynomial

CM := xg(M)
∑

d∈NQ0

χ (Grd(M))xB·d,
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in the variables of the initial cluster, where g(M) ∈ Zn is a vector constructed using an injective presentation
of M and χ is the Euler-Poincaré characteristic. One can see CM as a generating function of the Euler
characteristics of the quiver Grassmannians Grd(M).

Derksen, Weyman and Zelevinsky showed in [17] that the Laurent polynomials CM are invariant under
mutation, and that each cluster variable of ord(Q) is the Caldero-Chapoton function of a τ -rigid J(Q,W )-
module. The Caldero-Chapoton algebra CC(Q,W ) is the algebra generated by the CC-functions CM ,
where M runs over all J(Q,W )-modules. By the mutation-invariance, we get the inclusions ord(Q) ⊆
CC(Q,W ) ⊆ up(Q). In many interesting cases these three algebras coincide.

For each irreducible component Z of the varieties of J(Q,W )-modules with dimension vector d, where
d runs over Nn, one can define a generic CC-function CZ . Geiss, Leclerc and Schröer conjectured that a
certain subset of these generic CC-functions (given by the τ -reduced irreducible components) forms a basis
of CC(Q,W ), which resembles many of the properties of Lusztig’s dual semicanonical basis for enveloping
algebras. They proved this for a large class of cluster algebras arising from Lie theory including the algebras
of the form A(n(w)) and established a strong direct link to the dual semicanonical basis.

Closely related is the topic of additive categorification of cluster algebras developed by many authors
[9, 36, 2, 51]. From this perspective, various properties of cluster algebras associated to quivers can be
categorified using Calabi-Yau triangulated categories of dimension 2 and 3. Namely, associated to a quiver
Q endowed with a non-degenerate potential W there is the so-called Ginzburg dg-algebra ΓQ,W . Consider
the derived category of dg-modules D(ΓQ,W ). Keller [36] proved that its full subcategory formed by all
perfect dg-modules Perf(ΓQ,W ) is a 3-Calabi-Yau triangulated category that contains as a full subcategory
the category Ddf (ΓQ,W ) of dg-modules with finite-dimensional total cohomology. Amiot [2] defined the
cluster category CQ,W as the Karubian completion of the triangulated quotient Perf(ΓQ,W )/Ddf (ΓQ,W ).
The work of many authors shows that the categories CQ,W ,Per(ΓQ,W ) and Ddf (ΓQ,W ) categorify various
properties of ord(Q). The CC-formula can be extended to this context [50] and gives rise to the theory of
cluster characters which provides a way to pass from the cluster category CQ,W to the cluster algebra ord(Q).
Moreover, Plamondon extended the approach of Geiss, Leclerc and Schröer to this context.

The study of generic CC-functions needs a deeper understanding of the representation theory of the
Jacobian algebras J(Q,W ) and also of the behavior of their varieties of modules. The concept of τ -reduced
irreducible components makes sense for all finite-dimensional algebras and should be seen as part of a yet to
be developed generalized τ -tilting theory.

Understanding the precise relation between additive and monoidal categorification of cluster algebras
is a very difficult problem. However, we can highlight the work of Davidson [15] in which both additive
categorification and monoidal categorification of quantum spaces naturally arising in the study of quantum
cluster algebras are studied simultaneously. This remarkable approach was used to prove the positivity of
quantum cluster coefficients for all skew-symmetric quantum cluster algebras.

1.3 The theta basis
Associated to a skew-symmetrizable matrix B there are two complex schemes AB and XB called the cluster
varieties associated to B. The ring of global functions on AB is canonically isomorphic to the upper cluster
algebra up(B). Gross, Hacking and Keel observed that both types of cluster varieties have the structure of a
log-Calabi-Yau variety. This permits to study cluster varieties using techniques and ideas from mirror sym-
metry, the minimal model program and tropical geometry. In particular, Gross, Hacking, Keel and Kontsevich
[25] introduced scattering diagrams [40, 27], broken lines [23] and theta functions [24, 28, 26] into the world
of cluster varieties. The description of these objects given in [25] is very combinatorial. However, Keel and
Yu proved in [35] that they have a deep geometric interpretation in the context of non-archimedean analytic
geometry. This approach was used to settle various important and long-standing conjectures including the
famous positivity conjecture for cluster algebras.

Every theta function for AB is a Laurent power series in the initial cluster variables that encodes certain
enumerative invariants of XB . Theta functions can be defined in a combinatorial way using scattering dia-
grams and broken lines. However, this combinatorial procedure is very complicated and the theta functions
are far from being explicit. In the cluster context, a scattering diagram is a possibly infinite collection of
co-dimension 1 cones, called the walls, living in an ambient real vector space whose dimension equals the
complex dimension of XB . Attached to each wall there is Laurent power series in the initial cluster variables
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called a scattering function. A broken line is a piece-wise linear ray homeomorphic to (−∞, 0] living in
the ambient vector space that can bend only at its intersection with a wall. The bending is controlled by the
scattering functions. Conceptually, the ambient vector space is identified with the tropicalization of XB and
a broken line is the skeleton of a non-archimedean analytic curve in the Berkovich analytification of XB .

Typically, theta functions are not global functions on a cluster variety. However, Gross, Hacking, Keel
and Kontsevich proved that every cluster monomial is a globally defined theta function. The middle cluster
algebra mid(B) is the subalgebra of up(B) spanned by the globally defined theta functions of AB . Namely,
those theta functions that turn out to be Laurent polynomials. We have the following inclusions ord(B) ⊆
mid(B) ⊆ up(B). Both ord(B) and mid(B) admit a basis of theta functions with non-negative multiplicative
structure constants (given by certain counts of broken lines).

In [8], Bridgeland constructed the so-called stability scattering diagrams. These scattering diagrams are
constructed using stability conditions on the category mod(J(Q,W )) of finite-dimensional modules over a
Jacobian algebra J(Q,W ). The stability scattering diagram is described in terms of the motivic hall algebra
of mod(J(Q,W )). Bridgeland proves that, for acyclic quivers, the stability scattering diagram coincides with
the scattering diagrams constructed in [25], however, these diagrams can differ in the non-acyclic case as
exhibited in [43, 52]. Remarkably, Cheung [14] was able to deduce the CC-formula for acyclic quivers using
the stability scattering diagram. At the quantum level Davison and Mandel [16] used scattering diagrams
and the Donaldson-Thomas theory of quivers to study the quantum theta basis of various quantum cluster
algebras, proving the so-called quantum strong cluster positivity conjecture for these algebras. These works
provide the first steps towards a categorification of the (quantum) theta basis and contribute to understand the
relation between mid(Q) and CC(Q,W ).

We have treated some of the most influential approaches to study bases for cluster algebras. However,
there are various closely related lines of research that can contribute to enrich our understanding of these
bases. For instance, in [25] it was show that certain polytopal subsets of theta functions define (partial)
compactifications of cluster varieties in much the same way toric varieties can be (partially) compactified
using (fans) polytopes. In some cases these polytopal subsets can be realized as Newton-Okounkov bodies
but we still lack of general theory explaining this phenomenon. There are interesting results in this direction
[6, 13, 56] but there is still many open questions. One can expect to understand bases for cluster algebras
from the perspective of Gröbner theory. There are partial results that follow this point of view [4, 7, 45] but
the general theory is still awaiting to be discovered. We would like to mention the recent work of Baumann,
Kamnitzer and Knutson [3] suggesting that the Mirković-Vilonen basis for a coordinate ring of the form
C[G] might coincide with the theta basis. Finally, we point out the work of Allegretti [1] is also a first step in
relating bases constructed by Goncharov and Shen [22] to the theta basis.

1.4 Generalizations
Cluster algebras have been generalized in various ways. For instances, in [11] Chekhov and Shapiro general-
ized the mutation procedure in order to define generalized cluster algebras. Lam and Pylyavskyy generalized
the Laurent Phenomenon for cluster algebras to define the Laurent Phenomenon algebras in [38]. There has
also been work on defining super cluster algebras, see [49, 57] and the references therein. These generaliza-
tions satisfy the main properties of cluster algebras and it is expected that the techniques developed in the
previous sections extend to the more general setting. In particular, the study of bases for generalized cluster
algebras, Laurent-Phenomenon algebras and super cluster algebras is closely tied to the study of bases for
ordinary and upper cluster algebra. In particular, the connections between ordinary cluster algebras and topo-
logical surfaces, quiver representations and mirror symmetry is in process of being extended to the general
setting.

In [44], Mou showed that the notion of cluster varieties and their dualities can be extended in the frame-
work on Chekhov and Shapiro, defining thus the notion of a generalized cluster variety and generalized
Fock-Goncharov duality. Even further, Mou showed constructed scattering diagrams and theta functions for
generalized cluster varieties, see [12] as well. In particular, it is possible to study generalized cluster algebras
using theta functions on generalized cluster varieties. It turns out that the positivity property of wall-crossings
functions still hold in the generalized situation.

The study of these generalizations is important to extend the scope of the theory of cluster algebras as this
might lead to a unifying framework explaining the connections between the different approaches to construct
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bases for cluster algebras.

2 Presentations

2.1 Monday
The talks on Monday were meant to present advances in generalizations of the notion of cluster algebras.

In the first talk The blue vs. red game and applications by Bernhard Keller, the speaker presented an
exciting generalization of the mutation operation. Let Q be a quiver with n vertices. In the usual setting one
divides the vertices ofQ into two groups - the mutable ones and the frozen ones. Classically one only allowed
to perform mutation on mutable vertices. However, in this generalization mutations at frozen vertices are
allowed and counterbalanced by mutations at non frozen vertices. The speaker also explained how to apply
this construction to obtain group actions (e.g. braid group actions) on cluster categories and cluster algebras.

Afterwards we had the talk Generalized cluster structures and periodic difference operators by Misha
Gekhtman based on a joint work with M. Shapiro and A. Vainshtein and an ongoing project with C. Fraser and
K. Trampel. He presented a construction that ties together several diverse notions including spaces of periodic
difference operators, Poisson sub manifolds of a Drinfeld double of GL(n) and subsets of Grassmannians
stable under the action of powers of a cyclic shift. He explained how the theory of generalized cluster algebras
serves as a unifying theme.

The third talk of the day was delivered by the young researcher Esther Banaian and was titled Snake
Graphs from Punctured Orbifolds based on joint works with Elizabeth Kelley and with Wonwoo Kang. Her
talk was motivated by work generated on the quest to prove the positivity conjecture of cluster a special
which resulted in many interesting proofs for special families. In particular, she focused on Musiker-Schiffler-
Williams’ proof of the positivity conjecture for cluster algebras from surfaces [46, 47]. The main idea of the
proof is to realize each cluster variable as a generating function of statistics on a certain labeled graph, called
a snake graph. She exploited this idea to obtain a proof of positivity for generalized cluster algebras from an
orbifold, as defined by Chekhov and Shapiro.

Next speaker was another young researcher, Elizabeth Kelly with the talk Rooted Clusters of Graph LP
Algebras based on joint work with Esther Banaian, Sunita Chepuri, and Sylvester W. Zhang. She was mainly
focused on the so-called Laurent-Phenomenon algebras, also called LP algebras which generalize. These
algebras have the Laurent Phenomenon just as cluster algebras, however, the positivity phenomenon remains
conjectural in general. She focused on the Graph LP algebras which are finite LP algebras that can be encoded
by a graph. For the subclass of graph LP algebras defined by trees, she define a family of clusters called rooted
clusters. Her main result is that there is a combinatorial interpretations for expansions in terms of these rooted
clusters using generalizations of T -paths and snake graphs. Which is a generalization of the work of [46].

The final talk of the day The super CC-map was scheduled to be delivered by Ilke Canakci who announced
progress in the definition of super CC-algebras. Unfortunately, her talk had to be canceled for reasons of force
majeure.

2.2 Tuesday
The talks of Tuesday were closer to representation theory and monoidal categorification.

The first talk of the day was delivered by Fan Qin and was titled Triangular bases for strata of algebraic
groups. He recalled that the so-called triangular bases are Kazhdan-Lusztig type bases quantum cluster
algebras introduced in [53]. This framework includes as a particular case the dual canonical bases for the
quantized coordinate rings of unipotent subgroups. In his talk, the author explained how to construct the
(common) triangular bases for the (quantized) coordinate rings of algebraic groups and of their double Bruhat
cells, generalizing results for unipotent subgroups. An important feature of these bases is that their structure
constants are positive when the Cartan datum is symmetric.

The next speaker was Joel Kamnitzer who gave the talk Canonical bases in representation theory and
cluster algebras. In his talk he recalled the three important families of bases that were alluded in §1: generic
basis, the common triangular basis and the theta basis. All these bases are parametrized by the tropical points
in the dual cluster variety, in line with the Fock-Goncharov conjecture. He pointed out that in representation
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theory, we also have three families of bases: the semicanonical basis, the canonical basis, and the Mirkovic-
Vilonen basis and surveyed known results about these bases and presented open problems in this direction
such as a comparison between the theta basis and the Mirkovic-Vilonen basis.

The third speaker of the day was the young researcher Anne Dranowski on Minuscule multiples and re-
verse plane partitions. She began recalling that the semistandard Young tableaux and irreducible components
of Springer fibers model highest weight crystals for SL(n) in a compatible way. She presented a general-
ization of these correspondences to ADE Demazure crystals having minuscule weight. This generalization
uses reverse plane partitions in place of tableaux and preprojective algebra modules in place of flags. She
suggested to investigate the relation between reverse plane partitions and clusters.

The last speaker of the day was Vyjayanthi Chari who gave the talk Higher order Kirillov-Reshetikhin
modules, monoidal categorification and Imaginary modules. This talk was in the framework of monoidal
categorification of cluster algebras. She discussed a generalization in type An of the well–known Kirillov-
Reshetikhin modules for quantum affine algebras. This generalization has many of the properties of the
Kirillov-Reshetikhin modules and, moreover, allows us to classify all prime representation of the quantum
affine algebra which are supported on only one node of the Dynkin diagram of An. She give a necessary
and sufficient condition for a tensor product of such modules for a fixed node to be irreducible. She further
discussed an analog of the theory of monoidal categorification of cluster algebras for Kirillov-Reshetikhin
modules. An important notion she presented is the one of imaginary modules for quantum affine algebras.
The first example of such modules appeared in the work of Leclerc. In terms of the infinite rank cluster
algebras, coming from monodial categorification, her examples show the existence of an infinite number of
pairs of cluster variables whose product is not in the span of cluster monomials.

2.3 Wednesday
The third day of the workshop was focused on the theta basis.

The first talk of the day was by Ben Davison titled Strong positivity for quantum cluster algebras. The
positivity conjecture for commutative cluster algebras was settled in the affirmative by Gross, Hacking, Keel
and Kontsevich. In this talk the author explain the proof he obtained along Travis Mandel of the quantum
version of this positivity for skew-symmetric quantum cluster algebras. Key features if the proof is the use
of categorified Donaldson-Thomas theory and using scattering diagrams. The talk by Davison paved the way
for the next two talks as he explained cluster scattering diagrams, theta functions and their quantum analogs.

The second talk of the day was by Greg Muller titled Reciprocity for Valuations of Theta Functions and
titled, presenting joint work with Man-Wai Cheung, Timothy Magee and Travis Mandel. The view-point of
this talk was the Gross-Siebert mirror symmetry program for log-Calabi-Yau varieties. In this program one
associates a theta function on X to each boundary valuation on Y , where X and Y are a pair of mirror dual
affine log Calabi-Yau varieties with maximal boundary (such as cluster varieties). Since mirror duality is a
symmetric relation, this provides two ways to associate an integer to a pair m and n of boundary valuations
on X and Y (respectively).

1) Apply the valuation m to the theta function associated to n.

2) Apply the valuation n to the theta function associated to m.

Resolving a conjecture of Gross-Hacking-Keel-Kontsevich, we show that these two numbers are equal in a
generality which covers all cluster algebras (specifically, when the theta functions are given by enumerat-
ing broken lines in a scattering diagram generated by finitely-many elementary incoming walls). THe also
discussed applications to the theta basis and its localizations.

The final talk of the day was a student talk, delivered by the Colombian Ph.D. student Carolina Melo-
Lpez. This was the unique talk of the workshop that was not transmitted via zoom as she presented on-going
work of her thesis. The title of the talk was The cluster complex for finite type cluster X -varieties. The
tropical space parametrizing the theta functions on a cluster variety V supposrts the corresponding scattering
diagram. This diagram considts of two parts, a cone complex formed out by simplicial cones (modulo a
linearity space) and some other arrangement of walls that is very poorly understood. The cluster complex
is fundamental as it codifies the portion of the basis formed by the cluster monomials. The cluster complex
for cluster A-varieties has been studied in grate detail by many authors. However, the cluster complex for
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cluster X has not been studied in detail. In this talk the speaker presented partial result on the description of
the cluster complex for cluster X -varieties of finite type. Her description is via quiver representations and the
dimension vectors of the representations.

2.4 Thursday
In the fourth day of the workshop we learned about connections to tropical geometry and braid varieties.

The first speaker was Lara Bossinger and the talks was titled Tropical totally positive cluster varieties. In
this talk she relate two types of tropicalization that are available when dealing with a (partially compactified)
cluster variety: (1) the Fock-Goncharov tropicalization of a scheme with a positive atlas, (2) the tropicaliza-
tion of an ideal associated with an embedding of the variety. We discuss how both types of tropicalzation
encode toric degenerations of the cluster variety. We present the construction of a piece wise linear map from
(1) to (2). Given certain natural assumptions the piece wise linear map not only identifies the fan structures
on either side, but also the associated toric degenerations.

The second speaker was the young researcher Melissa Sherman-Bennett who gave the talk Cluster struc-
tures on type A braid varieties from 3D plabic graphs presenting joint work with Pavel Galashin, Thomas
Lam, and David Speyer. She started recalling the construction of the braid variety X(b) associated to a pos-
itive braid b. These varieties are always smooth, affine and irreducible variety. Braid varieties are atttracting
the attention of a large number of researchers in the area as they are natural generalizations central cluster
varieties arrising in nature such as positroid varieties, Richardson varieties, double Bruhat cells, and double
Bott-Samelson cells in type A. The first result is that X(b) is a locally acyclic cluster algebra. Then she
constructed seeds for this cluster algebra from 3D plabic graphs, which generalize Postnikov’s plabic graphs
for positroid varieties. She further discussed related joint work with Krystina Serhiyenko, where we prove
that in type A, Leclerc’s conjectural cluster structure on Richardsons is indeed a cluster structure.

The third talk of the day was by Lauren Williams and titled Polyhedral and tropical geometry of flag
positroids based on joint work with Jon Boretsky and Chris Eur. Particularly, she centered her attention on the
polyhedral and tropical geometry of flag positroids whose set of ranks is a sequence of consecutive numbers.
In this case she showed that the nonnegative tropical flag variety equals the nonnegative flag Dressian, and
that points of these spaces give rise to coherent subdivisions of flag positroid polytopes into flag positroid
polytopes. These results have applications to Bruhat interval polytopes and to realizability questions. In
particular, she prove that every positively oriented flag matroid of consecutive ranks is realizable.

The last talk of the day was by Jos Simental titled Cluster structures on braid varieties presenting joint
work with Roger Casals, Eugene Gorsky, Mikhail Gorsky, Ian Le and Linhui Shen. This talk was closely
related to the talk of Sherman-Bennett but the framework was broader and the techniques quite different.
Given a simple algebraic group G and an element β of its positive braid monoid the author considered
the braid variety X(β). Their results show that the coordinate algebra of X(β) admits the structure of a
cluster algebr. They provide explicitly constructions of several initial seeds, using combinatorial objects
called weaves and tropicalization of Lusztig’s coordinates. He moreover explained this construction (with
several examples) and give properties of the corresponding cluster structure, including local acyclicity and
the existence of reddening sequences.

2.5 Friday
On the last day the speakers gave talks that revolve on several ideas that were present on the rest of the talks
such as scattering digarams, the connection between cluster algerbas and knot theory and quantum cluster
algerbas.

The first speaker of the day was Tomoki Nakanishi with the talk Mutations, dilogarithm, and pentagon
relation. He started pointing out the roles of the dilogarithm and the pentagon relation in cluster algebras and
cluster scattering diagrams. This included the Fock-Goncharov decomposition of mutations, the Hamiltonian
formalism for mutations, the algebraic formulation of the dilogarithm and the pentagon relation, and the pos-
itive realization of cluster scattering diagrams. An application of the pentagon relation to construct consistent
cluster scattering diagrmas was presented.

Afterwards Ralf Schifler delivered the talk Cluster algebras and knot theory based on joint work with
Vronique Bazier-Matte. To every knot diagram (or link diagram), he explained how to associate a cluster
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algebra by constructing a quiver with potential. The rank of the cluster algebra is 2n, where n is the number of
crossing points in the knot diagram. He then constructed 2n indecomposable modules T (i) over the Jacobian
algebra of the quiver with potential. This construction has the propetry that for each T (i), the submodule
lattice of T (i) is isomorphic to the corresponding lattice of Kauffman states of the knot. Furthermore, the
Alexander polynomial of the knot is a specialization of the F -polynomial of T (i), for every i. He presented
the following conjecture: the collection of the T (i) forms a cluster in the corresponding cluster algebra.

The final talk of the event was by Milen Yakimov titled Representation theory and Poisson geometry of
root of unity quantum cluster algebras presenting joint work with Shengnan Huang, Thang Le, Greg Muller,
Bach Nguyen and Kurt Trampel. He showed that all root of unity quantum cluster algebras have canonical
structures of Cayley-Hamilton algebras (in the sense of Procesi) and Poisson orders (in the sense of De
Concini-Kac-Procesi and Brown-Gordon). The first result allows the transfer of finiteness properties between
the quantum and classical situations. The second result relates the representation theory of these algebras
to the Poisson geometry of the Gekhtman-Shapiro-Vainshtein brackets. He explained how to prove that the
spectrum of each upper cluster algebra equipped with the Gekhtman-Shapiro-Vainshtein Poisson structures
has an explicit Zariski open torus orbit of symplectic leaves, which is a far-reaching generalization of the
Richardson divisor of a Schubert cell in Lie theory. He concluded by combining these results to describe
explicitly the fully Azumaya loci of all (strict) root of unity quantum cluster algebras. This classifies their
irreducible representations of maximal dimension.
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