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Starting with the seminal work of Claude Shannon in the 1940’s, coding theory has been a flourishing
subject for research collaborations between mathematicians, computer scientists and electrical engineers.
Research problems in coding theory have evolved in the years to answer important practical questions from
real world applications. This workshop brought together researchers from different backgrounds in order to
foster interdisciplinary collaborations that push forward the research in coding theory and communication.

The workshop focused on five prominent directions in contemporary coding theory and its applications.
Locally recoverable codes (LRCs) allow the recovery of a codeword symbol’s erasure when one only has
access to a small set of codeword symbols. These codes are of great current interest, in part due to their
applicability to problems arising from distributed storage. Rank-metric codes are codes from a metric space
defined by the rank function. The seminal papers on these codes are from the 1980s but it is in the last few
decades that they received major interest by the international research community because of their applica-
tions to network coding and code-based cryptography. Code-based Cryptography put problems from coding
theory at the core of advanced cryptosystems capable of withstanding attacks from quantum computers. The
public-key cryptosystems used nowadays have been proven weak against quantum attacks, making this area
one of the most important application in coding theory of the last few years. Network Coding seeks answers
to problems of maximization of information flow over networks. These answers often require the estab-
lishment of new communication schemes, relying on mathematical structures that have not been used in this
context before. In recent years, a new set of problems with local features arises from practical communication
problems. For example, with the need of storing more and more data on different servers, the challenge of
recovering information by contacting as few servers as possible arises. Algebraic coding theory tackles clas-
sical communication problems, such as error-free communication between a source and a receiver over noisy
channels, using a wide range of tools from algebra, algebraic geometry, and probability theory. More re-
cently, coding theory has found applications to emerging challenges in communication. Data communication
changed as our digital lives which became more and more interconnected.

One of the first meetings with a focus on coding theory that brought together multidisciplinary researchers
from many countries took place in Oberwolfach, Germany, in 2007. This workshop was followed by Dagstuhl
meetings, which took place in Germany in 2011, 2013, 2016, 2018. A BIRS meeting took place in Canada
in 2015. Another multidisciplinary meeting on coding theory was held in 2019 in Oberwolfach. Most of
these workshops focused on the present-day challenges in coding theory arising from Big Data, Multimedia
Streaming, Networks, Distributed Storage, and Security. One important consequence of having such a series
of meetings is that they contributed to increasing the scientific interaction between mathematicians and re-
searchers in more applied areas of coding theory. The workshop on ”Algebraic Methods in Coding Theory
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and Communication” is the first one hosted at the CMO.

1 Overview of the Field
The workshop focused on five central and timely themes in mathematical coding theory: locally recoverable
codes, rank-metric codes, code-based cryptography, network coding, and algebraic coding theory. While
remarkable connections have emerged among these five apriori unrelated research directions, they have not
been yet explored to the full extent of their depth.

In the sequel, C denotes a linear (n, k)q-code, i.e. a linear k-dimensional subspace of Fn
q , where Fq is the

finite field with q elements.

Locally recoverable codes
Distributed storage systems have been widely used in recent times for many different purposes. In this
context, one of the most common scenarios that needs to be addressed is related to the failure of one of
the servers to return to the user the requested data. Whether this is because of the need for many parties to
access the same files, or simply because the server’s hardware needs to be replaced, the question of how to
recover lost information in an “optimal” way is one that will only continue to increase in importance in our
data-driven world.

How to recover lost data?
One solution to this problem is k-fold replication, also known as a repetition code. For example, suppose

that we have a piece of data that contains four bits, such as 0100. We could repeat this data twice more and
obtain the encoded word 010001000100. Then, if one symbol is lost, we could look at the other two copies
to see what the original entry was.

But this encoding, in general, requires way too much overhead; the relatively small threefold replication
described above requires an overhead of 200%. Threefold replication is also only able to recover two erasures,
i.e., there are some patterns of three erasures for which some of the data can no longer be recovered. For
example, if an erasure occurs at the same place in all of the three copies, then recovery of the erased symbol
will be impossible. The natural question to ask is then, how could one decrease the storage space needed
for the encoded information, while retaining (or improving) the erasure recovery capability. This is the main
focus of the field of coding theory and the goal of coding theory for distributed storage.

In computer science applications, the main goal is to construct systems that deal with the most common
scenario in an optimal way, but can still deal with the worst case scenario. It turns out that the most common
scenario is actually the failure of a node, as in the one-node erasure example here:

(1, 0, 1, 1, 0, 0, 0, 1) −→ (1, ∗, 1, 1, 0, 0, 0, 1)

If one wants to repair just a single erasure, in general they have to look at many other components of a
codeword where the erasures occurred. For example, for the (14, 10)q Reed Solomon code, to repair a single
node failure we need to look at 10 other components of the vector we are repairing because we need to
reconstruct entirely the evaluation polynomial. This means that we need to access data 10 times the size of
the data we wish to repair. The aim of locally recoverable codes is to correct small volumes of erasures in an
optimal way, with respect to the number of nodes that have to be accessed to recover the lost information.

This leads to the following definition. A locally recoverable code C with locality r is a linear code C such
that, if one erases one component of any v ∈ C, this component can be recovered by accessing at most r
other components of v. The number r of nodes we must call on to recover a single erasure is referred to as
the locality of the code.

The concept of locality in error-correcting codes was introduced in the early 2010s [7, 8, 14] due to its
applications to cloud storage and distributed storage systems. In the introductory talk on locally recovered
codes, the speaker covered material from [1, 2, 3, 9, 10, 11, 12, 13, 15]. In particular, the Cadambe-Mazumdar
bound, classical locally recoverable codes and hierarchical locally recoverable codes were discussed. The
speaker then focussed on the construction of Tamo-Barg of LRCs as subcodes of Reed-Solomon codes and
extended on the Tamo-Barg work using Galois theory to construct optimal codes with large parameters. Part
of the research on Tamo-Barg LRCs is currently focused on expanding the Galois Theoretical connection in
[9], as for example in [4, 5, 6] and extending the connection to larger classes of LRCs.
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Rank-Metric Codes
Rank-metric codes are linear spaces of matrices over a finite field, in which every non-zero matrix has rank
bounded from below by a given integer d. They were introduced by Delsarte in 1978 and more recently
rediscovered in various contexts within pure and applied mathematics. In 2008, rank-metric codes were
proposed as a solution to the problem of error amplification in coded communication networks. This novel
application renewed the interest in the general theory of rank-metric codes, which are to date a central them
in coding theory.

A current open problem in the theory of rank-metric codes asks to compute the asymptotic density of
Maximum-Rank-Distance (MRD) codes, i.e., of those rank-metric codes that meet the Singleton bound with
equality. Unlike MDS codes (which can be seen as the analogues of MRD codes for the Hamming metric),
MRD codes were shown to be sparse over large fields. In other words, a uniformly random rank-metric code
is MRD with probability that goes to zero as the size q of the underlying field grows.

Computing the “exact” asymptotic behaviour of the density function of MRD codes is currently a wide
open problem in coding theory, closely linked to the theory of geometric lattices, to graph theory, and to the
theory of finite semifields. The talk on rank-metric codes at the Algebraic Methods in Coding Theory and
Communication workshop offered an overview of the mathematical theory of rank-metric codes, with a focus
on the density questions just described.

Code-Based Cryptograhy
We consider public-key cryptosystems, where some sender, say Alice, wants to send an encrypted message to
a receiver, say Bob. The cryptosystem is asymmetric, in the sense that Bob publishes a public key and secretly
stores a private key, such that Alice (and everyone else) can use the public key to encrypt her message, and
only Bob can decrypt the message by using his private key. For the system to be secure, an attacker should
not be able to decrypt the encrypted message without the knowledge of the private key. This is done by using
some “hard” mathematical problem. Currently used cryptosystems rely on one of the following three hard
problems for the encryption: integer factorization, discrete logarithm problem, and elliptic curve discrete
logarithm problem.

We say that a problem is “hard” for cryptographic purposes if no polynomial-time algorithm to solve
it is known. For the three above problems, this is true for conventional computers. However, on quantum
computers, there is a known algorithm that solves these problems in polynomial time. This algorithm is
known as Shor’s algorithm; it was originally formulated for integer factorization, but can be adapted to solve
discrete logarithm problems, as well. This means that new algorithms are necessary for the future, to ensure
secure secret communication in the time of quantum computers. The science of algorithms withstanding
Shor’s algorithm is called post-quantum cryptography.

At the time of writing, there are five main streams of post-quantum cryptography: code-based cryp-
tography, lattice-based cryptography, hash-based cryptography, multivariate cryptography, and supersingular
elliptic curve isogeny cryptography. Within code based cryptography, there are two main general cryptosys-
tems which are based on error-correcting codes – the McEliece [16] and the Niederreiter system [17]. Both
of these have variants, depending on which type of code one wants to use. Since both are equivalent from a
security point of view we focus on the McEliece system. For implementation purposes however, and for the
construction of digital signatures, the Niederreiter system is of great interest, as well.

Originally, the McEliece cryptosystem was introduced using binary Goppa codes. We will now describe
the underlying ideas in its general form, using an arbitrary linear block code. Bob chooses a code C with
generator matrix G and an efficient decoding algorithm. Moreover, he needs a disguising function ϕ that is
a near-isometry, i.e., a function on the vectors that changes the weight by at most a given value. Then the
private key is G and the public key is ϕ(G) together with the error correction capability of the code generated
by ϕ(G), say t̂. Alice chooses a random error vector e of weight at most t̂ and encrypts her message m as

c = m ϕ(G) + e.

Bob computes ϕ−1(c) and then decodes in the secret code C to recover m. An attacker is unable to recover
m without knowing ϕ, respectively the secret code C. As a brute-force attack, he can try to decode in the
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public code ϕ(C), but this code has no discernible structure, hence no efficient decoding algorithm: Decoding
in such a “random” code is known to be a difficult problem.

By increasing the length n of the code, one may make the decoding problem arbitrarily hard. However,
this affects the efficiency and the key size of the cryptosystem. Generally, code based cryptography suffers
from large key sizes; on the other hand, the encryption and decryption times are very fast compared to other
cryptosystems. One of the main research goals in this area is hence to find codes and disguising functions
that allow smaller key sizes than currently known variants.

One promising idea is to use rank-metric codes instead of traditional Hamming metric codes, since generic
decoding algorithms in the rank metric are less efficient than in the Hamming metric [18]. Until recently, all
proposed variants in the rank metric use the same family of rank-metric codes codes; their main difference
is the respective disguising function. Many of these variants have however been broken, mostly due to
structural attacks, which reconstruct the private key from the public key. Nevertheless, this remains an active
and promising area of investigation and NIST - the US National Institute of Standard and Technology - has
encouraged researchers to further explore the use of rank-metric codes in code-based cryptography.

Network coding
Traditional approaches to the design of communication networks treat information flow much like commodity
flow [21, 22]: packets are routed along links in the network, much like cars on a highway. In case of
contention (when two packets wish to occupy the same link at the same time), one of the packets must wait
or be dropped. Network coding [23] arose out of the realization that information flow is not commodity flow
and that packets transmitted in a communication network should not be treated like cars on the highway.
Intermediate nodes in a network can, in principle, do more than just routing: they can, via some appropriate
mapping, combine packets contending for the same link. Provided that the intended receivers obtain enough
information to invert such combinations, greater throughput can sometimes be achieved than in networks that
perform routing alone.

In linearly coded networks [24, 25], the packets are assumed to be vectors over a finite field Fq , and inter-
mediate nodes in the network may transmit (on their outgoing links) Fq-linear combinations of packets that
they receive (on their incoming links). In the case of multicasting, where a source wishes to communicate the
same message to several sinks simultaneously, such linear network coding can achieve the multicast capacity
of the network, provided that the field size q is sufficiently large [24, 25]. Moreover, for sufficiently large q,
the multicast capacity can be achieved, with high probability, by a random choice of coding coefficients at
each node, without knowledge of the network topology [26].

Lower bounds on q to guarantee that a linear network coding solution exists were explored in [25, 27].
An algorithm to find a linear solution for any network was given in [28]. Linear solvability of a network
was connected to the representability of a matroid in [29, 30]. It was proven in [31] that the existence of a
linear network coding solution over Fq0 does not imply such an existence for all q > q0. They conjectured
that if there a solution over Fq0 and q0 − 1 is prime, then there is a solution for all q > q0. In the non-
multicast scenario, it was shown in [32] that non-linear solutions may exist while no linear solution exists.
Solutions over smaller finite fields may also be obtained with vector Network Coding, explored in [33, 34].
Physical-Layer Network Coding was studied in [35, 36] and wireless Network Coding was studied in [37].

Because of the necessity to invert a system of equations at the receiver, network coding is sensitive to
errors introduced in the received packets, either by noise or by an adversary. An error-correction model that
depends on the graph and network code was developed in [38, 39]. Probabilistic error-correcting codes were
given in [40]. A deterministic error-correcting code, but which depends on the network, was given in [41].
Error-correcting codes under an adversarial model without such requirements (thus compatible with random
linear network coding) were first given in [42, 43] for non-coherent communication (in which the sink has no
knowledge of the coding coefficients of the incoming links), and in [44] for coherent communication.

Due to the linear combinations performed at different nodes of the network, an adversary wiretap-
ping some links of the network obtains the sent message (a vector) multiplied by some transfer matrix.
Information-theoretical security in Network Coding was first studied in [45, 46]. A similar code construction
but with smaller field sizes was later given in [47]. An algorithmic code construction for security was given
in [48]. Coding schemes that provide perfect secrecy and zero-error communication, without knowledge or
modification of the underlying linear network code, were first given in [49].
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The works noted above make use of only one shot of the linearly-coded network. Correction of link
errors in multishot network coding was first investigated in [50, 51]. However, using Maximum Rank Distance
(MRD) code solutions require large field sizes (exponential in the code length and number of shots). Solutions
based on Maximum Sum-Rank Distance codes [52, 53] require only polynomial field sizes in the code length
and number of shots and were proposed in [54]. Later, several works studied the mathematical properties of
codes in the sum-rank metric [55, 56, 57, 58, 59]. See [60] for a survey. Other approaches to error correction
in multishot Network Coding include rank-metric convolutional codes [61, 62, 63, 64].

Algebraic coding theory
Algebraic coding theory applies algebraic structures and techniques to problems arising in the point-to-point
communication scenario. Evaluation codes, codes from algebraic geometry, and codes over rings are exam-
ples of algebraic codes.

Among the most exciting advances in this field is the invention of list-decoding algorithms for various
classes of algebraic codes. Research in this area began with a landmark paper by Sudan, who proposed an
algebraic list-decoding scheme for Reed-Solomon codes. List decoding algorithms yield, for a given received
word, a list of codewords that have at most a given distance δ from the received word. The size of the list
depends on the chosen distance δ and is usually short, if δ is close to the error correction capability of the
code.

The methods within algebraic coding theory are mostly algebraic and make use of various properties of
multivariate polynomials, or more generally, the properties of “well-behaved” functions in the function field
of an irreducible variety. On the computational side, the field profit of the recent advances in the theory of
Gröbner bases, which provide us with important tools for computing with polynomial equations.

In addition, relevant relationships are emerging between this topic and codes on graphs. One of the central
questions is whether it is possible to match the superior performance of graph-based codes with list-decoding
algorithms or, at least, with algorithms derived from list-decoding algorithms. Investigating such questions
requires a good command of the computational side of algebra, as well as being well-versed in the more
engineering-related aspects of the theory of codes on graph.

It is also relevant that the main works in coding theory from Mexico are in algebraic coding theory. In
addition, in recent years Mexico has seen a surge of interest in coding theory and cryptography, partly due to
the interest in these fields from the Mexican Space Agency.

2 Presentation Highlights
The following is the list of talks which were delivered at the workshop.

Monday Tuesday Wednesday Thursday Friday
9:30-10:30 Micheli Ravagnani Horlemann Martinez Peñas Neri

11:00-12:00 Matthews Guruswami Gaborit Soljanin Carvalho
13:00-14:00 Sprintson Barg Lange Byrne Wood

Introduction to the theory of Locally Recoverable Codes
Giacomo Micheli, University of South Florida

Abstract: This talk provides an introduction to the theory of locally recoverable codes (LRCs). In partic-
ular, we cover the basics on LRCs (motivation, definition, and singleton bound) and survey recent advances,
with particular emphasis on Tamo-Barg codes and their connection to Galois theory over global function
fields.

Fractional decoding of codes from curves
Gretchen Matthews, Virginia Tech

Abstract: There has been much recent work on erasure recovery using either fewer symbols or less
information from a received word. In particular, locally recoverable codes and linear exact repair schemes
address these scenarios. In this talk, we consider a similar challenge for error correction. Decoding algorithms
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for error-correcting codes typically take as input all symbols of a received word and attempt to determine the
original codeword. Fractional decoding attempts to do so using only a portion of the information normally
used in recovery. In this talk, we consider how this framework developed in earlier works by Tamo, Ye, and
Barg and Santos may be applied to codes defined using curves. This is joint work with Aidan Murphy and
Welington Santos.

Codes with Locality in the Rank and Subspace Metrics
Alex Sprintson, Texas A&M University

Abstract: We extend the notion of locality from the Hamming metric to the rank and subspace metrics.
Our main contribution is to construct a class of array codes with locality constraints in the rank metric.
Our motivation for constructing such codes stems from designing codes for efficient data recovery from
correlated and/or mixed (i.e., complete and partial) failures in distributed storage systems. Specifically, the
proposed local rank-metric codes can recover locally from ’crisscross errors and erasures’, which affect a
limited number of rows and/or columns of the storage system. We also derive a Singleton-like upper bound
on the minimum rank distance of (linear) codes with ’rank-locality’ constraints. Our proposed construction
achieves this bound for a broad range of parameters. The construction builds upon Tamo and Barg’s method
for constructing locally repairable codes with optimal minimum Hamming distance. Finally, we construct a
class of constant-dimension subspace codes (also known as Grassmannian codes) with locality constraints in
the subspace metric. The key idea is to show that a Grassmannian code with locality can be easily constructed
from a rank-metric code with locality by using the lifting method proposed by Silva et al. We present an
application of such codes for distributed storage systems, wherein nodes are connected over a network that
can introduce errors and erasures.

Rank-Metric Codes
Alberto Ravagnani, Eindhoven University of Technology

Abstract: A (linear) rank-metric codes is a vector space of matrices of given size over a finite field, in
which the rank of any nonzero matrix is bounded from below by a given integer. Rank-metric codes were first
studied for combinatorial interest by Delsarte in the seventies, and then by Cooperstein, Gabidulin, and Roth
in various contexts. In 2008, Silva, Koetter and Kschischang discovered that rank-metric codes combined
with linear network coding offer a solution to the problem of error amplification in communication networks.
Since then, rank-metric codes have been a thriving research area within coding theory, electrical engineering,
and discrete mathematics.

This talk offers an overview on the mathematical theory of rank-metric codes, from the problem of cor-
recting errors in networks, to that of investigating the properties of certain combinatorial structures and their
q-analogues.

Recent Progress on Binary Deletion-Correcting Codes
Venkatesan Guruswami, UC Berkeley

Abstract: In the worst-case (bit) deletion noise model, a subset of up to t arbitrarily chosen bits are deleted
from a sequence of n codeword bits. Crucially, the locations of the deleted bits are not known to the receiver
who receives a subsequence of the transmitted bit-string. The goal is to design codes of low redundancy that
allow recovery of the deleted bits and the original codeword. The study of deletion-correcting codes itself
is quite old, dating back to optimal single-deletion codes in the 1960s, and positive rate codes to correct
t = Ω(n) deletions in the 1990s. However, many basic questions remained open and our understanding of
deletion-correcting codes significantly lagged the vast literature concerning error-correcting codes to correct
bit flips.

After a long hiatus, there has been notable progress on deletion-correcting codes in the last 6-7 years,
covering regimes when the number of deletions t is a small constant, a small constant fraction of n, and a
large proportion of n, as well as the list-decoding model. The talk will survey some of this progress.

High-rate storage codes on triangle-free graphs.
Alexander Barg, University of Maryland
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Abstract: Consider an assignment of bits to the vertices of a connected graph G(V,E) with the property
that the value of each vertex is a function of the values of its neighbors. A collection of such assignments is
called a storage code of length |V | on G. If G contains many cliques, it is easy to construct storage codes
of rate close to 1, so a natural problem is to construct high-rate codes on triangle-free graphs, where finding
codes of rate >1/2 is a nontrivial task. Previously only isolated examples of storage codes of rate ≥ 1/2 on
triangle-free graphs were given in the literature. The class of graphs that we consider is coset graphs of linear
binary codes (Cayley graphs of the group Fr

2). One of the main results of this work is an infinite family of
linear storage codes with rate approaching 3/4. We also give a group of necessary conditions for such codes
to have rate potentially close to 1 and state a number of open problems. Joint work with Gilles Zémor.

Code-Based Cryptography - An Overview
Anna-Lena Horlemann, University of St. Gallen

Abstract: We will introduce the basics of code-based crypto systems and give an overview of past and
current developments. We will start with the original public key cryptosystems by McEliece and Niederreiter,
discuss several variants in the Hamming and rank metric of these systems and talk about various tools for
cryptanalyzing them. In the end we will mention results on using other metrics for these systems and some
techniques for creating digital signatures from the syndrome decoding problem.

Recent advances on rank based cryptography
Philippe Gaborit, University of Limoges

Abstract: In this talk we survey recent results for rank-based cryptography: cryptosystems which are
based on error-correcting codes embedded with the rank metric. These new results concern the LRPC cryp-
tosystem and the RQC cryptosystems for which we propose a new approach which permits to decrease public
key by roughly 30% and permits to obtain very efficient systems even in the case of proven 2−128 Decryption
Failure Rate. We will also survey different type of signatures based on rank metric including the Durandal
signature scheme. Overall these new results show the validity of rank metric based cryptography as a real
alternative in post-quantum crypto.

Code-based cryptography for secure communication
Tanja Lange, Eindhoven University of Technology

Abstract: Code-based cryptography, in particular the McEliece cryptosystem with binary Goppa codes,
is known as one of the most conservative choices in post-quantum cryptography. It is also known as a system
that is impractical or cumbersome to use for Internet applications due to the large size of the public key.
Among the candidates in the 3rd round of the NIST competition on post-quantum cryptography is also the
system with the smallest ciphertext size, making it attractive in situations where keys are changed infrequently
and ciphertext size matters.

This talk will present several recent applications of code-based cryptography in Internet applications.

Network Coding, Error Correction and Security
Umberto Martinez-Penas, University of Valladolid

Abstract: Maximum information flow over a communication network with one source and one sink can
be characterized by the classical max-flow min-cut theorem. However, in the multicast scenario (one source
and multiple sinks), maximum flow cannot always be achieved by routing only. In 2000, Ahlswede, Cai,
Li and Yeung developed a technique, called Network Coding, that allows the source to send the maximum
possible amount of information to all sinks simultaneously. In this talk, we provide an introduction to Net-
work Coding, and then provide a survey on techniques for deterministic worst-case error correction and
information-theoretical security under the model considered by Koetter, Kschischang and Silva. This model
considers the underlying network topology and network code as a blackbox (i.e., no knowledge or modifi-
cation of the network is needed) and is thus compatible with random linear Network Coding. We will go
through the different coding results obtained in the past decade, including subspace coding, list-decoding and
multishot network coding, among others. We will conclude with directions for future research.
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Multiple Concurrent (Local) Data Access with Codes
Emina Soljanin, Rutgers University

Abstract: Distributed storage systems strive to maximize the number of concurrent data access requests
they can support with fixed resources. Replicating data objects according to their relative popularity and
access volume helps achieve this goal. However, these quantities are often unpredictable. In emerging ap-
plications such as edge computing, even the expected numbers of users and their data interests extensively
fluctuate, and data storage schemes should support such dynamics. Erasure-coding has emerged as an effi-
cient and robust form of redundant storage. In erasure-coded models, data objects are elements of a finite
field. Each node in the system stores one or more linear combinations of data objects. This talk asks 1) which
data access rates an erasure-coded system can support and 2) which codes can support a specified region of
access rates. We will address these questions by formulating them as some known and some new combinato-
rial optimization problems on graphs. We will explain connections with LRC and batch codes. This talk will
also describe how, instead of a combinatorial, one can adopt a geometric approach to the problem.

q-Matroids, q-Polymatroids and Rank-Metric Codes
Eimear Byrne, University College Dublin

Abstract: There are many connections between linear codes and matroids and several coding theoretic
invariants turn out to be matroid invariants. Following the development of the theory of rank-metric codes,
q-matroids and q-polymatroids have become a topic of interest among an increasing number of researchers,
especially in the last few years. This topic involves submodular functions defined on the lattice of subspaces
of a vector space. In this talk, we’ll look at some recent results of q-matroids and q-polymatroids and show
the connections to rank metric codes. We will use the characteristic polynomial of a q-polymatroid as a basic
tool for some of these results.

Geometric approaches to linear codes
Alessandro Neri, Max Planck Institute for Mathematics in the Sciences

Abstract: This talk will focus on the interactions between algebraic coding theory and finite geometry. We
will explain in detail how these two mathematical areas are connected and in which way one can transform
metric problems in coding theory to intersection problems in finite geometry, and vice versa. In particular,
we will give an overview of such problems, from well-known results to more recent research directions.

Following footprints in coding theory: a collection of results.
Cicero Carvalho, Universidade Federal de Uberlândia

Abstract: In this talk, we intend to present the concept of footprint of an ideal, and a (certainly non-
exhaustive) collection of recent results in coding theory obtained with the help of footprints and other tools
from Gröbner basis theory.

Failures of the MacWilliams Identities
Jay A. Wood, Western Michigan University

Abstract: The Hamming weight enumerator can be viewed in two ways: (1) as counting the number of
entries in a codeword that belong to particular subsets of a partition of the alphabet, or (2) using the value
of the weight as the exponent in the enumerator. In generalizing beyond the Hamming weight enumerator,
the counting interpretation has enjoyed great success. In contrast, the w-weight enumerator determined by
a weight w often fails to satisfy the MacWilliams identities. We will describe some of these failures for
well-known weights.

3 Broader Impacts, Structure and Challenges of the Hybrid Work-
shop

The hybrid format of the workshop allowed the organizers to reach out to a much larger audience than
the limited number of otherwise in-person participants. Once informed about the decision by the CMO to
go hybrid, the organizers decided to reshape the participation concept of the workshop. They decided to
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reach out to participants from developing countries and to communities outside coding theory. The goal was
to involve people with an interest in coding theory, who would not traditionally be invited to this type of
workshop. In particular, we had several attendees from the SIAM Activity Group in Algebraic Geometry and
attendees from developing countries working on coding theory or interested to learn more about this research
area. The workshop had 205 confirmed members, out of which ten were in-person.

One of our goals was to include, to the extent possible, underrepresented minorities in STEM and have
a broad representation of speakers of all genders and career stages. An early-career researcher gave each
day an opening talk. The talk aimed to provide an introduction and a research background on one of the five
topics. The early-career researchers have been able to showcase their expertise on the topics in front of a large
audience. Established researchers presented the remaining two talks of each day with fundamental results on
the research topic. Overall, 1/3 speakers were early-career researchers, and 1/3 of the speakers were women.

The organizers decided to limit to three the number of talks each day. This decision was motivated by
the large audience attending from across the world and the fact that researchers connecting online likely
had other duties at their institutions while attending the conference. Participants appreciated the lighter
load. Nonetheless, an online gathering software was available for coffee breaks and for people to meet and
collaborate throughout the week of the workshop.
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