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1 Overview of the Field
Convexity, as a branch of classical mathematics, is located at the confluence of geometry, analysis, topology
and combinatorics. Although its origins can be traced back to Archimedes and its systematic study started
at the end of the nineteenth century, it was not until the mid-twentieth century that convexity became a well
established branch of mathematics. Nowadays, it is an important area that is attracting young researchers
and students because of its intrinsic beauty, its fascinating and intriguing open questions that have an instant
intuitive appeal, but also, because of its many relations with other areas of mathematics and its multiple
applications, such as in economics, engineering and data science.

The purpose of this workshop was to bring together key people working in this area, in order to explore
recent progress and to help focus on future research directions. In particular, we wanted to invite many young
researchers, so that they can network among each other and with established researchers.

2 Workshop Structure
We were able to have 17 in-person participants at CMO, together with about 13 more online participants.
This turned it into a smaller workshop than originally anticipated, but it led to an environment where there
was more time available for informal working in groups. This was done in the afternoons, with talks usually
scheduled in the mornings. There was a nice balance between in-person and online talks, and together with
the technology made available by CMO made this a successful hybrid workshop.

3 Recent Developments Addressed by the Workshop

3.1 Meissner and Ball Polytopes
Interestingly and contrary to common belief, the Reuleaux tetrahedron, constructed in a similar way as the
classical Reuleaux triangle is not a body of constant width. In 1911, Meissner introduced special convex
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bodies of constant width, based on a regular tetrahedron, which are now named after him. It is a well-
known and still unsolved conjecture that these Meissner bodies have the smallest volume among all three-
dimensional convex bodies of the same constant width, see [14] for a survey. In [13] it is asked whether it
is possible to confirm this conjecture with the help of computers. In 2016, L. Montejano and E. Roldán [24]
found a natural connection between the constructions of Meissner bodies and auto-dual polyhedra or auto-
dual ball polyhedra. In this case, its one skeleton is a planar involutive self-dual graph metrically embedded
in the three dimensional Euclidean space in such a way that the distance between two of its vertices is less
or equal than 1 and it is exactly one if and only if one point is in the dual cell of the other. Can it be
generalized in dimension four? All explicit higher dimensional constant width bodies presented until now
have some symmetry properties, like rotational or tetrahedral symmetry, see [17] for constructions and various
characteristic properties. It is natural to ask for symmetry properties of bodies of constant width in higher
dimensions.

3.2 Approximation of convex bodies by polytopes
The general question in the area is to find a convex polytope that is close (with respect to some notion of dis-
tance) to a given convex body, and, at the same time, has low complexity (eg. few vertices, or few facets), see
[2, 8, 12]. Many results naturally combine analytical and combinatorial methods. Recent works of Barvinok
[5] and of Naszódi, Nazarov and Ryabogin [30] provide sharp bounds for the problem of approximation in
the Banach-Mazur distance, in the case of fine approximation, that is, where the polytope has a large number
of vertices. Rough approximation, on the other hand, remains poorly understood (a computational geometric
approach is presented in [29]). Is there a constant c > 0 such that for any d, any convex body K in Rd,
and for any 0 < t < 1/2, there is a convex polytope P with ecdt
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vertices for which tK ′ ⊆ P ⊆ K ′, for a
properly translated image K ′ of K.

3.3 The Boltyanskii–Hadwiger Illumination Problem
This problem asks whether any convex body in d-space may be covered by 2d translates of its interior, see
[6, 7]. According to a 60-years old classical result of Rogers, roughly 4d translates suffice. On the other hand,
the conjecture has been proved for a variety of special convex bodies, see [6, 7]. Recently, a combinatorial
approach to the problem was presented in [27]. Moreover, Livshyts and Tikhomirov [19] showed that any
convex body close to the cube in the Banach-Mazur metric and different from a parallelotope can be covered
by at most 2d − 1 translates of its interior. The following question is related, and possibly, within reach (see
also [28]). Does the conjecture hold for bodies that are close to the Euclidean ball B, say B ⊆ K ⊆ 5B?
Another question in the theory of geometric coverings is the Translative Plank Conjecture, a converse to
Tarski’s classical plank problem, first formulated by Makai and Pach [22] in connection with the problem of
approximating functions. It states that for a given sequence of slabs in Euclidean d-space, there are translation
vectors such that the translated slabs cover the whole space if, and only if their total width is infinite. Here, a
slab means a region bounded by two parallel hyperplanes. Recent progress has been seen in [15, 16].

4 Pre-workshop lectures
Two pre-workshop lectures were presented by Alina Stancu and Vlad Yaskin. These lectures were given live
on Zoom, and recordings were made available to workshop participants.

4.1 Alina Stancu (Concordia University): An introduction to affine invariants of
convex bodies

Convex bodies considered here are at least C2, strictly convex, and have positive Gauss curvature. Affine
invariants of convex bodies are quantities or measures that are invariant under transformations from SL(d).
For example the volume of K but not the surface area of K. Affine surface area is an affine invariant,
introduced by Blaschke, defined as Ω(K) =

∫
∂K

k1/(d+1)dS∂K , where k is the Gauss curvature. This
quantity vanishes for polytopes, and in 1991 was shown to be upper semicontinuous by Lutwak [20]. The
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affine isoperimetric inequality states that Ω(K)d+1/|K|d−1 is maximized by ellipsoids. By rewriting the
defining integral for affine surface area, a certain local affine invariant is derived, which can sometimes be
used to show that a convex body is an ellipsoid. Modifying this quantity gives the p-affine surface area.

Some applications of affine surface area were then discussed.
Barany and Prodromou [4] found an unexpected application of affine perimeter in the plane. The maxi-

mum number of vertices of a convex 1
tZ

2-polygon contained in a convex body K in R2 can be determined
asymptotically in terms of the affine perimeter of convex subsets ofK. Specifically, ifm(K, 1tZ

2) denotes the
largest n such that there exists an n-gon with vertices in K ∩ 1

tZ
2, and A(K) denotes sup{Ω(S) | S ⊂ K},

then limt→∞ t−2/3m(K, 1tZ
2) = 3

(2π)2/3
A(K).

Also, for any convex body K in R2 there exists a unique convex body Ka such that Ω(Ka) = A(K), and
if K is elliptic (k1/2 : S1 → R is the support function of a convex body), Ka = K.

Schneider [33] generalised this to Rd, where existence of Ka is known, but not uniqueness.
Winternitz [37] showed that if K is sufficiently smooth and contained in an ellipsoid E, then Ω(K) ≤

Ω(E). Leichtweiss [18] and Lutwak [20] independently proved that if L is elliptic and K ⊆ L, then Ω(K) ≤
Ω(L).

Another application is on expectations and floating bodies. Consider a convex body with volume 1, and let
Kn be the convex hull of n random points fromK. Rényi and Sulanke [32] showed that the expected number
of (d − 1)-dimensional faces of Kn is asymptotically cdΩ(K)n

d−1
d+1 (1 + o(1)). Barany [1] generalized this

to k-dimensional faces.
The floating body of K of index δ, denoted K(δ), is the body that remains after cutting off all hyperplane

sections of volume δ. Barany and Larman [3] showed that the expected volume of K \Kn is Θ(|K(1/n)).
An intuitive way to see the affine invariance of Ω(K) wheree K is a convex body in the plane: the affine

perimeter can be expressed in terms of areas of triangular caps of polygons circumscribing K, which can im-
mediately be seen to be affine invariant. In higher dimensions, Werner showed that Ω(K) = limδ↘0

|K|−|K(δ)|
δ2/(d+1)

if K is sufficiently smooth. This also immediately gives that Ω(K) is affine invariant.
Bárány and Larman (1988) showed that for all convex bodies of volume 1, and with t ≤ (2d)−2d,

t logd−1 1
t � |K(t)| � td/(d+1)). The right-hand side occurs for smooth convex bodies, and can be used to

deduce the affine isoperimetric inequality via Werner’s characterization of affine surface area in terms of the
floating body. The left-hand side occurs for polytopes.

An open question: If K(δ) is homothetic to K for some 0 < δ|K|/2, then K is an ellipsoid. It is
known [34] that if δ is sufficiently small, and K is C2+ with positive Gaussian curvature everywhere, then
the answer is positive.

4.2 Vlad Yaskin (University of Alberta): Some extremal problems involving cen-
troids of convex bodies

Grünbaum-type inequalities
Grünbaum’s inequality states that for any n-dimensional convex body K with volume |K|, the volume

cut off by any hyperplane through its centroid is at least
(

n
n+1

)n
|K| > e−1|K|. This is sharp, as shown by

a cone.
He asks the following question: Does there exist an absolute constant c > 0 such that for any hyperplane

section H ∩ K of K through its centroid, any hyperplane of H through the (original) centroid cuts off an
(n−1)-dimensional volume of at least c|K∩H|n−1? Grünbaum’s result cannot be used, because the centroid
ofK∩ does not coincide with the centroid ofK. A more general version of this result (for any k-dimensional
subspace instead of n − 1-dimensional) was shown by Fradelizi, Meyer and Yaskin [11], although with
non-optimal constants.

The following version for projections of constant bodies onto arbitrary subspaces was shown by Stephen
and Zhang [36]: For any k-dimensional subspace E, if K is projected onto E, then any hyperplane through
the projection of the centroid of K cuts off a k-dimensional volume of the projection K|E of at least(

k
n+1

)k
|(K|E)|k. This inequality is optimal.

Meyer, Nazarov, Ryabogin and Yaskin [23] showed the following functional version of Grünbaum’s in-
equality: For any log-concave f : Rn → R such that

∫
Rn xf(x)dx = 0, then

∫∞
0
f(tu)dt ≥ e−n

∫∞
−∞ f(tu)dt
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for all u ∈ Sn−1. Again, the constant is sharp.
This was further generalized to γ-concave functions by Myroshnychenko, Stephen and Zhang [25], from

which they got as a corollary that if a convex body K is intersected by a k-dimensional subspace E through
its centroid, then hyperplane sections of the intersection K ∩ E through the original centroid cuts off a

k-dimensional volume of at least
(

k
n+1

)k
|(K ∩ E)|k, again with a sharp constant.

Makai and Martini [21] and Fradelizi [10] showed that for any convex body and any k-dimensional

subspace K through the centroid of K, |K ∩ E|k ≥
(
k+1
n+1

)k
maxx∈K |(K − x) ∩ E|k, also with a sharp

constant.
M. Stephen and Yaskin [35] generalized these results to intrinsic volumes:

Vi(K ∩ E) ≥
(
i+ 1

n+ 1

)i
max
x∈K

Vi((K − x) ∩ E), i = 1, . . . , k.

Problems on distances between centroids
The original motivation for these problems come from Grünbaum-type inequalities. In general, how far

apart can PH(c(K)), the projection of the centroid of K onto a hyperplane H and c(PH(K)), the centroid
of the projection of K onto H be, relative to some linear measure of K? The measure that will be used is
wu(K), the width of K in the direction u parallel to PH(c(K))− c(PH(K)).

In dimension 2, Stephen showed |PH(c(K))− c(PH(K))| ≤ 1
6wK(u), with 1/6 being the best constant.

Let Dn > 0 be the smallest number such that |PH(c(K)) − c(PH(K))| ≤ Dn · wK(u) for all convex
bodies K in Rn and all hyperplanes H in Rn, with u the unit vector parallel to PH(c(K)) − c(PH(K)).
Myroshnychenko, Tatarko and Yaskin [26] showed thatD3 = 1−

√
2/3, for each fixed n,Dn is the maximum

of a certain rational function of one variable, the sequence (Dn) is increasin with limn→∞Dn ≈ 0.2016.
The extremizers are completely known.

Croft, Falconer and Guy [9] ask: How far apart can the centroids of K and its boundary ∂K be relative
to some linear measure of K?

Nazarov, Ryabogin and Yaskin [31] show that in the plane, |c(∂K)−c(K)| ≤ 1
6 diam(K) ≤ 1

12 perim(∂K).
More generally, for any direction u, |〈c(∂K)− c(K), u〉| ≤ 1

6wK(u). The constants are all best possible.
In higher dimensions, they suspect that the same constants Dn from before will be the optimal constants

in this problem.

5 Research Talks

5.1 Károly Bezdek: From the Kneser–Poulsen conjecture to r-ball-bodies
Starting the workshop, this online talk introduced the original Kneser–Poulsen conjecture originally proposed
independently by Kneser (1955) and Poulsen (1954), which states that the volume of a union of a finite num-
ber of balls decreased after there centers are moved closer to each other. As a second topic, ball-polyhedra,
the intersections of finitely many congruent balls, were considered. Both topics have been studied from the
point of view of convex and discrete geometry. The talk aimed to bridge the two topics by discussing a
selection of old and new results, many of them by the speaker.

5.2 Andriy Prymak: Convex bodies of constant width with exponential illumination
number

Borsuk’s number f(n) is the smallest integer such that any set of diameter 1 in the n-dimensional Euclidean
space can be covered by f(n) sets of smaller diameter. The currently best known asymptotic upper bound
f(n) ≤ (

√
3/2 + o(1))n was obtained by Shramm (1988) and by Bourgain and Lindenstrauss (1989) using

different approaches. Bourgain and Lindenstrauss estimated the minimal number g(n) of open balls of diam-
eter 1 needed to cover a set of diameter 1 and showed 1.0645n ≤ g(n) ≤ (

√
3/2+o(1))n. On the other hand,

Schramm used the connection f(n) ≤ h(n), where h(n) is the illumination number of n-dimensional convex
bodies of constant width, and showed h(n) ≤ (

√
3/2 + o(1))n. The best known asymptotic lower bound on
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h(n) is subexponential and is the same as for f(n), namely h(n) ≥ f(n) ≥ c
√
n for large n established by

Kahn and Kalai with c ≈ 1.203 (1993) and by Raigorodskii with c ≈ 1.2255 (1999). In 2015 Kalai asked if
an exponential lower bound on h(n) can be proved. The speaker, in joint work with Andrii Arman and Andriy
Bondarenko, showed that h(n) ≥ (cos(π/14) + o(1))−n by constructing the corresponding n-dimensional
bodies of constant width, which answers Kalai’s question in the affirmative. The construction is based on a
geometric argument combined with a probabilistic lemma establishing the existence of a suitable covering
of the unit sphere by equal spherical caps having sufficiently separated centers. The lemma also allows to
improve the lower bound of Bourgain and Lindenstrauss to g(n) ≥ (2/

√
3 + o(1))n ≈ 1.1547n. Improving

work of Naszódi (2016), they show that for all D ∈ (1, 2/
√

3) there exists a convex body K that is D-close
to a Euclidean ball and has illumination number > c

√
nDn.

5.3 Ferenc Fodor: Central limit theorems and floating bodies
There have been several results recently concerning central limit theorems for random polytopes in various
geometric settings that were proved via Stein’s method. Some of the key ingredients of these arguments are
floating bodies and their visibility regions. In the last few years, there has also been quite much work done
on random polytope models in which the notion of convex hull was modified. The combination of these
two topics raises questions about generalizations of floating bodies and their use in proving limit theorems
and more. As an application, the speaker, in joint work with Dániel Papvári (Szeged), showed a quantitative
central limit theorem for the area of random disc-polygons, and raise several open questions.

5.4 Cameron Strachan: The boundary structure of C-polygons
Given a convex domain C, a C-polygon is an intersection of n > 1 homothets of C. In this talk the speaker
explored the boundary structure ofC-polygons and demonstrated how different properties on the boundary of
C, such as smoothness or strict convexity, imply bounds on the complexity of the boundary of a C-polygon.

5.5 Grigory Ivanov: Coarse approximations of polytopes
Different quantitative versions of classical convexity results have recently gained attention. In this talk, the
speaker focused on coarse approximation of polytopes. He, in joint work with Márton Naszódi, showed that
the convex hull of a carefully selected set of 2d vertices from a well-centered polytope P ⊂ Rd contains
a homothet c(d)P of the original polytope P . Although the proof of this result requires only a basic un-
derstanding of linear algebra, its implications extend beyond its simplicity, shedding light on quantitative
Helly-type and Carathéodory-type results.

5.6 Ádám Sagmeister: Reduced convex bodies in spaces of constant curvature and
Pál’s isominwidth inequality

We call a convex body K reduced, if for any different convex body contained in K has a smaller minimal
width. Reduced bodies are extremizers to some inequalities in convex geometry, and they also give a different
perspective to the broadly studied family of bodies of constant width. There are multiple recent studies about
reduced bodies in Minkowski spaces and spherical reduced bodies, and we also present a hyperbolic approach
after introducing an extended version of Leichtweiss’ width function. In this online talk, the speaker, in joint
work with Károly J. Böröczky, András Csépai and Ansgar Freyer, proved the hyperbolic version of Pál’s
inequality, stating that the regular triangle has the smallest area among convex bodies of minimal width, and
we will also discuss a stability version of the theorem.

5.7 Vladyslav Yaskin: An analogue of polynomially integrable bodies in even-dimensional
spaces

For a convex body K in Rn, its parallel section function is given by AK,ξ(t) = |K ∩ (ξ⊥ + tξ)|, where
ξ ∈ Sn−1 and t ∈ R. We say that K is polynomially integrable if AK,ξ(t) is a polynomial of t on its
support. It was shown by Koldobsky, Merkurjev, and Yaskin that the only polynomially integrable bodies are
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ellipsoids in odd dimensions. In even dimensions such bodies do not exist. In this talk the speaker discussed
an analogue of polynomially integrable bodies in even dimensions: these are the bodies for which the Hilbert
transform of AK,ξ(t) is a polynomial of t (on an appropriate interval). In joint work with M. Agranovsky,
A. Koldobsky, and D. Ryabogin, he showed that ellipsoids in even dimensions are the only convex bodies
satisfying this property.

5.8 Illya Ivanov: Facet-lean polyhedra: maybe the hardest polyhedra to illuminate
Convex polyhedron in Ed is a bounded intersection of a finite set of halfspaces. A polyhedron is facet-lean
if omitting any halfspace from the intersecting set makes the intersection unbounded. In this talk the speaker
classified the facet-lean polyhedra, proved that any facet-lean polyhedron in Ed can be illuminated by 2d light
sources, and outlined possible directions that might lead to proving the illumination conjecture for convex
polyhedra in general case.

5.9 Sean Dewar: Introducing genericity to convex body packings
Given n homothetic copies of a convex body with disjoint interiors, it is natural to ask how many possible
contacts can occur between them. For example, Oded Schramm proved in his thesis and other early research
that (with some special exceptions) every planar graph can be realised as the contact graph of such a (2-
dimensional) packing. However, this requires that the scaling for each homothetic copy of the convex body
is very carefully selected; for example, while a disc can be chosen to lie in the interior of three pairwise-
touching discs, the radius of such a disc is essentially fixed. Connelly, Gortler and Theran proved in 2019
that if the radii of a disc packing are randomly selected, then the packing can have at most 2n − 3 contacts,
a significant departure from the maximum achievable count of 3n− 6. In this talk, the speaker discussed his
own analogous results on the topic when dealing with a variety of types of convex bodies in 2-dimensions
and higher, including: smooth and strictly convex centrally symmetric convex bodies, squares, convex bodies
with positive curvature boundaries, spheres and cubes.

5.10 Attila Pór: Orientation Preserving Map of the Grid and Projective Rigidity
In this online talk, the speaker introduced a function on order types that measures their rigidity with respect
to projective transformations and give some examples. He showed that for large n the n× n grid is rigid, in
the sense that every orientation-preserving map of the n×n grid isO( 1

n ) close to a projective transformation.
Other examples include the order types on at most five points, some convex n-gons and the square grid on 9
and 16 points.

5.11 Alexander Litvak: Volume ratio between projections of convex bodies
In this online talk, the speaker discussed volume ratios between convex bodies and their projections. In joint
work with D. Galicer, M. Merzbacher, and D. Pinasco, he showed that for every n-dimensional convex body
K, there exists a centrally-symmetric convex body L such that for any two projections P,Q of rank k ≤ n the
volume ratio between PK and QL is large. This result is sharp (up to logarithmic factors) when k ≥ n2/3.

5.12 Zsolt Langi: On a strengthened version of a problem of Conway and Guy on
convex polyhedra

A boundary point q is an equilibrium point of a 3-dimensional convex body K with center of mass c if the
plane through q and orthogonal to the segment [q, c] supportsK. In this case, in particular,K can be balanced
on a horizontal plane in a position touching it at q. Assuming nondegeneracy of the body, three types of
equilibrium points are distinguished: stable, unstable and saddle-type. A consequence of the Poincaré-Hopf
theorem is that the numbers S, U and H of the stable, unstable and saddle-type points of a 3-dimensional
convex body, respectively, satisfy the equation S − H + U = 2. If a convex body has a unique stable or
unstable point, it is called monostable and mono-unstable, respectively, and a body which is simultaneously
monostable and mono-unstable is called mono-monostatic. A famous example of a mono-monostatic convex
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body is the so-called Gömböc, constructed by Domokos and Várkonyi. A 1969 question of Conway and Guy,
also asked independently by Shephard in 1968, asks if there is a monostable convex polyhedron with a k-fold
rotational symmetry, where k > 2. The answer to this problem was given by the speaker in 2022, who proved
the existence of such a polyhedron for all positive integers k > 2. In this talk, he, in joint work with G.
Domokos and P. Várkonyi, strengthened this result of his by characterizing the possible symmetry groups of
monostable, mono-unstable and mono-monostatic convex polyhedra and convex bodies.

5.13 Gyivan E López: On Borsuk’s number and the Vázsonyi problem in R3

In this talk the speaker introduced some connections between the Borsuk partition problem and the Vázsonyi
problem, two attractive and famous problems in discrete and combinatorial geometry, both involving the
diameter of a bounded set S ⊂ R3.

Borsuk’s problem asks whether every set S ⊂ Rd with finite diameter diam(S) is the union of d+ 1 sets
of diameter less than diam(S). For R2 and R3 this holds, but for dimensions greater than 63 the statement is
false.

Vázsonyi’s problem on the other hand asks for the maximum number of diameters over all sets of n points
in Rd. In R3, the answer is 2n− 2 and the configurations attaining this number are already known.

In joint work with Déborah Oliveros and Jorge Ramı́rez Alfonsı́n, the speaker presented an equivalence
between the critical sets with Borsuk number 4 in R3 and the minimal structures for the Vázsonyi problem.

5.14 Luisa Fernanda Higueras Monaño: A topological insight into the polar involu-
tion of convex sets

Denote by Kn0 the class of closed convex sets A ⊆ Rn containing the origin 0 ∈ A, and recall that the polar
duality (or polarity) is the map on Kn0 sending A ∈ Kn0 to its polar set A◦. It is well-known that polarity
is an involution on Kn0 with a unique fixed point, and that it reverses inclusions In this talk, the speaker,
in joint work with Natalia Jonard-Pérez, exhibited a topological characterization of the polar duality, and
described its relation with Anderson’s Conjecture, which is an open problem regarding the characterization
of all continuous involutions with a unique fixed point on the Hilbert cube Q =

∏∞
i=1[−1, 1]. To this end,

she showed that Kn0 , endowed with the Attouch-Wets metric, is homeomorphic with Q and the polar duality
is topologically conjugate with the standard involution σ : Q → Q given by σ(x) = −x. On the geometric
side, she also proved that among all involutions on Kn0 reversing the inclusion relation, those and only those
with a unique fixed point are topologically conjugate with the polar duality.

5.15 Luis Montejano: Complex Ellipsoids
The complex isometric Banach conjecture states that if any two n-dimensional subspaces of a complex Ba-
nach space are isometric, then the space is a Hilbert space. The solution of this conjecture relies heavily on a
characterization of the complex ellipsoid.

An ellipsoid is the image of a ball under an affine transformation. If this affine transformation is over
the complex numbers, we refer to this affine image of a ball as a complex ellipsoid. Characterizations of
real ellipsoids have received much attention over the years. On the other hand, characterizations of complex
ellipsoids have scarcely been considered. In this talk, the speaker gave an overview of joint work with Jorge
Arocha and Javier Bracho, which is the study of complex ellipsoids. This is naturally related to the study
of complex symmetry. So, characterizing and understanding complex symmetry is vital to characterizing
complex ellipsoids. A subset K of Cn is complex symmetric if K = zK for all z ∈ C such that |z| = 1. The
main result of this talk is an unexpected characterization of complex ellipsoids. This result has no analogue
over the real numbers, and states that if every complex line intersects K in some disc, then K is a complex
ellipsoid. The proof is topological, and it is an open question if there is a proof of this result that avoids
topology.
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5.16 Bushra Basit: Geometric extremum problems in spaces of constant curvature
Böröczky and Peyerimhoff proved that among simplices inscribed in a ball in spherical and hyperbolic space,
respectively, the regular simplices have maximal volume. In this online talk, the speaker explained her result
that among simplices circumscribed about a ball in hyperbolic space, the regular simplices have minimal
volume. She also considered analogous questions for d-dimensional spherical and hyperbolic polytopes with
d+ 2 vertices. These results are joint work with Zsolt Lángi.

5.17 Boaz Slomka: Vertex generated polytopes
In this online talk, which is joint work with Shiri Artstein-Avidan and Tomer Falah, the speaker discussed
some curious Brunn-Minkowski type theorems involving boundaries of convex bodies and restricted Minkowski
sums. For example, if K and T are compact sets with connected boundary in Rn, then vol

(
∂K+∂T

2

)
≥√

vol(K) vol(T ), with equality in the convex case if and only if they are translates, or, in dimension 2, ho-
mothets. Another result is the following restricted Brunn-Minkowski type inequality: If K and T are in Rn

with
(

vol(K)
vol(T )

)1/n
∈ [c/

√
n,
√
n/c], then vol(∂(K) + ∂(T ))2/n ≥ vol(K)2/n + vol(T )2/n.

These results led them to the study of classes of polytopes with special covering properties. Starting off,
the speaker observed that if K is compact with connected boundary, then ∂K + ∂K = 2K (also observed
by Fradlizi, Langi, Zvavitch). If K is a polytope P , we can ask about lower-dimensional boundaries. If the
k-skeleton of P is denoted by ∂kP , they showed that ∂dn/2eP + ∂bn/2cP = 2P . For a simplex, the value
k = bn/2 is the smallest k such that ∂kP + ∂n−kP = 2P . If we denote the smallest such k by k(P ), then as
just mentioned, k(P ) ≤ bn/2c for all polytopes P and k(simplex) = bn/2c. Also, k(Bn1 ) = b(n − 1)/2c.
A polytope P is called vertex generated if k(P ) = 0. It is shown that P is vertex generated if and only if
P = cl

∑∞
j=1 s

−jV (P ), where V (P ) is the vertex set of P . Some more properties of this notion shown are:
All zonotopes are vertex generated, if P is vertex generated, then P + I is also, where I is a segment, and for
each P there exists a zonotope Z such that P + Z is vertex generated. If P is vertex generated, then it has at
least 2n vertices, with equality only for the affine cube.

In the plane, the collection of vertex-generated polygons is dense with respect to the Hausdorff distance.
Another metric that dominates the Hausdorff metric is introduced, and it is shown that the collection of
vertex-generated polytopes is closed in this metric.

5.18 Roman Prosanov: On hyperbolic 3-manifolds with polyhedral boundary
It is known that convex bodies in Euclidean 3-space are rigid with respect to the induced intrinsic metric on
the boundary. Classically, there has been two approaches: the rigidity of convex polyhedra and the rigidity
of smooth convex bodies, though there is also a common generalization obtained by Pogorelov. Thurston’s
work from the 1970s highlighted the ubiquity and the diversity of hyperbolic manifolds in the 3-dimensional
case. Hyperbolic 3-manifolds with convex boundary constitute a large and interesting class to study from
various perspectives. In the 1990s to 2000s, an analogue of the Weyl problem for hyperbolic 3-manifolds
with smooth convex boundary was resolved in the works of Labourie and Schlenker. Curiously enough, a
polyhedral counterpart was not known until recently. One of the reasons is that some metrics on the boundary
of such 3-manifolds that are “intrinsically polyhedral” admit realizations that are not so polyhedral and are
somewhat more difficult to handle. In this online talk, the speaker described the state of art around these and
related problems, and presented a recent proof of the respective polyhedral result in a generic case. Another
outcome is a rigidity result for a family of so-called convex cocompact hyperbolic 3-manifolds, important in
the theory of Kleinian groups. This is a step towards a resolution of conjectures of Thurston.

6 Problem Session
We held a problem session one evening, in which the floor was open to anyone to state an open research
problem. The problems that were presented are given here with their authors.
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Luis Montejano: Complex homotheties
Let K1,K2 be convex bodies in R2d = Cd such that for any complex linear hyperplane H in Cd, we have
that H ∩K1 and H ∩K2 are complex homothets, that is, H ∩K1 = z(H ∩K2) for a z ∈ C depending on
H . We may even assume that |z| = 1. Does it follow that there is a z ∈ C such that K1 = zK2?

Grigory Ivanov: The Gram matrix and the ball
The Gram matrix of a sequence v1, . . . , vn of vectors in Rd is the matrix G ∈ Rn×n with entries Gij =
〈vi, vj〉. It is well known that if the Gram matrices of two sequences of vectors are equal, then the two
sequences of vectors are congruent.

Question: Given the Gram matrix, can we decide quickly without reconstructing the vectors whether the
Euclidean unit ball centered at the origin is contained in the convex hull of the vectors?

Ilya Ivanov: A Kakeya type problem
Let C denote the set of 8 vertices of the inscribed cube of the unit sphere S2.

What is the minimum (infimum) area of a measurable subset S of S2 that has the property that any rotation
UC of C (where U ∈ SO(3)) intersects S?

It is clear that a hemisphere works (with measure 2π), and that 1/8 is a lower bound.
Instead of the vertex set of a cube, the same question can be asked for other sets, such as the vertex set of

an equilateral triangle inscribed in a great circle, or the vertex set of a regular inscribed tetrahedron.

Edgardo Roldán–Pensado: Covering the Banach–Mazur compactum
Give a bound on r > 0 such that the balls

{K ∈ K2 : dBM(K, `22) ≤ r}

and
{K ∈ K2 : dBM(K, `2∞) ≤ r}

cover the two dimensional Banach–Mazur compactum K2. More generally, how can we cover the Banach–
Mazur compactum with a small number of small-radius balls?

Leonardo Martinez: Realization of orderings
Consider points p1, . . . , pn, q1, q2, . . . , qm in Rd. Suppose that the distances d(pi, qj) are pairwise distinct.
Then, these distances induce a linear order on [n]×[m] given by (i1, j1) < (i2, j2) if and only if d(pi1 , qj1) <
d(pi2 , qj2).

If d is fixed, not all possible linear orders on [n]× [m] can be obtained in this way. Which is the minimal
d such that all possible linear orders on [n]× [m] are representable? The question is mostly solved, since we
know the following:

• Every linear order on [n] × [m] can be obtained via points in Rmin(m,n) (Almendra-Herández and
Martı́nez-Sandoval).

• There are linear orders on [n]× [n+1] that cannot be obtained via points in Rn−1. (Maldonado, Raggi,
Roldán-Pensado)

• Every linear order on [3]× [3] can be obtained via points in R2 (computational verification).

However, we do not know whether all possible linear orders on [n]× [n] can always be obtained via points
in Rn−1. The first open instance is the following:

Problem. Can any possible linear order on [4] × [4] be induced as the linear order of the distances piqj
for points p1, p2, p3, p4, q1, q2, q3, q4 in R3?
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Andrei Gavriliuk: Realizing a tight fan as a fan over a convex polytope
By a polytopal fan, we understand a normal (face-to-face) polytopal complex F in Rd which consists of
cones (not necessarily pointed cones) which tile Rd (all of them sharing a common face which is minimal by
inclusion). A face F of a polytopal complex F is called standard if it can be represented in a form C1

⋂
C2

where C1 and C2 are two full-dimensional cones from F . A standard face S of a polytopal fan F is called
standard–symmetric if any two full dimensional cones C1 and C2 of F such that S = C1

⋂
C2 are locally

centrally symmetric to each other about some interior point p of the face F .
Here, local symmetry means that there is an ε > 0 such that C1

⋂
B(p, ε) is symmetric to C2

⋂
B(p, ε)

about p.
Note. If the face S in the above definition is the common 0-dimensional apex of the cones in the fan F ,

then we consider S itself as its only interior point p.
A polytopal fan F is called a tight fan, if each of its standard faces are also a standard-symmetric face.
For a d-dimensional convex polytope P ⊂ Rd and an arbitrary point p inside P , the family of cones

{cone(p,G)| G is a face of P} form a pointed polytopal fan Fp,P (where by cone(p,G) we understand a
cone with the apex p over G). This is called a polytopal fan (or, a fan over the polytope P with apex p).

Problem. Is it true that any pointed tight fan is a polytopal fan (ie., it can be realized as a fan over some
convex polytope)?

Note. Any not pointed tight fan can be reduced to a pointed tight fan by a transversal section through an
internal point of the common face of all cones of the fan. So the problem may be formulated for arbitrary
tight fans.
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