Semi-Infinite Relaxations for a Dynamic Knapsack Problem

Alejandro Toriello

joint with Daniel Blado, Weihong Hu

Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

> CMO-BIRS Workshop November 3, 2015

> > eorgialnætituta Technology

イロト 不得下 イヨト イヨト

Problem Statement

- ▶ Knapsack with capacity b > 0 and item set $N = \{1, ..., n\}$. Each item i has
 - 1. deterministic value c_i ,
 - 2. independent random size $A_i \ge 0$ with known distribution.
- ▶ When attempting to insert *i*:

If *i* fits collect c_i , update capacity.

Else process ends.

- Policy may depend on remaining items and remaining capacity.
 - Goal is to maximize expected value.
- Problem is at least NP-hard, some versions PSPACE-hard (Vondrák, 05).

orgia mædituri: Technology

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Pertinent Past Work

Approximation and Bound

Computational Experiments

Extensions and Conclusions

Brief Literature Review

- Derman/Lieberman/Ross (78): Sizes are exponential r.v.'s.
 - Greedy policy w.r.t. $c_i / \mathbb{E}[A_i]$ is optimal.
- Dean/Goemans/Vondrák (04,08): Two LP bounds with polynomially many variables.
 - Linear knapsack, polymatroid, both within constant gap.
 - Greedy approximate policies.
- Gupta/Krishnaswamy/Molinaro/Ravi (11), Ma (14): Integer sizes, LP bounds of pseudo-polynomial size.
 - Randomized policies based on LP optimal solutions.
 - Extensions to models with correlated random item values, preemption, multi-armed bandits.

eorgia histituta Mechnology

 Other work, e.g. Bhalgat/Goel/Kanna (11), Li/Yuan (13), Bansal/Nagarajan (14).

Dean/Goemans/Vondrák (08)

• Use x_i , probability policy attempts to insert *i*:

$$\max_{x} \sum_{i \in N} c_{i} x_{i}$$

s.t.
$$\sum_{i \in N} x_{i} \mathbb{E}[A_{i}] \leq b; \qquad 0 \leq x_{i} \leq 1, \quad i \in N.$$

Dean/Goemans/Vondrák (08)

• Use x_i , probability policy attempts to insert *i*:

$$\max_{x} \sum_{i \in N} c_{i} x_{i} \mathbb{P}(A_{i} \leq b)$$

s.t.
$$\sum_{i \in N} x_{i} \mathbb{E}[A_{i}] \leq b; \qquad 0 \leq x_{i} \leq 1, \quad i \in N.$$

Dean/Goemans/Vondrák (08)

• Use x_i , probability policy attempts to insert *i*:

$$\max_{x} \sum_{i \in N} c_{i} x_{i} \mathbb{P}(A_{i} \leq b)$$

s.t.
$$\sum_{i \in N} x_{i} \mathbb{E}[\min\{b, A_{i}\}] \leq b; \qquad 0 \leq x_{i} \leq 1, \quad i \in N.$$

► "Mean truncated size" E[min{b, A_i}]: A_i above b is irrelevant (insertion will fail).

Dean/Goemans/Vondrák (08)

• Use x_i , probability policy attempts to insert *i*:

$$\max_{x} \sum_{i \in N} c_{i} x_{i} \mathbb{P}(A_{i} \leq b)$$

s.t.
$$\sum_{i \in N} x_{i} \mathbb{E}[\min\{b, A_{i}\}] \leq 2b; \qquad 0 \leq x_{i} \leq 1, \quad i \in N.$$

- ► "Mean truncated size" E[min{b, A_i}]: A_i above b is irrelevant (insertion will fail).
- Bound intuition: In worst case, policy exactly fills knapsack, then attempts to insert very large item.

orgia metituri Technologiv

- ▶ Worst-case gap is 32/7.
- Polymatroid bound is extension of same idea.

Dynamic Programming Formulation

State: remaining items, remaining capacity (M,s) for $M \subseteq N$, $s \in [0,b]$.

Actions: attempt to insert $i \in M$.

Bellman recursion is

$$v_M^*(s) = \max_{i \in M} \mathbb{P}(A_i \le s)(c_i + \mathbb{E}[v_{M \setminus i}^*(s - A_i) | A_i \le s]),$$
$$v_{\varnothing}^*(s) = 0.$$

► In doubly infinite LP form:

$$\begin{split} \min_{v} & v_{N}(b) \\ \text{s.t.} & v_{M\cup i}(s) \geq \mathbb{P}(A_{i} \leq s)(c_{i} + \mathbb{E}[v_{M}(s - A_{i})|A_{i} \leq s]), \\ & i \in N, \ M \subseteq N \setminus i, \ s \in [0, b] \\ & v_{M} : [0, b] \to \mathbb{R}_{+}, \quad M \subseteq N. \end{split}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Value Function Approximation

► Any feasible solution to LP yields upper bound.

Use affine approximation

$$v_M(s) \approx qs + r_0 + \sum_{i \in M} r_i,$$

where

- q is marginal value of capacity,
- r_i is item *i*'s "inherent" value,
- r_0 is value of process continuing ("staying alive").

イロト 不得 とうほう 不足 とう

Value Function Approximation

Lemma

The best bound given by $v_M(s)\approx qs+\sum_{i\in M\cup 0}r_i$ is the semi-infinite LP

$$\min_{q,r \ge 0} qb + r_0 + \sum_{i \in N} r_i$$

s.t. $q\mathbb{E}[\min\{s, A_i\}] + r_0\mathbb{P}(A_i > s) + r_i \ge c_i\mathbb{P}(A_i \le s),$
 $i \in N, s \in [0, b].$

Value Function Approximation

Lemma

The best bound given by $v_M(s)\approx qs+\sum_{i\in M\cup 0}r_i$ is the semi-infinite LP

$$\min_{q,r \ge 0} qb + r_0 + \sum_{i \in N} r_i$$

s.t. $q\mathbb{E}[\min\{s, A_i\}] + r_0\mathbb{P}(A_i > s) + r_i \ge c_i\mathbb{P}(A_i \le s),$
 $i \in N, s \in [0, b].$

Proof sketch.

$$v_{M\cup i}(s) - \mathbb{P}(A_i \le s) \mathbb{E}[v_M(s - A_i) | A_i \le s]$$

$$\approx qs - \mathbb{P}(A_i \le s) \mathbb{E}[q(s - A_i) | A_i \le s] \qquad \text{(focusing on } q\text{)}$$

$$= qs \mathbb{P}(A_i > s) + q \mathbb{P}(A_i \le s) \mathbb{E}[A_i | A_i \le s] = q \mathbb{E}[\min\{s, A_i\}]$$

eorgialmetiturus Technology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Theorem

The LP's finite-support dual is solvable and has zero duality gap:

$$\max_{x \ge 0} \sum_{i \in N} \sum_{s \in [0,b]} c_i x_{i,s} \mathbb{P}(A_i \le s)$$
s.t.
$$\sum_{i \in N} \sum_{s \in [0,b]} x_{i,s} \mathbb{E}[\min\{s, A_i\}] \le b, \quad (\text{exp. frac. size under } b)$$

$$\sum_{i \in N} \sum_{s \in [0,b]} x_{i,s} \mathbb{P}(A_i > s) \le 1 \quad (\text{one exp. failure; cf. Ma 14})$$

$$\sum_{s \in [0,b]} x_{i,s} \le 1 \qquad (\text{insert } i \text{ once})$$

$$x \text{ has finite support.}$$

(日) (四) (日) (日) (日)

 x_{i,s}: probability policy attempts to insert *i* when s capacity remains.

$$\min_{q,r \ge 0} \left\{ qb + \sum_{i \in N \cup 0} r_i : q\mathbb{E}[\min\{s, A_i\}] + r_0\mathbb{P}(A_i > s) + r_i \ge c_i\mathbb{P}(A_i \le s), \forall i \in N, s \in [0, b] \right\}$$

• Pricing/separation: Given q, r, for each i solve

$$\min_{s \in [0,b]} \left\{ q \mathbb{E}[\min\{s, A_i\}] - (c_i + r_0) \mathbb{P}(A_i \le s) \right\}.$$

Mean truncated size is concave in *s*. If CDF is piecewise convex, check only endpoints of convex intervals.

- Applies to discrete, uniform distributions
- Polynomially many variables.
- Other distributions (e.g. exponential, conditional normal) have closed-form solution.

(日) (四) (日) (日) (日)

Check at most countably many points in general.

Pricing problem: Exponential distribution example

$$\min_{s\in[0,b]} \left\{ q \mathbb{E}[\min\{s,A_i\}] - (c_i + r_0) \mathbb{P}(A_i \le s) \right\}$$

• Suppose $A_i \sim \exp(\lambda)$:

$$\mathbb{P}(A_i \le s) = 1 - e^{-\lambda s}$$
$$\mathbb{E}[\min\{s, A_i\}] = \mathbb{P}(A_i \le s)/\lambda.$$

Thus

$$q\mathbb{E}[\min\{s, A_i\}] - (c_i + r_0)\mathbb{P}(A_i \le s)$$
$$= (q/\lambda - c_i - r_0)\mathbb{P}(A_i \le s)$$

minimized at $s \in \{0, b\}$.

							Georgia Institutios of Technologyy Te II. Mixes Several Scheductial and Systems Explorering			
•	Þ	< Ø	•	ж	•	ъ	•	-	590	

▶ So if sizes are exponentially distributed, the bound is

$$\max_{x} \sum_{i \in N} c_{i} x_{i,b} \mathbb{P}(A_{i} \leq b)$$

s.t.
$$\sum_{i \in N} x_{i,b} \mathbb{E}[\min\{b, A_{i}\}] \leq b$$
$$0 \leq x_{i,b} \leq 1, \quad i \in N.$$

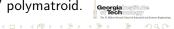
This is DGV linear knapsack with capacity cut in half.

 Applies to other size distributions, e.g. conditional normal, uniform, geometric.

Theorem

The MCLK bound dominates the DGV knapsack bound on any instance.

Conjecture: MCLK also dominates DGV polymatroid.



Computational Experiments

- Generated instances from deterministic knapsack instances.
 - ▶ 8 small, $n \in [5, 24]$: people.sc.fsu.edu/~jburkardt
 - 10 large, n = 100: www.diku.dk/~pisinger/codes.html (uncorrelated)
- ▶ For a deterministic size *a_i*, generated:

Exponential $(1/a_i)$ Uniform $[0, 2a_i]$ and $[a_i/2, 3a_i/2]$ Conditional normal $(a_i, a_i/3)$

- ▶ Bound comparison: average of deterministic knapsack over 400 simulations ("perfect information relaxation").
 - Not reporting: DGV polymatroid bound not competitive.

eorgia Instituta A Technology

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Computational Experiments

Geometric gap mean

	S	mall	Large		
	PIR	MCLK	PIR	MCLK	
Exponential*	48%	5%	22%	0.5%	
Uniform 1	41%	12%	12%	1%	
Uniform 2	26%	12%	4%	0.6%	
Normal	30%	12%	5%	0.5%	

* Greedy benchmark is optimal (Derman/Lieberman/Ross 78).

 MCLK gives consistently better bound across instance types. Tighter for most small, all large instances.

(日) (四) (日) (日) (日)

- All gaps improve as number of items increases.
 - See an averaging effect as n grows.
- Especially stark advantage for exponential instances.

Extensions

- ► Correlated value: Much of analysis applies, but must use conditional value E[C_i|A_i ≤ s] (GKMR 11, Ma 14).
- If items have integer support: Use non-parametric pseudo-polynomial approximation

$$v_M(s) \approx \sum_{i \in M} r_i + \sum_{\sigma=0}^s w_{\sigma}.$$

- Yields Ma bound (14).
- Can use to show Ma bound dominates GKMR bound (strengthen Ma's result).
- Policies: MCLK and pseudo-polynomial bounds can be used for policy design.
 - E.g. from value function approximation, "rounding", ad hoc methods.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Conclusions

- MCLK bound has theoretical guarantees and good empirical performance on various item size distributions.
 - Gets better as number of items increases. Asymptotically optimal? (We have a rough proof.)
- Value function approximation is systematic way to generate bounds for dynamic problems.
- Big picture questions:
 - 1. Exact algorithms: cutting planes, branching?
 - 2. Extend to general "stochastic and dynamic" IP (Vondrák 05).

orgia mædituri: Technology

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

atoriello@isye.gatech.edu www.isye.gatech.edu/~atoriello3