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Over the last 25 years the affine geometry of convex bodies has changed dramatically. Milestones were
the extension of affine area to general convex bodies and the development of the theory of affine invariant
valuations. The resulting body of work has proved to be an invaluable tool in fields like stochastic geometry
and PDEs.

Even more recently, the new field of Affine Geometric Analysis started to emerge. A central question is to
establish functional versions of results and problems from the affine geometry of convex bodies. Moreover,
SL(n) invariants and linearly associated norms and tensors of functions and their associated inequalities are
studied systematically. The resulting analytic inequalities are almost invariably stronger than their Euclidean
counterparts. Methods and results from the affine geometry of convex bodies and from affine differential
geometry, in particular, affine flows are applied. It is impossible to describe all the recent developments, but
we hope that four examples will give some idea of the range and potential of this emerging field.

1 Affine Sobolev Inequalities
A fundamental analytic inequality with geometric content is the sharp L1 Sobolev inequality established by
Federer & Fleming and Maz′ya in 1960. For f : Rn → R in the Sobolev space W 1,1(Rn), it states that
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where vn is the n-dimensional volume of the n-dimensional unit ball, on the left side is the Euclidean norm
of the gradient and
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Its geometric equivalent is the Euclidean isoperimetric inequality. Gaoyong Zhang [52] established the affine
Zhang-Sobolev inequality for f ∈W 1,1(Rn),( 1
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where Duf is the partial derivate of f in direction u and cn = 2vn−1/vn. The affine Sobolev inequality is
significantly stronger and implies (by Hölder’s inequality) the sharp L1 Sobolev inequality. Moreover, the
Zhang-Sobolev inequality is affine, which means that both sides of the inequality are not changed by applying
a special linear transformation in the domain of the functions. The corresponding geometric inequality is the
generalized Petty projection inequality, which is sharp precisely for ellipsoids (whereas the isoperimetric

1



2

inequality is sharp precisely for balls). The affine Sobolev inequality has become a cornerstone of Affine
Geometric Analysis. Extensions and analogues were obtained by Lutwak, Yang & Zhang [35], Cianchi,
Lutwak, Yang & Zhang [17], Haberl & Schuster [23], and Tuo Wang [50].

Many of the affine inequalities for convex bodies center around the generalization of the Minkowski
problem introduced by Lutwak [32]: Given a real number p, what are the necessary and sufficient conditions
on a Borel measure on the unit sphere Sn−1 to be the Lp-surface area measure of a convex body (that is,
the classical surface area measure multiplied with the support function raised to the (1 − p)-th power). The
case p = 1 is the classical Minkowski problem with ground-breaking contributions to the regularity question
by Cheng & Yau, Nirenberg and Pogorelov. For p < 1, many cases are still open and intensely studied
by researchers working within convex geometry and on Monge-Ampère equations. First results on the case
p = 0 were obtained by Stancu [45, 46] and very recently, the case p = 0 has been solved under assumption
of symmetry by Böröczky, Lutwak, Yang & Zhang [10].

In this direction, a completely different approach to the affine Lp Sobolev inequality uses the so-called
LYZ operator (Lutwak, Yang & Zhang [37]) to formulate and solve the functional Lp Minkowski prob-
lem. The solution of the even functional Lp Minkowski problem associates with a function (from a suitable
Sobolev space) an origin-symmetric convex body, which is (as shown by Lutwak, Yang & Zhang [37]) the
unit ball of the optimal Sobolev norm. A general version of the L1 Sobolev inequality is
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where ‖ · ‖L is the norm with unit ball L and K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K} is the polar body of
the convex body K. Here the origin-symmetric convex body has volume vn (as in (2)). The right side of (3)
does not depend on K and hence it makes sense to ask for the optimal Sobolev norm which is the norm that
for a given function f ∈ W 1,1(Rn) minimizes the left side. The functional Lp Minkowski problem has thus
become a central notion within Affine Geometric Analysis. Whereas for p ≥ 1 (and, in particular, p = 1)
fundamental results have been established, many questions remain open for p < 1 and in the general (not
even) setting.

In his talk (based on [25]), Carlos Hugo Jiménez presented a new approach to some sharp affine functional
inequalities, including log-Sobolev, Sobolev and Gagliardo-Nirenberg inequalities, using the Lp Busemann-
Petty centroid inequality along with some classical results for general norms. These results are not using the
solution to the Lp Minkowski problem and are in this sense more elementary than the original approach by
Zhang [52] and Lutwak, Yang & Zhang [35].

Andrea Cianchi presented new results (based on [16]) on Sobolev trace inequalities and their connections
to relative isoperimetric inequalities. These results show that indicator functions of Euclidean balls minimize
the so-called trace constants in the space of functions of bounded variations. They are thus not affine invariant.
Hence it is a natural question to find the corresponding results within Affine Geometric Analysis.

Closely connected to affine Sobolev inequalities is the new notion of variational affine capacity that was
presented by Jie Xiao (based on [51]). While capacities play a major role in geometric analysis, within the
affine context these questions just have been started to be studied.

2 Functional Versions of Classical Inequalities
There is a general approach to extend invariants and inequalities of convex bodies to corresponding invariants
and inequalities for functions. The important connection between the Euclidean isoperimetric inequality
and the sharp Sobolev inequality was already mentioned. Another important connection is that between the
classical Brunn-Minkowski inequality and the Prékopa-Leindler inequality. For Borel sets K and L in Rn
and given λ ∈ (0, 1), the Brunn-Minkowski inequality in its multiplicative form states that the n-Lebesgue
measure Vn of the Minkowski linear combination λK + (1− λ)L = {(1− λ)x+ λy ∈ Rn : x ∈ K, y ∈ L}
is bounded from below in the following way

Vn(λK + (1− λ)L) ≥ Vn(K)1−λ Vn(L)λ. (4)
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The Prékopa-Leindler inequality states that, for given λ ∈ (0, 1) and measurable functions f, g, h : Rn →
[0,∞) if, for any x, y ∈ Rn,

h
(
(1− λ)x+ λy

)
≥ f(x)1−λg(y)λ,

then ∫
Rn

h dx ≥
(∫

Rn

f dx

)1−λ(∫
Rn

g dx

)λ
. (5)

It is easy to derive the geometric inequality (4) from the functional inequality (5) and vice versa.
Among the most important affine geometric inequalities is the Blaschke-Santaló inequality, which states

that the so-called volume product, that is, the product of the volume of an origin-symmetric convex set and
its polar, is maximized by centered ellipsoids:

Vn(K)Vn(K∗) ≤ v2n (6)

for K an origin-symmetric convex set in Rn. The corresponding functional Blaschke-Santaló inequality for
log concave functions, which involves the Legendre transform, was established by Keith Ball in his thesis
(University of Cambridge 1987) and has inspired many results in the field.

The Blaschke-Santaló inequality was proved by Blaschke with the help of the so-called affine isoperi-
metric inequality (established by Blaschke, Deicke, and Santaló for convex sets with smooth boundary). The
affine isoperimetric inequality gives a sharp upper bound of affine area of a convex body in terms of its
volume. The equivalent of this inequality for log concave functions is a reverse log Sobolev inequality for
entropy. It was established recently by Artstein-Avidan, Klartag, Schütt & Werner [4]. This was the starting
point to introduce the concept of f -divergence for log concave and s-concave functions [13, 14]. Such diver-
gences and their related inequalities are important tools in information theory, statistics, probability theory
and machine learning. These recent developments are yet other instances of the rapidly developing, fascinat-
ing connections between Affine Geometric Analysis and information theory. Further examples can be found
in e.g., [15, 33, 34, 36, 42].

Among the classical fundamental inequalities in the affine geometry of convex bodies are the Petty pro-
jection inequality, the Busemann-Petty centroid inequality and the Busemann intersection inequality. As
mentioned in the last section, the Petty projection inequality is the core of the affine Sobolev-Zhang inequal-
ity, while the Busemann-Petty centroid was used in [25] in the proof of affine Sobolev inequalities.

In his talk, Jesús Yepes Nicolás (based on [18]) presented a linear refinement of the Prékopa-Leindler
inequality (5). If f and g have a common projection onto a hyperplane (which is the analytic counterpart of
the projection of a set onto a hyperplane), the Prékopa-Leindler inequality admits a linear refinement. That
is, under such an assumption for the functions f and g, the right-hand side of (5) may be exchanged by the
convex combination of the integrals, which yields a stronger inequality. Moreover, the same inequality can
be obtained when assuming that both projections (not necessarily equal as functions) have the same integral.

Alexander Segal presented functional inequalities involving the geometric inf-convolution, which cor-
responds to the Minkowski addition of level sets. He also presented a further geometric analogue of the
Prékopa-Leindler inequality as well as of the Borell-Brascamp-Lieb inequalities.

Besides the already mentioned Brunn-Minkowski inequality and Petty projection inequality, also the
Busemann intersection inequality is of central importance in the affine geometry of convex bodies. It bounds
the volume of the intersection body of a convex body by the volume of the body itself. In her talk, Susanna
Dann (based on [19]) presented, among other things, a functional version of the Busemann intersection
inequality. She also obtained functional versions of inequalities for affine quermassintegrals. These new
inequalities bound marginals of probability densities.

3 Affine Area and its Applications
It is Wilhelm Blaschke who introduced in dimension three the celebrated affine area and showed the intrinsic
connection of affine geometry to convexity. While at Blaschke’s time affine geometry referred to the study of
geometric invariants of convex hypersurfaces in Rn with respect to the equi-affine group of transformations
(that is, translations combined with the special linear group, SL(n)) of the Euclidean space, soon afterwards
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it included the study of the local and global invariants of convex hypersurfaces under the general linear group
and special linear group of transformations of the Euclidean space.

In the theory of partial differential equations, Neil Trudinger & Xujia Wang’s solution [49] of the affine
Plateau problem and their work on the affine Bernstein problem [48] centers around the affine area functional.
Asymptotic behavior of affine flows studied by Ben Andrews [1], and in non-compact setting by Loftin &
Tsui [26], employs its properties as well and relies essentially on the classical affine isoperimetric inequality
relating the affine area of a convex body to its volume. In 2011, a class of centro-affine curvature flows
were introduced by Stancu [47] such that each flow in the class corresponds, in a certain way, to a Lp-affine
surface area, for a fixed p 6= −n, −∞ < p < +∞. Given the SL(n)-invariance of each flow, any centered
ellipsoid, of arbitrary eccentricity, is a homothetic solution to these flows. The monotonicity of the evolution
of the Lp isoperimetric ratio under these flows, which remained constant for centered ellipsoids, strongly
suggested that any convex body will shrink under these flows to a point while its shape approaches that of
an ellipsoid. For many of these flows, the results on the long term existence and asymptotic behavior of the
flow confirmed that any initial convex body, sufficiently smooth, will flow to an ellipsoid of the same volume.
Mohammad Najafi Ivaki [24] proved, and successfully employed, the asymptotic behavior of such a flow to
obtain a stability result to the planar Busemann-Petty centroid inequality. In his talk, he showed how such
methods can be potentially used for other stability results of equiaffine invariant geometric inequalities.

This brings us to the area of (equi-)affine isoperimetric inequalities which are not only central to affine
convex geometry, but have also many applications in, for example, quantum information theory. These
inequalities aim to find the best possible upper and/or lower bounds, in terms of volume, for SL(n)- or
affine invariant functionals on space of convex bodies. Deping Ye talked about recent progress on affine
isoperimetric inequalities for geominimal surface area. This notion shares many properties with the affine
surface area, but it is different in other respects. For example, geominimal surface area is continuous, while
the classical affine surface area is only upper semi-continuous, on the set of all convex bodies equipped with
the Hausdorff metric. Ye explained, in particular, how to define the Lp geominimal surface areas for all
−n 6= p < 1 and its Orlicz extension, which generalize the Lp geominimal surface areas for p ≥ 1 (defined
by Petty for p = 1 and by Lutwak for p > 1). One should add that equiaffine invariants are now at core of the
rapidly developing Lp-Brunn-Minkowski theory which has known several major results during the past few
years (cf. [10, 17, 23, 32, 33, 34, 35, 42]).

Intertwined to the notion of affine surface area of a convex body K in Rn is the convex floating body Kδ .
For δ > 0 small enough, Kδ is the intersection of all half spaces whose defining hyperplanes cut of a set of
volume δ from K [43]. The convex floating body has played an important role in extending the affine surface
area from smooth bodies to all convex bodies. This extension is motivated by the fact that affine surface area
is a classical and powerful tool in the (equi-)affine geometry of convex bodies and appears in applications
ranging from PDEs to affine analytical isoperimetric inequalities, and to the approximation of convex bodies
by polytopes. Several talks were devoted to this topic. There are several equivalent representations of affine
surface area. Yiming Zhao, a PhD student from New York University, Polytechnic School of Engineering,
discussed a new representation of affine surface area based on curvature measures. This new representation
fills a missing piece from the already known definitions. The new representation [53], which is also equivalent
to the existing ones [43], is polar to that of Lutwak [31] and and dual to that of Schütt & Werner [43].
Because of its importance, it is desirable to have the affine surface area defined not only in the Euclidean
setting. Extensions to spherical space, and to hyperbolic space, were recently achieved by Florian Besau and
Elisabeth Werner. Florian Besau, a recent PhD student, gave a talk on this research. The extensions, called
floating areas, to spherical and hyperbolic space were achieved also via a notion of spherical and hyperbolic
floating bodies [8, 9]. As in the Euclidean setting, differentiation of the volume difference of the body and
the floating body gives rise to the floating area.

4 Valuations and Characterization Theorems
Valuations or additive functions are classical concepts in geometry. They were the critical ingredient in
Dehn’s solution of Hilbert’s Third Problem in 1900. A milestone was Hadwiger’s classification of rigid
motion invariant valuations on convex bodies, which Gian-Carlo Rota would often describe as one of the
most important results of twentieth century mathematics. Within the affine geometry of convex bodies,
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Haberl & Parapatits [22] were able to achieve a breakthrough last year by classifying all SL(n) invariant
valuations on convex bodies containing the origin. Combined with a recent result of Ludwig & Reitzner
[30], their theorem establishes a centro-affine Hadwiger theorem and a complete characterization of general
affine areas. For classical affine area such a characterization as an SL(n) and translation invariant, upper
semicontinuous valuation was obtained in [29]. Together with the recent results on functional affine area, this
should lead to a complete picture for affine areas within Affine Geometric Analysis at large.

More generally, a systematic study of affine valuations on function spaces was recently started by Ludwig
[28, 27]. The LYZ operator that is critical for affine Sobolev inequalities turned out to be the unique affine
convex-body-valued valuations on the Sobolev spaceW 1,1(Rn) and the Fisher information matrix the unique
affine matrix-valued valuations on W 1,2(Rn). Many important questions are still under investigation.

Within convex geometry, Böröczky & Schneider [11] obtained a simple characterization of polarity using
the property that polarity interchanges pairwise intersections and convex hulls of unions. Gardner, Hug
& Weil [20] obtained a complete classification of additions of convex sets. The functional version of the
Böröczky & Schneider theorem was established by Artstein-Avidan & Milman [5]. They showed the classical
Legendre transform plays for convex functions a role similar to polarity for convex sets. Artstein-Avidan &
Milman [7] described a new duality for functions and, in [6], an analogue of the support map for functions.
The functional version of the Gardner, Hug & Weil theorem is still an open problem, but these results and
questions will certainly have important impact on Affine Geometric Analysis.

Liran Rotem, a PhD student from Tel Aviv University, presented the new definition of the geometric mean
of convex bodies and also of convex functions. The definition is motivated by letting the polar body of convex
body and the Legendre transform of a convex function play the role of inversion for real numbers and uses a
suitable limit to obtain the geometric mean. The construction fits nicely within the affine geometry of convex
bodies and it suggests many interesting questions.

A key structural property of convex bodies is that of symmetry which is relevant in many problems.
We only mention the still open Mahler conjecture about the the minimal volume product of polar reciprocal
convex bodies. The affine structure of convex bodies is closely related to the symmetry structure of the bodies.
A systematic study of symmetry was initiated by Grünbaum in his seminal paper [21]. A crucial notion in
his work is that of affine invariant point. It allows to analyze the symmetry situation. In a nutshell: the more
affine invariant points, the fewer symmetries. Let Kn be the set of all convex bodies in Rn (i.e., compact
convex subsets of Rn with nonempty interior) equipped with the Hausdorff distance. A map p : Kn → Rn is
called an affine invariant point, if p is continuous and if for every nonsingular affine map T : Rn → Rn one
has,

p(T (K)) = T (p(K)).

An important example of an affine invariant point is the centroid g. Several talks addressed issues related to
affine invariant points. For instance, Grünbaum conjectured that for every convex body K we have

Pn(K) := {p(K) : p affine invariant point}

equals to
Fn(K) = {x : Tx = x for every T affine linear with T (K) = K}.

An answer in the case that the set of affine invariant points has codimension 1 was given in [38]. The general
case was recently solved by Olaf Mordhorst [40], a PhD student from University of Kiel, who presented his
proof at the meeting. Carsten Schütt, also from University of Kiel, introduced the new notion of dual affine
point q of an affine invariant point p. Motivated by the duality of the centroid of a convex body and the
Santaló point of a convex body, the dual affine invariant point q of an affine invariant point p [39] is given by
the formula q(Kp(K)) = p(K) for every convex body K, where Kp(K) denotes the polar of K with respect
to p(K).

A recent trend in the latest development of convex geometry is to find what characterizes operations on
convex bodies. In this direction, Gabriele Bianchi reported on joint work with Richard Gardner and Paolo
Gronchi on i-symmetrization. Providing a convenient framework for most of the familiar symmetrization
processes on convex sets, the i-symmetrization, which, in particular, includes the Steiner and, respectively,
the Minkowski symmetrizations, are characterized in terms of some of their natural properties. Bianchi
then introduced several new symmetrizations and discussed the relations between different properties of i-
symmetrizations.
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5 Further Developments
Over the last ten years, subtle geometric properties of symmetrization have become much better understood
through work of Bianchi, Burchard, Cianchi, Fusco, Gronchi, Klain, Klartag, Lutwak, V. Milman, Volcic,
D. Yang, G. Zhang and others. Symmetrization was used before in geometry and analysis in search of
solutions to extremal problems, but lately the emphasis was on the question of convergence of sequences
of symmetrizations or the minimum number of symmetrizations needed to achieve a certain property. For
example, regarding infinite sequences of Steiner symmetrizations, it is now known that any sequence that
uses only a finite set of directions converges to a body that has at least partial symmetry. On the other hand,
convergence can fail even for Steiner symmetrizations of a convex body along a dense set of directions, and,
for any given sequence, symmetrizations along a dense set of directions can be made to converge or diverge
by simply reordering the sequence.

In two of the talks, these type of questions were addressed for a rearrangement known as two-point sym-
metrization which is particularly useful for proving geometric inequalities on spheres. In a first talk, Almut
Burchard [12] talked about recovering full rotational symmetry from partial information. She considered a
family of piecewise isometries that fold a hemisphere of Sn−1 across a hyperplane onto the complementary
hemisphere with the aim of answering the question of when can a dense subset of points in Sn−1 be reached
from an arbitrary point by applying a given set of folding maps. This question relates to the characterization of
sequences of random two-point symmetrizations that converge to the symmetric decreasing rearrangement.
Burchard then explained that two conditions are needed, one geometric and one algebraic. Surprinsingly,
this could be used to show that the random walk generated by randomly alternating these maps is uniquely
ergodic.

Burchard’s student from University of Toronto, Qin Deng, reported on their joint work on the two-point
symmetrization. Starting with the known fact that i.i.d. random sequences of two-point symmetrizations
almost surely transform every subset of Sn−1 into a spherical cap and that the expected distance decreases
at least like a power law in the number of iterations, Deng showed that the rate of convergence of random
sequences of two-points symmetrization on S1 exactly obeys the power law. The key to the proof is an
analogue of the Riesz rearrangement inequality on S1 which Burchard and Deng conjectured that extends to
higher dimensions.

Several talks reported on recent progress in classical long standing open problems. One was by Dan
Florentin from Tel Aviv University reporting on a recent work with Shiri Artstein-Avidan, Keshet Einhorn and
Yann Ostrover on Godbersen’s conjecture [3] on the reverse Prékopa-Leindler inequality and an application
to the Godbersen conjecture. They provide a natural generalization of a geometric conjecture of Fáry and
Rédei regarding the volume of the convex hull of a convex K ⊂ Rn and its reflection −K. They show
that it implies Godbersen’s conjecture regarding the mixed volumes of the convex bodies K and −K. They
use the same type of reasoning to produce the currently best known upper bound for the mixed volumes
V (K[j],−K[n − j]), which is not far from Godbersen’s conjectured bound. This conjectured bound was
suggested in 1938 by Godbersen and says: For any convex body K ⊂ Rn and any 1 ≤ j ≤ n− 1

V (K[j],−K[n− j]) ≤
(
n

j

)
Vol(K),

with equality attained only for simplices. Here V (K1, . . . ,Kn) denotes the mixed volume of the n convex
bodies K1, · · · ,Kn and V (K[j], T [n− j]) denotes the mixed volume of j copies of the convex body K and
n− j copies of the convex body T .

Another recent trend in convex geometry concerns the algebrization of the geometric theory of convex
bodies. In one direction, this can be pursued through the theory of Newton polytopes which provides a beau-
tiful connection between algebraic geometry and convex geometry. Conversely, this view provides geometric
proofs of algebraic geometry results when none others exist. The classical Bezout inequality in algebraic
geometry relates the degrees of hypersurfaces Xi to the degree of their intersection and through the theory
of Bernstein-Kushnirenko-Khovanskii is equivalent to an inequality of mixed volumes for the Newton poly-
topes Pi of those hypersurfaces and the standard n-simplex ∆n which is the Newton polytope of a generic
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hyperplane, namely:

V (P1, . . . , Pr,∆
n−r)Vn(∆)r−1 ≤

r∏
i=1

V (Pi,∆
n−1) for 2 ≤ r ≤ n.

Artem Zvavitch talked on the geometric proof for the above inequality (based on [44]). He then discussed
some remarks related to the conjecture that the solution to the problem

V (K1, . . . ,Kr, D)Vn(D)r−1 ≤
r∏
i=1

V (Ki, D
n−1) for 2 ≤ r ≤ n, and for any

convex bodies K1, ...,Kr in Rn, implies that D is an n-implex. Zvavitch showed that D must be inde-
composable and, in particular, if D is a simple polytope, then D must be an n-simplex. Directly from the
indecomposability, it follows that the conjecture is true in dimension n = 2. However, in dimension 3, and
higher, there exist counterexamples to the conjecture, thus one needs to restate the conjecture possibly by
considering an isomorphic version of it.

Felix Dorrek presented joint work with Franz Schuster. Dual to Koldobsky’s notion of j-intersection
bodies, the class of j-projection bodies is introduced, generalizing Minkowski’s notion of projection bodies
of convex bodies. A fundamental Fourier-analytic characterization of j-intersection bodies due to Koldobsky
initiated further investigations of this class. Here a dual version of this theorem for j-projection bodies
will be discussed. It turns out that this characterization is closely related to another - valuation-theoretic -
characterization involving the Alesker-Fourier transform.

Maria de los Angeles Alfonseca-Cubero, as well as Dmitry Ryabogin investigate classical open problems
in convex geometry. Maria de los Angeles Alfonseca-Cubero talked about a joint work with Michelle Cordier,
on constructions [2] of examples of two convex bodies K,L in Rn, such that every projection of K onto a
(n − 1)-dimensional subspace can be rotated to be contained in the corresponding projection of L, but K
itself cannot be rotated to be contained in L. They also find necessary conditions on K and L to ensure that
K can be rotated to be contained in L if all the (n − 1)-dimensional projections have this property. Dmitry
Ryabogin studies the following problem: Let K and L be two convex bodies in R4 and let ξ⊥ be a three-
dimensional subspace orthogonal to the unit vector ξ. Assume that for every ξ, the projections K|ξ⊥, L|ξ⊥
are directly congruent. Does it follow that K and L coincide up to translation and reflection in the origin?
We show that if the set of diameters of bodies satisfy an additional condition and certain projections do not
have π-symmetries, then the answer is affirmative.

Topology of hyperspaces of compact and closed convex sets has been under investigation for some time
with a classical result of Nadler, Quinn and Stavrakas which states that the hyperspace of convex compact
subsets of Rn, n ≥ 2, equipped with the Hausdorff distance topology, is homeomorphic to the punctured
Hilbert cube Q \ {∗}. Their result has found many applications in convex geometry. In particular, it enabled
the proof that the hyperspace of all compact strictly convex bodies is homeomorphic to the separable Hilbert
space l2. Based on joint work with Sergey Antonyan and Bernardo González Merino, Natalia Jonard Pérez
presented a talk on the study of the topology of certain subspaces of the hyperspace of convex compact
subsets of Rn obtained by the study of the natural action of Aff(n), the group of all affine transformations of
Rn on convex compact subsets of Rn, cc(Rn).

In this talk, Pérez addressed the topological structure of the hyperspace cb(Rn) of all compact convex
bodies of Rn. She showed that cb(Rn) is homeomorphic to the product Q × Rn(n+3)/2. Similarly, the
hyperspace cc1(Rn) of all compact convex subsets of Rn of dimension at least 1 is homeomorphic to Q ×
Rn+1. On the other hand, by studying the topology of the orbit spaces generated by the action of some
subgroups of Aff(n) on certain subspaces of cc(Rn) , Pérez showed that the orbit spaces cb(Rn)/Aff(n) and
cc1(Rn)/Sim(n) (where Sim(n) stands for the group of all similarities of Rn) are both homeomorphic to
the Banach-Mazur compactum BM(n). Furthermore, if E(n) denotes de Euclidean group, the orbit space
cc(Rn)/E(n) (which corresponds with the Gromov-Hausdorff hyperspace of all compact convex subsets of
Rn) is homeomorphic to the open cone over BM(n).

Probabilistic aspects play an important role in convex geometry. This direction was presented in a talk
by Petros Valettas, a post doctoral researcher at the University of Missouri, Columbia. His talk was based
on joint work with G. Paouris and J. Zinn [41]. Their starting point is the famous Dvoretzky’s theorem on
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Euclidean sections of convex bodies. More precisely, in a version due to Vitali Milman, it says that for all
0-symmetric convex bodies K in Rn and for all 0 < ε < 1 there is a subspace F of dimension greater than
or equal to c(ε) log n such that K ∩F is (1 + ε) close to the Euclidean ball BF2 of the same dimension as F ,

a BF2 ⊂ K ∩ F ⊂ (1 + ε) a BF2 .

The subspace F is obtained though a random construction. It is known that c(ε) ∼ ε2 and that this de-
pendence and the dependence log n on the dimension cannot be improved in general. In specific situations
however, one can do better. Paouris, Valettas and Zinn investigated precicely this question for the unit balls
Bnp = {x ∈ Rn : ‖x‖p ≤ 1} and indeed got better dependence. Their method of proof requires an improve-
ment on a concentration inequality by Talagrand.
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[10] Karóly J. Böröczky, Erwin Lutwak, Deane Yang, Gaoyong Zhang, The logarithmic Minkowski problem.
J. Amer. Math. Soc. 26 (2013), 831–852.
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