Improved upper bounds on the diameter of lattice polytopes

Antoine Deza, McMaster based on a joint work with Lionel Pournin, Paris XIII

Primitive lattice polytopes and convex matroid optimization

Antoine Deza, McMaster based on joint works with George Manoussakis, Paris XI Lionel Pournin, Paris XIII Shmuel Onn, Technion

lattice polytopes with large diameter

lattice (d, k)-polytope : convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$
diameter $\delta(P)$ of polytope \boldsymbol{P} : smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges
$\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes
ex. $\delta(3,3)=6$ and is achieved by a truncated cube

lattice polytopes with large diameter

lattice (d, k)-polytope : convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$
diameter $\delta(P)$ of polytope \boldsymbol{P} : smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges
$\delta(d, k)$: largest diameter over all lattice ($d, k)$-polytopes
ex. $\delta(3,3)=6$ and is achieved by a truncated cube

lattice polytopes with large diameter

$\delta(d, k)$: largest diameter of a convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$ upper bounds :

$$
\begin{array}{ll}
\delta(d, 1) \leq d & \text { [Naddef 1989] } \\
\delta(2, k)=O\left(k^{2 / 3}\right) & \text { [Balog-Bárány 1991] } \\
\delta(2, k)=6(k / 2 \pi)^{2 / 3}+O\left(k^{1 / 3} \log k\right) & \text { [Thiele 1991] } \\
\text { [Acketa-Žunić 1995] } \\
\delta(d, k) \leq k d & \text { [Kleinschmid-Onn 19s } \\
\delta(d, k) \leq k d-\lceil d / 2\rceil \quad \text { for } k \geq 2 & \text { [Del Pia-Michini 2016] } \\
\delta(d, k) \leq k d-\lceil 2 d / 3\rceil \quad \text { for } k \geq 3 & \text { [Deza-Pournin 2016] } \\
\delta(d, k) \leq k d-\lceil 2 d / 3\rceil-(k-2) \text { for } k \geq 4 & \text { [Deza-Pournin 2016] }
\end{array}
$$

lattice polytopes with large diameter

$\delta(d, k)$: largest diameter of a convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$ lower bounds :

$$
\begin{array}{ll}
\delta(d, 1) \geq d & \text { [Naddef 1989] } \\
\delta(d, 2) \geq\lfloor 3 d / 2\rfloor & \text { [Del Pia-Michini 2016] } \\
\delta(d, k)=\Omega\left(k^{2 / 3} d\right) & \text { [Del Pia-Michini 2016] } \\
\delta(d, k) \geq\left\lfloor_{\lfloor }(k+1) d / 2\right\rfloor \text { for } k<2 d & \text { [Deza-Manoussakis-Onn 2016] }
\end{array}
$$

lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2	3	4	4	5	6	6	7	8
	3	3	4	6	7+	9+	?	?	?	?
	4	4	6	8	10+	12+	14+	16+	?	?
	5	5	7	10+	12+	15+	17+	20+	22+	25+

$\delta(d, 1)=d$
$\delta(2, k)=$ close form
$\delta(d, 2)=\lfloor 3 d / 2\rfloor$
$\delta(4,3)=8$
[Naddef 1989]
[Thiele 1991] [Acketa-Žunić 1995]
[Del Pia-Michini 2016]
[Deza-Pournin 2016]

lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2	3	4	4	5	6	6	7	8
	3	3	4	6	7+	9+	?	?	?	?
	4	4	6	8	10+	12+	14+	16+	?	?
	5	5	7	10+	12+	15+	17+	20+	22+	25+

All known entries of $\delta(d, k)$ are achieved, up to translation, by a Minkowski sum of primitive lattice vectors (some uniquely)

Conjecture: $\left.\quad \delta(d, k) \leq_{\llcorner }(k+1) d / 2\right\rfloor \quad$ [Deza-Manoussakis-Onn 2016]

lattice polygons with many vertices

Q. What is $\delta(2, k)$: largest diameter of a polygon which vertices are drawn form the $k \times k$ grid?

A polygon can be associated to a set of vectors (edges) summing up to zero, and without a pair of positively multiple vectors

$\delta(2,3)=4$ is achieved by the 8 vectors : $(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1)$

lattice polygons with many vertices

$\delta(2,2)=2$; vectors : $(\pm 1,0),(0, \pm 1)$

lattice polygons with many vertices

$\|x\|_{1} \leq 1$
$\delta(2,2)=2$; vectors : $(\pm 1,0),(0, \pm 1)$

lattice polygons with many vertices

```
\delta(2,2)=2 ; vectors : (\pm1,0), (0,\pm1)
\delta(2,3)=4; vectors : (\pm1,0), (0,\pm1), (\pm1,\pm1)
```


lattice polygons with many vertices

$\|x\|_{1} \leq 2$
$\delta(2,2)=2$; vectors : $(\pm 1,0),(0, \pm 1)$
$\delta(2,3)=4$; vectors : $(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1)$

lattice polygons with many vertices

$$
\begin{aligned}
& \delta(2,2)=2 ; \text { vectors : }(\pm 1,0),(0, \pm 1) \\
& \delta(2,3)=4 ; \text { vectors }:(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1) \\
& \delta(2,9)=8 ; \text { vectors : }(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1),(\pm 1, \pm 2),(\pm 2, \pm 1)
\end{aligned}
$$

lattice polygons with many vertices

$\|x\|_{1} \leq 3$

$$
\begin{aligned}
& \delta(2,2)=2 ; \text { vectors }:(\pm 1,0),(0, \pm 1) \\
& \delta(2,3)=4 ; \text { vectors }:(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1) \\
& \delta(2,9)=8 ; \text { vectors }:(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1),(\pm 1, \pm 2),(\pm 2, \pm 1)
\end{aligned}
$$

lattice polygons with many vertices

$\|x\|_{1} \leq 4$

```
\delta(2,2)=2 ; vectors: ( }\pm1,0),(0,\pm1
\delta(2,3)=4; vectors: ( }\pm1,0),(0,\pm1),(\pm1,\pm1
\delta(2,9)=8; vectors: ( }\pm1,0),(0,\pm1),(\pm1,\pm1),(\pm1,\pm2),(\pm2,\pm1
\delta(2,17) = 12; vectors : (\pm1,0), (0,\pm1), (\pm1,\pm1), (\pm1,\pm2), (\pm2,\pm1), (\pm1,\pm3), (\pm3,\pm1)
```


lattice polygons with many vertices

lattice polygons with many vertices

$\delta(2, k)$	k								
	1	2	3	4	5	6	7	8	9
p	1		2						3
v	4	6	8	8	10	12	12	14	16
δ	2	3	4	4	5	6	6	7	8

$\delta(2, k)=2 \sum_{i=1}^{p} \varphi(i)$ for $k=\sum_{i=1}^{p} i \varphi(i)$
$\varphi(p)$: Euler totient function counting positive integers less or equal to p relatively prime with p $\varphi(1)=\varphi(2)=1, \varphi(3)=\varphi(4)=2, \ldots$

lattice polygons with many vertices

$$
\|x\|_{1} \leq p
$$

$H_{1}(2, p)$: Minkowski sum generated by $\left\{x \in Z^{2}:\|x\|_{1} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right\}$ $H_{1}(2, p)$ has diameter $\delta(2, k)=2 \sum_{i=1}^{p} \varphi(i)$ for $k=\sum_{i=1}^{p} i \varphi(i)$

Ex. $H_{1}(2,2)$ generated by $(1,0),(0,1),(1,1),(1,-1)$ (fits, up to translation, in 3×3 grid)
$x \geq 0$: first nonzero coordinate of x is nonnegative

primitive lattice polytopes

as generalization of the permutahedron of type B_{d}

$$
\begin{aligned}
& H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& Z_{q}(d, p): \text { Zonotope }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
\end{aligned}
$$

Given a set \boldsymbol{G} of \boldsymbol{m} vectors (generators)
Minkowski (G) : convex hull of the 2^{m} sums of the \boldsymbol{m} vectors in G Zonotope (G) : convex hull of the 2^{m} signed sums of the m vectors in G
up to translation $Z(G)$ is the image of $H(G)$ by an homothety of factor 2

* Primitive lattice polytopes: Minkowski sum generated by short integer vectors which are pairwise linearly independent

primitive lattice polytopes

as generalization of the permutahedron of type B_{d}

$$
\begin{aligned}
& H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& Z_{q}(d, p): \text { Zonotope }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)
\end{aligned}
$$

$$
x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
$$

$>Z_{q}(d, p)$: invariant under symmetries induced by coordinate permutations and reflections induced by sign flips
$>$ Coordinates of the vertices of $Z_{q}(d, p)$ are odd, thus the number of vertices of $Z_{q}(d, p)$ is a multiple of 2^{d}
$>H_{q}(d, p)$ is, up to translation, a lattice ($\left.d, k\right)$-polytope where k is the sum of the first coordinates of all generators of $Z_{q}(d, p)$
$>$ diameter of $Z_{q}(d, p)$ is equal to the number of its generators

primitive lattice polytopes

 as generalization of the permutahedron of type $B_{d}$$$
H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)
$$

$Z_{q}(d, p)$: Zonotope $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$
$x \geq 0$: first nonzero coordinate of x is nonnegative
$>H_{q}(d, 1):[0,1]^{d}$ cube for finite \boldsymbol{q}

primitive lattice polytopes

 as generalization of the permutahedron of type $B_{d}$$$
H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)
$$

$Z_{q}(d, p):$ Zonotope $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$

$$
x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
$$

> $H_{1}(3,2)$: truncated cuboctahedron (great rhombicuboctahedron)

primitive lattice polytopes

 as generalization of the permutahedron of type $B_{d}$$$
H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)
$$

$$
Z_{q}(d, p): \text { Zonotope }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)
$$

$$
x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
$$

$>H_{\infty}(3,1)$: truncated small rhombicuboctahedron

primitive lattice polytopes

 as generalization of the permutahedron of type $B_{d}$$$
H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)
$$

$Z_{q}(d, p):$ Zonotope $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$

$$
x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
$$

$>Z_{1}(d, 2)$: permutahedron of type B_{d}

primitive lattice polytopes

 as generalization of the permutahedron of type $B_{d}$$$
H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)
$$

$Z_{q}(d, p)$: Zonotope $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$
$x \geq 0$: first nonzero coordinate of x is nonnegative $\mathrm{H}^{+} / \mathrm{Z}^{+}$: positive primitive lattice polytope $x \in \mathrm{Z}^{d}{ }_{+}$
$>H_{1}(d, 2)^{+}$: Minkowski sum of the permutahedron with the $\{0,1\}^{d}$

primitive lattice polytopes

as generalization of the permutahedron of type B_{d}

$$
\begin{aligned}
& H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& Z_{q}(d, p): \text { Zonotope }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative } \\
& H^{+} / Z^{+}: \text {positive primitive lattice polytope } x \in \mathbb{Z}^{d}
\end{aligned}
$$

$>H_{1}(d, 2)^{+}$: Minkowski sum of the permutahedron with the $\{0,1\}^{d}$, i.e., graphical zonotope obtained by the d-clique with a loop at each node
graphical zonotope Z_{G} : Minkowski sum of segments $\left[\mathrm{e}_{i}, \mathrm{e}_{j}\right]$ for all edges $\{i\}$,$\} of a given graph G$

primitive lattice polygons

as lattice $(2, k)$-polygons with large diameter
Q. (revisit) What is $\delta(2, k)$: largest diameter of a polygon which vertices are drawn form the $k \times k$ grid?

For any \boldsymbol{k}, there exists p so that $\delta(2, k)$ is achieved, up to translation, by the Minkowski sum of a subset of the generators of $H_{1}(2, p)$.
Moreover, for any \mathbf{p}, and for $\boldsymbol{k}=\sum^{p} i \varphi(i), \delta(2, k)$ is uniquely achieved, up to translation, by $H_{1}(2, p) \quad \sum_{i=1} \quad(\varphi$: Euler's totient function)

$$
\text { Ex. } p=2
$$

$H_{1}(2,2)$: lattice (2,3)-polygon with diameter 4

primitive lattice polytopes

as lattice (d,k)-polytopes with large diameter
For $k<2 d$, Minkowski sum of a subset of the generators of $H_{1}(d, 2$ is, up to translation, a lattice (d, k)-polytope with diameter ${ }_{L}(k+1) d / 2$ 」

Proof sketch. Assume d even (odd case similar). $H_{1}(d, 2)$: lattice ($d, 2 d-1$)-polytope with diameter d^{2} (permutahedron of type B_{d})
removing the $d / 2$ generators ($0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots 0$) forming one of the $d-1$ perfect matchings of the d-clique [Berge 1983] yields a lattice ($d, k-1$)-polytope with diameter decreasing by $d / 2$. After d removal, one obtains $H_{1}(d, 2)^{+}$a lattice ($\left.d, d\right)$-polytope with diameter $d(d+1) / 2$

primitive lattice polytopes

as lattice (d,k)-polytopes with large diameter
For $k<2 d$, Minkowski sum of a subset of the generators of $H_{1}(d, 2$ is, up to translation, a lattice (d, k)-polytope with diameter $\left.{ }_{L}(k+1) d / 2\right\rfloor$

Proof sketch. Assume d even (odd case similar). $H_{1}(d, 2)$: lattice ($d, 2 d-1$)-polytope with diameter d^{2} (permutahedron of type B_{d})
removing the $d / 2$ generators $(0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots 0)$ forming one of the $d-1$ perfect matchings of the d-clique [Berge 1983] yields a lattice ($d, k-1$)-polytope with diameter decreasing by $d / 2$. After d removal, one obtains $H_{1}(d, 2)^{+}$a lattice (d, d)-polytope with diameter $d(d+1) / 2$
$(1,-1,0,0,0,0),(0,0,1,0,0,-1),(0,0,0,1,-1,0)$

primitive lattice polytopes

as lattice (d,k)-polytopes with large diameter
For $k<2 d$, Minkowski sum of a subset of the generators of $H_{1}(d, 2$ is, up to translation, a lattice (d, k)-polytope with diameter $\left.{ }_{L}(k+1) d / 2\right\rfloor$

Proof sketch. Assume d even (odd case similar). $H_{1}(d, 2)$: lattice ($d, 2 d-1$)-polytope with diameter d^{2} (permutahedron of type B_{d})
removing the $d / 2$ generators $(0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots 0)$ forming one of the $d-1$ perfect matchings of the d-clique [Berge 1983] yields a lattice ($d, k-1$)-polytope with diameter decreasing by $d / 2$. After d removal, one obtains $H_{1}(d, 2)^{+}$a lattice (d, d)-polytope with diameter $d(d+1) / 2$
$(1,-1,0,0,0,0),(0,0,1,0,0,-1),(0,0,0,1,-1,0)$
$(1,0,-1,0,0,0),(0,1,0,-1,0,0),(0,0,0,0,1,-1)$

primitive lattice polytopes

as lattice (d,k)-polytopes with large diameter
For $k<2 d$, Minkowski sum of a subset of the generators of $H_{1}(d, 2$ is, up to translation, a lattice (d, k)-polytope with diameter $\left.{ }_{L}(k+1) d / 2\right\rfloor$

Proof sketch. Assume d even (odd case similar). $H_{1}(d, 2)$: lattice ($d, 2 d-1$)-polytope with diameter d^{2} (permutahedron of type B_{d})
removing the $d / 2$ generators $(0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots 0)$ forming one of the $d-1$ perfect matchings of the d-clique [Berge 1983] yields a lattice ($d, k-1$)-polytope with diameter decreasing by $d / 2$. After d removal, one obtains $H_{1}(d, 2)^{+}$a lattice (d, d)-polytope with diameter $d(d+1) / 2$
$(1,-1,0,0,0,0),(0,0,1,0,0,-1),(0,0,0,1,-1,0)$
$(1,0,-1,0,0,0),(0,1,0,-1,0,0),(0,0,0,0,1,-1)$
$(1,0,0,-1,0,0),(0,0,1,0,-1,0),(0,1,0,0,0,-1)$

primitive lattice polytopes

as lattice (d,k)-polytopes with large diameter
For $k<2 d$, Minkowski sum of a subset of the generators of $H_{1}(d, 2$ is, up to translation, a lattice (d, k)-polytope with diameter $\left.{ }_{L}(k+1) d / 2\right\rfloor$

Proof sketch. Assume d even (odd case similar). $H_{1}(d, 2)$: lattice ($d, 2 d-1$)-polytope with diameter d^{2} (permutahedron of type B_{d})
removing the $d / 2$ generators $(0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots 0)$ forming one of the $d-1$ perfect matchings of the d-clique [Berge 1983] yields a lattice ($d, k-1$)-polytope with diameter decreasing by $d / 2$. After d removal, one obtains $H_{1}(d, 2)^{+}$a lattice (d, d)-polytope with diameter $d(d+1) / 2$
removing the $d / 2$ generators ($0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots 0$) forming one of the $d-1$ perfect matchings of the d-clique yields a lattice ($d, k-1$)-polytope with diameter decreasing by $d / 2$. After d removal, one obtains $H_{1}(d, 1)$ a lattice (d,1)-polytope with diameter d

lattice polytopes with large diameter

$\delta(d, k)$: largest diameter of a convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$ upper bounds :

$$
\begin{array}{ll}
\delta(d, 1) \leq d & \\
\delta(d, k) \leq k d & \\
\delta(d, k) \leq k d-\lceil d / 2\rceil & \text { for } k \geq 2 \\
\delta(d, k) \leq k d-\lceil 2 d / 3\rceil & \text { for } k \geq 3
\end{array}
$$

[Naddef 1989]
[Kleinschmid-Onn 1992]
[Del Pia-Michini 2016]
[Deza-Pournin 2016]

lattice polytopes with large diameter

$\delta(d, k)$: largest diameter of a convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$
Lemma. (Del Pia-Michini 2016) Consider lattice (d,k)-polytope P, u vertex of P, and vector $c \in R^{d}$ with integer coordinates, then $d(u, F) \leq c \cdot u-\beta$ where $\beta=\min \{c \cdot x: x \in P\}$ and $F=\{x \in P: c \cdot x=\beta\}$

Lemma. Consider lattice (d,k)-polytope $P, I \subseteq\{1, \ldots, d\}$ such that $I_{i} \leq x_{i} \leq h_{\mathrm{i}}$ for $x \in P$ and $i \in I$, then : $\delta(P) \leq \delta(d-|I|, k)+\operatorname{sum}_{i \in I}\left(h_{i}-l_{i}\right)$

Lemma. Consider lattice (d,k)-polytope P, u, v vertices of $P, I \subseteq\{1, \ldots, d\}$ with $\mid \| \leq 3$ such that $u_{i}+v_{i} \leq k$ when $i \in I$, then

$$
d(u, v) \leq \delta(d-\mid \|, k)+\operatorname{sum}_{i \in I}\left(u_{i}+v_{i}\right)
$$

$\mid \|=1: \delta(d, k) \leq k d$
[Kleinschmid-Onn 1992]
$\mid \|=2: \delta(d, k) \leq k d-\lceil d / 27$ for $k \geq 2 \quad$ [Del Pia-Michini 2016]

[Deza-Pournin 2016]

lattice polytopes with large diameter

$\delta(d, k)$: largest diameter of a convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$
Consider lattice (d, k)-polytope P with $d \geq 3, k \geq 3, u, v$ vertices of P, then one of the following inequalities holds:
(i) $d(u, v) \leq \delta(d-1, k)+k-1$
(ii) $\quad d(u, v) \leq \delta(d-2, k)+2 k-2$
(iii) $d(u, v) \leq \delta(d-3, k)+3 k-2$
$\Rightarrow \quad \delta(d, k) \leq k d-\lceil 2 d / 3\rceil$ for $k \geq 3$

lattice polytopes with large diameter

$\delta(d, k)$: largest diameter of a convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$
Consider lattice (d, k)-polytope P with $d \geq 3, k \geq 3, u, v$ vertices of P, then one of the following inequalities holds:
(i) $d(u, v) \leq \delta(d-1, k)+k-1$
(ii) $\quad d(u, v) \leq \delta(d-2, k)+2 k-2$
(iii) $d(u, v) \leq \delta(d-3, k)+3 k-2$
$\begin{array}{ll}\Rightarrow & \delta(d, k) \leq k d-\lceil 2 d / 3\rceil \text { for } k \geq 3 \\ & \delta(d, k) \leq k d-\lceil 2 d / 3\rceil-(k-2) \text { for } k \geq 4\end{array}$

primitive lattice polytopes

related questions
[Soprunov-Soprunova 2016] Minkowski length $L(\boldsymbol{P})$ of a lattice polytope \boldsymbol{P} : largest number of lattice segments which Minkowski sum is contained in \boldsymbol{P}
denote $L\left(\{0,1, \ldots, k\}^{d}\right)$ by $L(\boldsymbol{d}, \boldsymbol{k}) \quad$ (Minkowski length of a box)
$L(2, k)=\delta(2, k)$
achieved by a Minkowski sum of a proper subset of generators of $H_{1}(2, p)$ for some p
$\left.L(d, k)={ }_{L}(k+1) d / 2\right\rfloor$ for $k<2 d$ achieved by a Minkowski sum of a proper subset of generators of $H_{1}(d, 2)$

Sloane OEI sequences

$H_{\infty}(d, 1)^{+}$vertices : A034997 = number of generalized retarded functions in quantum Field theory (determined till $d=8$)
$H_{\infty}(d, 1)$ vertices : A009997 = number of regions of hyperplane arrangements with $\{-1,0,1\}$-valued normals in dimension d (determined till $d=7$)

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane

(Greetings from The On-Line Encyclopedia of Integer Sequences') Search Hints

A034997 Number of Generalized Retarded Functions in Quantum Field Theory.
2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930 (list; graph; refs; listen; history; text; internal format)
OFFSET 1,1
COMMENTS $\quad a(d)$ is the number of parts into which d-dimensional space ($x_{-} 1, \ldots, x_{-} d$) is split by a set of (2 ^d - 1) hyperplanes c_1 x_1 + c_2 x_2 + ...+ c_d x_d $=0$ where c_j are 0 or +1 and we exclude the case with all $\mathrm{c}=0$.
Also, $a(d)$ is the number of independent real-time Green functions of Quantum Field Theory produced when analytically continuing from euclidean time/energy ($\mathrm{d}+1=$ number of energy/time variables). These are also known as Generalized Retarded Functions.
The numbers up to $d=6$ were first produced by T. S. Evans using a Pascal program, strictly as upper bounds only. M. van Eijck wrote a C program using a direct enumeration of hyperplanes which confirmed these and produced the value for $\mathrm{d}=7$. Kamiya et al. showed how to find these numbers and some associated polynomials using more sophisticated methods, giving results up to d=7. T. S. Evans added the last number on Aug 012011 using an updated version of van Eijck's program, which took 7 days on a standard desktop computer.

Number of Generalized Retarded Functions in Quantum Field Theory.

370 , 11292, $1066044,347326352,419172756930$ (list; graph; refs; listen; history; text; internal format)
1, 1
a(d) is the number of parts into which d-dimensional space (x_1,..., x_d) is split by a set of ($2^{\wedge} \mathrm{d}-1$) hyperplanes $c_{-} 1 \mathrm{x}_{-} 1+\mathrm{c}_{-} 2 \mathrm{x}_{1} 2+\ldots+\mathrm{c}_{\mathrm{d}} \mathrm{d} \mathrm{x} _\mathrm{d}$ $=0$ where $c_{-} j$ are 0 or +1 and we exclude the case with all c=0.
Also, a(d) is the number of independent real-time Green functions of Quantum Field Theory produced when analytically continuing from euclidean time/energy ($\mathrm{d}+1=$ number of energy/time variables). These are also known as Generalized Retarded Functions.
The numbers up to d=6 were first produced by T. S. Evans using a Pascal program, strictly as upper bounds only. M. van Eijck wrote a C program using a direct enumeration of hyperplanes which confirmed these and produced the value for $d=7$. Kamiya et al. showed how to find these numbers and some associated polynomials using more sophisticated methods, giving results up to d=7. T. S. Evans added the last number on Aug 012011 using an updated version of van Eijck's program, which took 7 days on a standard desktop computer.

Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and Algebra. Springer International Publishing, 2015. 157-171.
T. S. Evans, N-point finite temperature expectation values at real times, Nuclear Physics B 374 (1992) 340-370.
H. Kamiya, A. Takemura and H. Terao, Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47 (2011) 379 - 400.
M. van Eijck, Thermal Field Theory and Finite-Temperature Renormalisation Group, PhD thesis, Univ. Amsterdam, 4th Dec. 1995.
Table of n, $a(n)$ for $n=1 . .8$.
L. J. Billera, J. T. Moore, C. D. Moraites, Y. Wang and K. Williams, Maximal unbalanced families, arXiv preprint arXiv:1209.2309, 2012. - From N. J. A. Sloane. Dec 262012

convex matroid optimization

Melamed-Onn 2014:
The optimal solution of $\max \{\mathbf{f}(\mathbf{W} x): x \in S\}$ is attained at a vertex of the projection integer polytope in $\mathbf{R}^{d}: \operatorname{conv}(\mathbf{W S})=\mathbf{W c o n v}(\mathbf{S})$
S : set of feasible point in $\mathbf{Z}^{n} \quad$ (in the talk $S \in\{0,1\}^{n}$)
\mathbf{W} : integer $d x n$ matrix $\quad(W$ is mostly $\{0,1, \ldots, p\}$-valued) \mathbf{f} : convex function from \mathbf{R}^{d} to \mathbf{R}
Q. What is the maximum number $\mathbf{v}(d, n)$ of vertices of conv(WS) when $S \in\{0,1\}^{n}$ and W is a $\{0,1\}$-valued $d x n$ matrix ?

Obviously $\quad \mathrm{v}(d, n) \leq|\mathrm{WS}|=\mathrm{O}\left(n^{d}\right)$
In particular $\quad \mathrm{v}(2, n)=\mathrm{O}\left(n^{2}\right)$, and $\mathrm{v}(2, n)=\Omega\left(n^{0.5}\right)$

convex matroid optimization

Melamed-Onn 2014
Given matroid S of order $n,\{0,1, \ldots, p\}$-valued $d \times n$ matrix W, maximum number $\mathbf{m}(d, p)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S

convex matroid optimization

Melamed-Onn 2014
Given matroid S of order $n,\{0,1\}$-valued $d x n$ matrix \mathbf{W}, maximum number $\mathbf{m}(d, 1)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S

Ex: maximum number $\mathbf{m}(2,1)$ of vertices of a planar projection conv(WS) of matroid S by a binary matrix W is attained by the following matrix and uniform matroid of rank 3 and order 8:

$$
\begin{aligned}
& \mathbf{W}=\left(\begin{array}{cccccccc}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \\
& \mathbf{S}=\mathbf{U}(3,8)=\left(\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

convex matroid optimization

Melamed-Onn 2014
Given matroid S of order $n,\{0,1, \ldots, p\}$-valued $d \times n$ matrix W, maximum number $\mathbf{m}(d, p)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S

convex matroid optimization

Melamed-Onn 2014
Given matroid S of order $n,\{0,1\}$-valued $d \times n$ matrix W, maximum number $\mathbf{m}(d, 1)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S

$$
d 2^{d} \leq \mathbf{m}(d, 1) \leq 2 \sum_{i=0}^{d-1}\binom{\left(3^{d}-3\right) / 2}{i}
$$

$m(2,1)=8$
$24 \leq m(3,1) \leq 158$
$64 \leq \mathbf{m}(4,1) \leq 19840$

convex matroid optimization

Melamed-Onn 2014 Deza-Manoussakis-Onn 2016

Given matroid S of order $n,\{0,1\}$-valued $d x n$ matrix \mathbf{W}, maximum number $\mathbf{m}(d, 1)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S
for $d \geq 3$
$\boldsymbol{d} \mathbf{2}^{d} \leq \mathbf{m}(\boldsymbol{d}, 1) \leq 2 \sum_{i=0}^{d-1}\binom{\left(3^{d}-3\right) / 2}{i} \quad 2+2 \boldsymbol{d}!\leq \mathbf{m}(d, 1) \leq 2 \sum_{i=0}^{d-1}\binom{\left(3^{d}-3\right) / 2}{i}-f(\boldsymbol{d})$
$\mathbf{m}(2,1)=8$
$24 \leq m(3,1) \leq 158$
$64 \leq \boldsymbol{m}(4,1) \leq 19840$

primitive lattice polytopes

as lower and upper bound for convex matroid optimization parameter

Given matroid S of order $n,\{0,1, \ldots, p\}$-valued $d x n$ matrix \mathbf{W}, maximum number $\mathbf{m}(d, p)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S

$$
\left|H_{\infty}(d, p)^{+}\right| \leq m(d, p) \leq\left|H_{\infty}(d, p)\right|
$$

primitive lattice polytopes

as lower and upper bound for convex matroid optimization parameter

Given matroid S of order $n,\{0,1\}$-valued $d x n$ matrix W, maximum number $\mathbf{m}(d, 1)$ of vertices of conv(WS) is independent of n and S

$$
\left|H_{\infty}(d, 1)^{+}\right| \leq m(d, 1) \leq\left|H_{\infty}(d, 1)\right|
$$

primitive lattice polytopes

as lower and upper bound for convex matroid optimization parameter

Given matroid S of order $n,\{0,1\}$-valued $d x n$ matrix W, maximum number $\mathbf{m}(d, 1)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S

$$
\left|H_{\infty}(d, 1)^{+}\right| \leq m(d, 1) \leq\left|H_{\infty}(d, 1)\right|
$$

Sloane OEI sequences

$H_{\infty}(d, 1)^{+}$vertices : A034997 = number of generalized retarded functions in quantum Field theory
$H_{\infty}(d, 1)$ vertices : A009997 = number of regions of hyperplane arrangements with $\{-1,0,1\}$-valued normals in dimension d

* $|P|$: number of vertices of P

primitive lattice polytopes

as lower and upper bound for convex matroid optimization parameter

Given matroid S of order $n,\{0,1\}$-valued $d x n$ matrix W, maximum number $\mathbf{m}(d, 1)$ of vertices of conv(WS) is independent of n and S

$$
\left|H_{\infty}(d, 1)^{+}\right| \leq m(d, 1) \leq\left|H_{\infty}(d, 1)\right|
$$

$$
\begin{gathered}
32 \leq m(3,1) \leq 96 \\
370 \leq m(4,1) \leq 5376 \\
1292 \leq m(5,1) \leq 1981440
\end{gathered}
$$

$H_{\infty}(3,1)$: truncated small rhombicuboctahedron

primitive lattice polytopes

as lower and upper bound for convex matroid optimization parameter

Given matroid S of order $n,\{0,1\}$-valued $d x n$ matrix W, maximum number $\mathbf{m}(d, 1)$ of vertices of conv(WS) is independent of n and S

$$
\left|H_{\infty}(d, 1)^{+}\right| \leq m(d, 1) \leq\left|H_{\infty}(d, 1)\right|
$$

$$
48 \leq m(3,1) \leq 96
$$

$$
370 \leq \mathbf{m}(4,1) \leq 5376
$$

$11292 \leq m(5,1) \leq 1981440$

truncated cuboctahedron (great rhombicuboctahedron)
$H_{\infty}(3,1)$: truncated small rhombicuboctahedron

* lower bound can be further strengthened using computer search for conv(WS)

primitive lattice polytopes

complexity questions
For fixed p and \mathbf{q}, linear optimization over $Z_{q}(d, p)$ is polynomial-time solvable, even in variable dimension d (polynomial number of generators)
\Rightarrow for fixed positive integers \boldsymbol{p} and \mathbf{q}, the following problems are polynomial time solvable:
$>$ extremality: given $x \in Z^{d}$, decide if x is a vertex of $Z_{q}(d, p)$
$>$ adjacency: given $x_{1}, x_{2} \in Z^{d}$, decide if $\left[x_{1}, x_{2}\right]$ is an edge of $Z_{q}(d, p)$
$>$ separation: given rational $y \in \mathbf{R}^{d}$, either assert $\mathrm{y} \in Z_{q}(d, p)$, or find $h \in Z^{d}$ separating y from $Z_{q}(d, p)$ i.e, satisfying $h^{\top} y>h^{\top} x$ for all $x \in Z_{q}(d, p)$

primitive lattice polytopes complexity questions

For fixed p and \mathbf{q}, linear optimization over $Z_{q}(d, p)$ is polynomial-time solvable, even in variable dimension d (polynomial number of generators)
\Rightarrow for fixed positive integers \boldsymbol{p} and \mathbf{q}, the following problems are polynomial time solvable:
$>$ extremality: given $x \in Z^{d}$, decide if x is a vertex of $Z_{q}(d, p)$
$>$ adjacency: given $x_{1}, x_{2} \in Z^{d}$, decide if $\left[x_{1}, x_{2}\right]$ is an edge of $Z_{q}(d, p)$
> separation: given rational $y \in \mathbf{R}^{d}$, either assert $y \in Z_{q}(d, p)$, or find $h \in Z^{d}$ separating y from $Z_{q}(d, p)$ i.e, satisfying $h^{\top} y>h^{\top} x$ for all $x \in Z_{q}(d, p)$
Q. Existence of a direct algorithm for fixed \boldsymbol{p} and \boldsymbol{q}

Existence of an algorithms for fixed \boldsymbol{p} and $\boldsymbol{q}=\infty$
Existence of hole : $x \in Z_{q}(d, p)+\cap Z^{d}$ which can not be written as a sum of a subset of generators of $Z_{q}(d, p)^{+}$

primitive lattice polytopes diameter and convex matroid optimization bounds

$\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes
$>$ Conjecture (holds for all known $\left.\delta(d, k): \delta(d, k) \leq_{\llcorner }(k+1) d / 2\right\rfloor$ and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors

$$
\begin{aligned}
& \Rightarrow \delta(d, k)=L(d, k) \quad\left(\text { Minkowski length of cube }\{0, \ldots, k\}^{d}\right) \\
& \Rightarrow \delta(d, k)=\left\lfloor^{d}(k+1) d / 2\right\rfloor \text { for } k<2 d
\end{aligned}
$$

$>\left|H_{\infty}(d, 1)^{+}\right| \leq m(d, 1) \leq\left|H_{\infty}(d, 1)\right|$ e.g. determination of $\mathbf{m}(3,1)$?

$$
(48 \leq m(3,1) \leq 96)
$$

$>$ determination of $\delta(3, k)$ and of $\delta(d, 3)$?
$(\delta(d, 3)=2 d ?)$
$>$ Complexity issues, e.g. decide whether a given point is a vertex of $Z_{\infty}(d, 1)$

primitive lattice polytopes diameter and convex matroid optimization bounds

$\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes
$>$ Conjecture (holds for all known $\left.\delta(d, k): \delta(d, k) \leq_{\llcorner }(k+1) d / 2\right\rfloor$ and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors

$$
\begin{aligned}
& \Rightarrow \delta(d, k)=L(d, k) \quad\left(\text { Minkowski length of cube }\{0, \ldots, k\}^{d}\right) \\
& \Rightarrow \delta(d, k)=\left\lfloor^{(}(k+1) d / 2\right\rfloor \text { for } k<2 d
\end{aligned}
$$

$>\left|H_{\infty}(d, 1)^{+}\right| \leq m(d, 1) \leq\left|H_{\infty}(d, 1)\right|$ e.g. determination of $\mathbf{m}(3,1)$?

$$
(48 \leq m(3,1) \leq 96)
$$

$>$ determination of $\delta(3, k)$ and of $\delta(d, 3)$?
$(\delta(d, 3)=2 d ?)$
$>$ Complexity issues, e.g. decide whether a given point is a vertex of $Z_{\infty}(d, 1)$
\checkmark thank you

