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lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
ex. δ(3,3) = 6 and is achieved  
by a truncated cube 

 



lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
ex. δ(3,3) = 6 and is achieved  
by a truncated cube 

 

lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
upper bounds : 
 

 δ(d,1) ≤ d     [Naddef 1989] 
 

 δ(2,k) = O(k2/3)     [Balog-Bárány 1991] 
 

 δ(2,k) = 6(k/2π)2/3 +O(k1/3 log k)   [Thiele 1991]  
      [Acketa-Žunić 1995] 

 
 δ(d,k) ≤ kd     [Kleinschmid-Onn 1992] 

 
 δ(d,k) ≤ kd -  d/2     for k ≥ 2  [Del Pia-Michini 2016] 

 
 δ(d,k) ≤ kd -   2d/3     for k ≥ 3  [Deza-Pournin 2016] 

 
 δ(d,k) ≤ kd -   2d/3   - (k - 2)   for k ≥ 4  [Deza-Pournin 2016] 

 

lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
lower bounds : 
 

 δ(d,1) ≥ d    [Naddef 1989] 
 

 δ(d,2) ≥   3d/2    [Del Pia-Michini 2016] 
 

 δ(d,k) = Ω(k2/3 d)    [Del Pia-Michini 2016] 
 

 δ(d,k) ≥  (k+1)d /2   for k < 2d  [Deza-Manoussakis-Onn 2016] 
 

lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7+ 9+ ? ? ? ? 

4 4 6 8 10+ 12+ 14+ 16+ ? ? 

5 5 7 10+ 12+ 15+ 17+ 20+ 22+ 25+ 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) =  close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016] 
δ(4,3) =  8    [Deza-Pournin 2016]    

lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7+ 9+ ? ? ? ? 

4 4 6 8 10+ 12+ 14+ 16+ ? ? 

5 5 7 10+ 12+ 15+ 17+ 20+ 22+ 25+ 

All known entries of δ(d,k) are achieved, up to translation, by a Minkowski 
sum of primitive lattice vectors (some uniquely) 
 
Conjecture:  δ(d,k) ≤  (k+1)d /2  [Deza-Manoussakis-Onn 2016] 

lattice polytopes with large diameter  



Q. What is δ(2,k) : largest diameter of a polygon which vertices are 
drawn form the k x k grid? 
 
A polygon can be associated to a set of vectors (edges) summing up to 
zero, and without a pair of positively multiple vectors  
 
 
 
 
 
 
 
 
 
δ(2,3) = 4 is achieved by the 8 vectors : (±1,0), (0,±1), (±1,±1) 

lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

||x||1 ≤ 1 

lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 

lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 

||x||1 ≤ 2 

lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 

lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 

||x||1 ≤ 3 

lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 
δ(2,17) = 12 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1), (±1,±3), (±3,±1) 

||x||1 ≤ 4 

lattice polygons with many vertices 
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δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2) = 1, φ(3) = φ(4) = 2,… 

!!(!)
!

!!!
!

||x||1 ≤ p 

lattice polygons with many vertices 



 
δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2) = 1, φ(3) = φ(4) = 2,… 
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!
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δ(2,k) 
                           k 

1 2 3 4 5 6 7 8 9 

p 1 2 3 

v 4 6 8 8 10 12 12 14 16 

δ 2 3 4 4 5 6 6 7 8 

lattice polygons with many vertices 



H1(2,p) : Minkowski sum generated by {x ∈ Z2 : ||x||1 ≤ p, gcd(x)=1, x ≻ 0} 
 
H1(2,p) has diameter δ(2,k) =    for k =   
 
 
Ex. H1(2,2) generated by (1,0), (0,1), (1,1), (1,-1)  (fits, up to translation, in 3x3 grid) 
 

    x ≻ 0 : first nonzero coordinate of x is nonnegative  

2 !(!)
!
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! !!(!)
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!!!
!

 
 

||x||1 ≤ p 

lattice polygons with many vertices 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Given a set G of m vectors (generators) 
 
Minkowski (G) : convex hull of the 2m sums of the m vectors in G 
Zonotope (G) : convex hull of the 2m signed  sums of the m vectors in G 
 

 up to translation Z(G) is the image of H(G) by an homothety of factor 2 
 
v  Primitive lattice polytopes: Minkowski sum generated by short integer 

vectors which are pairwise linearly independent  
 
 

primitive lattice polytopes  
as generalization of the permutahedron of type Bd  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  Zq(d,p) : invariant under symmetries induced by coordinate permutations 

and reflections induced by sign flips 
Ø  Coordinates of the vertices of Zq(d,p) are odd, thus the number of 

vertices of Zq(d,p) is a multiple of 2d 
Ø  Hq(d,p) is, up to translation, a lattice (d,k)-polytope where k is the sum of 

the first coordinates of all generators of Zq(d,p) 
Ø  diameter of Zq(d,p) is equal to the number of its generators 

primitive lattice polytopes  
as generalization of the permutahedron of type Bd  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  Hq(d, 1) : [0, 1]d cube for finite q  

primitive lattice polytopes  
as generalization of the permutahedron of type Bd  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  H1(3,2) : truncated cuboctahedron  
     (great rhombicuboctahedron) 

primitive lattice polytopes  
as generalization of the permutahedron of type Bd  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
 
Ø  H∞(3,1) : truncated small  
     rhombicuboctahedron 

primitive lattice polytopes  
as generalization of the permutahedron of type Bd  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
 
Ø  Z1(d,2) : permutahedron of type Bd 

 
 
 

primitive lattice polytopes  
as generalization of the permutahedron of type Bd  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative 
   H+ / Z+: positive primitive lattice polytope x ∈ Zd

+ 
 
Ø  H1(d,2)+ : Minkowski sum of the permutahedron with the {0,1}d

 

 
 
 

primitive lattice polytopes  
as generalization of the permutahedron of type Bd  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative 
   H+ / Z+: positive primitive lattice polytope x ∈ Zd

+ 
 
Ø  H1(d,2)+ : Minkowski sum of the permutahedron with the {0,1}d, i.e., 
     graphical zonotope obtained by the d-clique with a loop at each node 

  graphical zonotope ZG: Minkowski sum of segments [ei,ej] 
  for all edges {i,j} of a given graph G 

 
 
 

primitive lattice polytopes  
as generalization of the permutahedron of type Bd  



 
 

Q. (revisit) What is δ(2,k) : largest diameter of a polygon which vertices 
are drawn form the k x k grid? 
 
For any k, there exists p so that δ(2,k)  is achieved, up to translation, by 
the Minkowski sum of a subset of the generators of  H1(2,p).  
 
Moreover, for any p, and for k =              , δ(2,k) is uniquely achieved, up 
to translation, by H1(2,p)   (φ : Euler’s totient function) 
 
 
Ex. p =2 
  
H1(2,2) :  lattice (2,3)-polygon 
with diameter 4  
 

!!(!)
!

!!!
!

primitive lattice polygons  
as lattice (2,k)-polygons with large diameter  



 
 

For k < 2d, Minkowski sum of a subset of the generators of H1(d,2 is, 
up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2 
 
Proof sketch. Assume d even  (odd case similar).  
H1(d,2) : lattice (d,2d-1)-polytope with diameter d2 (permutahedron of type Bd) 
 
removing the d/2 generators (0,…,0,1,0,...,0,-1,0,...0) forming one of the 
d-1 perfect matchings of the d-clique [Berge 1983] yields a lattice 
(d,k-1)-polytope with diameter decreasing by d/2. After d removal, one 
obtains H1(d,2)+ a lattice (d,d)-polytope with diameter d(d+1)/2 

primitive lattice polytopes  
as lattice (d,k)-polytopes with large diameter  



For k < 2d, Minkowski sum of a subset of the generators of H1(d,2 is, 
up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2 
 
Proof sketch. Assume d even  (odd case similar).  
H1(d,2) : lattice (d,2d-1)-polytope with diameter d2 (permutahedron of type Bd) 
 
removing the d/2 generators (0,…,0,1,0,...,0,-1,0,...0) forming one of the 
d-1 perfect matchings of the d-clique [Berge 1983] yields a lattice 
(d,k-1)-polytope with diameter decreasing by d/2. After d removal, one 
obtains H1(d,2)+ a lattice (d,d)-polytope with diameter d(d+1)/2 
 
(1,-1,0,0,0,0),  (0,0,1,0,0,-1), (0,0,0,1,-1,0)  
 

2 

1 

6 

5 4 

3 

primitive lattice polytopes  
as lattice (d,k)-polytopes with large diameter  



For k < 2d, Minkowski sum of a subset of the generators of H1(d,2 is, 
up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2 
 
Proof sketch. Assume d even  (odd case similar).  
H1(d,2) : lattice (d,2d-1)-polytope with diameter d2 (permutahedron of type Bd) 
 
removing the d/2 generators (0,…,0,1,0,...,0,-1,0,...0) forming one of the 
d-1 perfect matchings of the d-clique [Berge 1983] yields a lattice 
(d,k-1)-polytope with diameter decreasing by d/2. After d removal, one 
obtains H1(d,2)+ a lattice (d,d)-polytope with diameter d(d+1)/2 
 
(1,-1,0,0,0,0),  (0,0,1,0,0,-1), (0,0,0,1,-1,0)  
 
(1,0,-1,0,0,0),  (0,1,0,-1,0,0), (0,0,0,0,1,-1)  
 

3 

1 

2 

6 5 

4 

primitive lattice polytopes  
as lattice (d,k)-polytopes with large diameter  



For k < 2d, Minkowski sum of a subset of the generators of H1(d,2 is, 
up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2 
 
Proof sketch. Assume d even  (odd case similar).  
H1(d,2) : lattice (d,2d-1)-polytope with diameter d2 (permutahedron of type Bd) 
 
removing the d/2 generators (0,…,0,1,0,...,0,-1,0,...0) forming one of the 
d-1 perfect matchings of the d-clique [Berge 1983] yields a lattice 
(d,k-1)-polytope with diameter decreasing by d/2. After d removal, one 
obtains H1(d,2)+ a lattice (d,d)-polytope with diameter d(d+1)/2 
 
(1,-1,0,0,0,0),  (0,0,1,0,0,-1), (0,0,0,1,-1,0)  
 
(1,0,-1,0,0,0),  (0,1,0,-1,0,0), (0,0,0,0,1,-1)  
 
(1,0,0,-1,0,0),  (0,0,1,0,-1,0), (0,1,0,0,0,-1)  
…. 
 4 

1 

3 

2 6 

5 

primitive lattice polytopes  
as lattice (d,k)-polytopes with large diameter  



 
 

For k < 2d, Minkowski sum of a subset of the generators of H1(d,2 is, 
up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2 
 
Proof sketch. Assume d even  (odd case similar).  
H1(d,2) : lattice (d,2d-1)-polytope with diameter d2 (permutahedron of type Bd) 
 
removing the d/2 generators (0,…,0,1,0,...,0,-1,0,...0) forming one of the 
d-1 perfect matchings of the d-clique [Berge 1983] yields a lattice 
(d,k-1)-polytope with diameter decreasing by d/2. After d removal, one 
obtains H1(d,2)+ a lattice (d,d)-polytope with diameter d(d+1)/2 
 
removing the d/2 generators (0,…,0,1,0,...,0,1,0,...0) forming one of the 
d-1 perfect matchings of the d-clique yields a lattice (d,k-1)-polytope with 
diameter decreasing by d/2. After d removal, one obtains H1(d,1) a lattice 
(d,1)-polytope with diameter d 
 

primitive lattice polytopes  
as lattice (d,k)-polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
upper bounds : 
 

 δ(d,1) ≤ d     [Naddef 1989] 
 

 δ(d,k) ≤ kd     [Kleinschmid-Onn 1992] 
 

 δ(d,k) ≤ kd -  d/2     for k ≥ 2  [Del Pia-Michini 2016] 
 

 δ(d,k) ≤ kd -   2d/3     for k ≥ 3  [Deza-Pournin 2016] 

lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
Lemma. (Del Pia-Michini 2016) Consider lattice (d,k)-polytope P, u vertex 
of P, and vector c ∈ Rd with integer coordinates, then d(u,F) ≤ c·u - β 
where β = min{ c·x : x ∈ P } and F = { x ∈ P : c·x = β } 
 
Lemma. Consider lattice (d,k)-polytope P, I ⊆ {1,...,d} such that li ≤ xi ≤ hi 
for x ∈ P and i ∈ I, then :  δ(P) ≤ δ(d-|I|,k) + sumi∈I (hi - li) 
 
Lemma. Consider lattice (d,k)-polytope P, u, v vertices of P, I ⊆ {1,...,d} 
with |I| ≤ 3 such that ui+vi ≤ k when i ∈ I, then  
 

  d(u,v) ≤ δ(d-|I|,k) + sumi∈I (ui+vi) 
 
|I| = 1 : δ(d,k) ≤ kd    [Kleinschmid-Onn 1992] 
|I| = 2 : δ(d,k) ≤ kd -  d/2    for k ≥ 2  [Del Pia-Michini 2016] 
|I| = 3 : δ(d,k) ≤ kd -   2d/3    for k ≥ 3  [Deza-Pournin 2016] 
 

lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
Consider lattice (d,k)-polytope P with d ≥ 3, k ≥ 3, u, v vertices of P, then 
one of the following inequalities holds: 
 
(i)  d(u,v) ≤ δ(d-1,k) + k - 1 
(ii)  d(u,v) ≤ δ(d-2,k) + 2k - 2 
(iii)  d(u,v) ≤ δ(d-3,k) + 3k - 2 

 
⇒  δ(d,k) ≤ kd -   2d/3    for k ≥ 3   

lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
Consider lattice (d,k)-polytope P with d ≥ 3, k ≥ 3, u, v vertices of P, then 
one of the following inequalities holds: 
 
(i)  d(u,v) ≤ δ(d-1,k) + k - 1 
(ii)  d(u,v) ≤ δ(d-2,k) + 2k - 2 
(iii)  d(u,v) ≤ δ(d-3,k) + 3k - 2 

 
⇒  δ(d,k) ≤ kd -   2d/3    for k ≥ 3   
 

 δ(d,k) ≤ kd -  2d/3  - (k - 2)  for k ≥ 4 

lattice polytopes with large diameter  



 
[Soprunov-Soprunova 2016] Minkowski length L(P) of a lattice polytope P : 
largest number of lattice segments which Minkowski sum is contained in P 
 
denote L({0,1,…,k}d) by L(d,k)  (Minkowski length of a box) 
 
L(2,k) = δ(2,k)    achieved by a Minkowski sum of a proper  

    subset of generators of H1(2,p) for some p 
 
L(d,k) =  (k+1)d/2   for k < 2d  achieved by a Minkowski sum of a proper  

   subset of generators of H1(d,2) 
Sloane OEI sequences 
H∞(d,1)+ vertices : A034997 = number of generalized retarded functions in 
quantum Field theory (determined till d =8) 
 
H∞(d,1) vertices : A009997 = number of regions of hyperplane arrangements 
with {-1,0,1}-valued normals in dimension d (determined till d =7) 

primitive lattice polytopes  
related questions  
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 Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A034997 Number of Generalized Retarded Functions in Quantum Field Theory. 1

2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930 (list; graph; refs; listen; history; text; internal format)
OFFSET 1,1
COMMENTS a(d) is the number of parts into which d-dimensional space (x_1,...,x_d) is

split by a set of (2^d - 1) hyperplanes c_1 x_1 + c_2 x_2 + ...+ c_d x_d
=0 where c_j are 0 or +1 and we exclude the case with all c=0.

Also, a(d) is the number of independent real-time Green functions of Quantum
Field Theory produced when analytically continuing from euclidean
time/energy (d+1 = number of energy/time variables).  These are also known
as Generalized Retarded Functions.

The numbers up to d=6 were first produced by T. S. Evans using a Pascal
program, strictly as upper bounds only.  M. van Eijck wrote a C program
using a direct enumeration of hyperplanes which confirmed these and
produced the value for d=7. Kamiya et al. showed how to find these numbers
and some associated polynomials using more sophisticated methods, giving
results up to d=7. T. S. Evans added the last number on Aug 01 2011 using
an updated version of van Eijck's program, which took 7 days on a standard
desktop computer.

REFERENCES Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele
Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and
Algebra. Springer International Publishing, 2015. 157-171.

T. S. Evans, N-point finite temperature expectation values at real times,
Nuclear Physics B 374 (1992) 340-370.

H. Kamiya, A. Takemura and H. Terao, Ranking patterns of unfolding models of
codimension one, Advances in Applied Mathematics 47 (2011) 379 - 400.

M. van Eijck, Thermal Field Theory and Finite-Temperature Renormalisation
Group, PhD thesis, Univ. Amsterdam, 4th Dec. 1995.

LINKS Table of n, a(n) for n=1..8.
L. J. Billera, J. T. Moore, C. D. Moraites, Y. Wang and K. Williams, Maximal

unbalanced families, arXiv preprint arXiv:1209.2309, 2012. - From N. J. A.
Sloane, Dec 26 2012

T. S. Evans, What is being calculated with Thermal Field Theory?, arXiv:hep-
ph/9404262 and in "Particle Physics and Cosmology: Proceedings of the
Ninth Lake Louise Winter School", World Scientific, 1995 (ISBN 9810221002)

EXAMPLE a(1)=2 because the point x=0 splits the real line into two parts, the
positive and negative reals.

a(2)=6 because we can split two dimensional space into 6 parts using lines
x=0, y=0 and x+y=0.

CROSSREFS Sequence in context: A056642 A001199 A232469 * A067735 A118077 A013976
Adjacent sequences:  A034994 A034995 A034996 * A034998 A034999 A035000

KEYWORD nonn,more
AUTHOR Tim S. Evans
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EXAMPLE a(1)=2 because the point x=0 splits the real line into two parts, the
positive and negative reals.

a(2)=6 because we can split two dimensional space into 6 parts using lines
x=0, y=0 and x+y=0.

CROSSREFS Sequence in context: A056642 A001199 A232469 * A067735 A118077 A013976
Adjacent sequences:  A034994 A034995 A034996 * A034998 A034999 A035000
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convex matroid optimization 

Melamed-Onn 2014: 
 
The optimal solution of max { f(Wx) : x ∈ S} is attained at a vertex of 
the projection integer polytope in Rd  : conv(WS) = Wconv(S)  
 
S : set of feasible point in Zn  (in the talk S ∈ {0,1} n ) 

W : integer d x n matrix   (W is mostly {0,1,…, p}-valued) 
f : convex function from Rd  to R 
 
Q. What is the maximum number v(d,n) of vertices of conv(WS) 
when S ∈ {0,1} n and W is a {0,1}-valued d x n matrix ? 
 
Obviously  v(d,n) ≤ |WS| = O(nd) 
In particular  v(2,n) = O(n2),  and v(2,n) = Ω(n0.5) 
 



 
Melamed-Onn 2014 
 
Given matroid S of order n, {0,1,…,p}-valued d x n matrix W, maximum 
number m(d,p) of vertices of conv(WS) is independent of n and S 

convex matroid optimization 



 
Melamed-Onn 2014 
 
Given matroid S of order n, {0,1}-valued d x n matrix W, maximum  
number m(d,1) of vertices of conv(WS) is independent of n and S 
 
Ex: maximum number m(2,1) of vertices of a planar projection conv(WS)  
of matroid S by a binary matrix W is attained by the following matrix and 
uniform matroid of rank 3 and order 8: 
 
 

 W = 
 
 
 
S = U(3,8) = 

                 
            conv(WS)  

2 3 0 1 

1 

2 

3 

convex matroid optimization 



 
Melamed-Onn 2014 
 
Given matroid S of order n, {0,1,…,p}-valued d x n matrix W, maximum 
number m(d,p) of vertices of conv(WS) is independent of n and S 

convex matroid optimization 



 
Melamed-Onn 2014 
 
Given matroid S of order n, {0,1}-valued d x n matrix W, maximum  
number m(d,1) of vertices of conv(WS) is independent of n and S 
 
 
 
d 2d ≤ m(d,1) ≤             
 
 
m(2,1) = 8  
24 ≤ m(3,1) ≤ 158      
64 ≤ m(4,1) ≤ 19840     

  

convex matroid optimization 

2 (3! − 3)/2
!
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!!!
!



2 (3! − 3)/2
!
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Melamed-Onn 2014         Deza-Manoussakis-Onn 2016 
 
Given matroid S of order n, {0,1}-valued d x n matrix W, maximum  
number m(d,1) of vertices of conv(WS) is independent of n and S 
 
for d ≥ 3 
 
d 2d ≤ m(d,1) ≤          2+2d! ≤ m(d,1) ≤          - f(d)  

  
 
m(2,1) = 8          m(2,1) = 8  
24 ≤ m(3,1) ≤ 158         48 ≤ m(3,1) ≤ 96  
64 ≤ m(4,1) ≤ 19840         370 ≤ m(4,1) ≤ 5376 

          11292  ≤ m(5,1) ≤ 1 981 440 

2 (3! − 3)/2
!

!!!

!!!
!

convex matroid optimization 



 
 
Given matroid S of order n, {0,1,…,p}-valued d x n matrix W, maximum 
number m(d,p) of vertices of conv(WS) is independent of n and S 
 

 | H∞(d,p)+ | ≤ m(d,p) ≤ | H∞(d,p) | 
 

primitive lattice polytopes  
as lower and upper bound for convex matroid optimization parameter  



 
 
Given matroid S of order n, {0,1}-valued d x n matrix W, maximum  
number m(d,1) of vertices of conv(WS) is independent of n and S 
 

 | H∞(d,1)+ | ≤ m(d,1) ≤ | H∞(d,1) | 

primitive lattice polytopes  
as lower and upper bound for convex matroid optimization parameter  



 
 
Given matroid S of order n, {0,1}-valued d x n matrix W, maximum  
number m(d,1) of vertices of conv(WS) is independent of n and S 

 
 | H∞(d,1)+ | ≤ m(d,1) ≤ | H∞(d,1) | 

 
Sloane OEI sequences 
 
H∞(d,1)+ vertices : A034997 = number of generalized retarded functions in 
quantum Field theory 
 
H∞(d,1) vertices : A009997 = number of regions of hyperplane 
arrangements with {-1,0,1}-valued normals in dimension d  
 
 
v  | P | : number of vertices of P 

primitive lattice polytopes  
as lower and upper bound for convex matroid optimization parameter  



 
 
Given matroid S of order n, {0,1}-valued d x n matrix W, maximum  
number m(d,1) of vertices of conv(WS) is independent of n and S 
 

 | H∞(d,1)+ | ≤ m(d,1) ≤ | H∞(d,1) | 
 
 

32 ≤ m(3,1) ≤ 96 
 

370 ≤ m(4,1) ≤ 5 376 
 

    11 292 ≤ m(5,1) ≤ 1 981 440 
   
 

 H∞(3,1)+       H∞(3,1) : truncated small  
      rhombicuboctahedron  

primitive lattice polytopes  
as lower and upper bound for convex matroid optimization parameter  



 
 
Given matroid S of order n, {0,1}-valued d x n matrix W, maximum  
number m(d,1) of vertices of conv(WS) is independent of n and S 
 

 | H∞(d,1)+ | ≤ m(d,1) ≤ | H∞(d,1) | 
 
 

48 ≤ m(3,1) ≤ 96 
 

370 ≤ m(4,1) ≤ 5 376 
 

    11 292 ≤ m(5,1) ≤ 1 981 440 
   
 
truncated cuboctahedron    H∞(3,1) : truncated small  
(great rhombicuboctahedron)    rhombicuboctahedron  
 
v  lower bound can be further strengthened using computer search for conv(WS)  

primitive lattice polytopes  
as lower and upper bound for convex matroid optimization parameter  



 
For fixed p and q, linear optimization over Zq(d,p) is polynomial-time 
solvable, even in variable dimension d (polynomial number of generators) 
 
⇒ for fixed positive integers p and q, the following problems are  
    polynomial time solvable: 
 
Ø  extremality: given x ∈ Zd, decide if x is a vertex of Zq(d,p)  

Ø  adjacency: given x1,x2 ∈  Zd, decide if [x1,x2]  is an edge of Zq(d,p)  

Ø  separation: given rational y ∈ Rd, either assert y ∈ Zq(d,p), or find  
    h ∈ Zd separating y from Zq(d,p) i.e, satisfying hTy > hTx for all x ∈ Zq(d,p) 

primitive lattice polytopes  
complexity questions  



 
For fixed p and q, linear optimization over Zq(d,p) is polynomial-time 
solvable, even in variable dimension d (polynomial number of generators) 
 
⇒ for fixed positive integers p and q, the following problems are  
    polynomial time solvable: 
 
Ø  extremality: given x ∈ Zd, decide if x is a vertex of Zq(d,p)  

Ø  adjacency: given x1,x2 ∈  Zd, decide if [x1,x2]  is an edge of Zq(d,p)  

Ø  separation: given rational y ∈ Rd, either assert y ∈ Zq(d,p), or find  
    h ∈ Zd separating y from Zq(d,p) i.e, satisfying hTy > hTx for all x ∈ Zq(d,p) 
 
Q.  Existence of a direct algorithm for fixed p and q 
      Existence of an algorithms for fixed p and q = ∞ 
      Existence of hole : x ∈ Zq(d,p)+ ∩ Zd  which can not be written as a sum 
      of a subset of generators of Zq(d,p)+ 

primitive lattice polytopes  
complexity questions  



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture (holds for all known δ(d,k) :  δ(d,k) ≤  (k+1)d/2   and  
    δ(d,k)  is achieved, up to translation, by a Minkowski sum of primitive  
    lattice vectors 
 

 ⇒ δ(d,k) = L(d,k)  (Minkowski length of cube {0,…, k}d) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

 
Ø  | H∞(d,1)+ | ≤ m(d,1) ≤ | H∞(d,1) |    
     e.g. determination of m(3,1)  ?   (48 ≤ m(3,1) ≤ 96) 
 
Ø  determination of δ(3,k) and of δ(d,3)  ?  (δ(d,3) =2d  ?) 

Ø  Complexity issues, e.g. decide whether a given point is a vertex of Z∞(d,1) 

primitive lattice polytopes  
diameter and convex matroid optimization bounds 



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture (holds for all known δ(d,k) :  δ(d,k) ≤  (k+1)d/2   and  
    δ(d,k)  is achieved, up to translation, by a Minkowski sum of primitive  
    lattice vectors 
 

 ⇒ δ(d,k) = L(d,k)  (Minkowski length of cube {0,…, k}d) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

 
Ø  | H∞(d,1)+ | ≤ m(d,1) ≤ | H∞(d,1) |    
     e.g. determination of m(3,1)  ?   (48 ≤ m(3,1) ≤ 96) 
 
Ø  determination of δ(3,k) and of δ(d,3)  ?  (δ(d,3) =2d  ?) 

Ø  Complexity issues, e.g. decide whether a given point is a vertex of Z∞(d,1) 

primitive lattice polytopes  
diameter and convex matroid optimization bounds 

ü  thank you 


