Probabilistic Computability and Randomness in the Weihrauch Lattice

Vasco Brattka

Universität der Bundeswehr München, Germany University of Cape Town, South Africa

Algorithmic Randomness Interacts with Analysis and Ergodic Theory Oaxaca, Mexico, 4-9 December 2016

Outline

1 The Weihrauch Lattice

2 Vitali Covering Theorem

3 Las Vegas and Monte Carlo Computability

The Weihrauch Lattice

Weihrauch Reducibility

Consider $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$.

- f is Weihrauch reducible to $g, f \leq_{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H\left(\mathrm{id}_{X}, g K\right) \sqsubseteq f$.

Weihrauch Reducibility

Consider $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$.

- f is Weihrauch reducible to $g, f \leq_{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H\left(\mathrm{id}_{X}, g K\right) \sqsubseteq f$.
 computable $H: \subseteq W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H g K \sqsubseteq f$

Weihrauch Reducibility

Consider $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$.

- f is Weihrauch reducible to $g, f \leq_{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H\left(\mathrm{id}_{X}, g K\right) \sqsubseteq f$.
- f is strongly Weihrauch reducible to $g, f \leq_{s W} g$, if there are computable $H: \subseteq W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H g K \sqsubseteq f$.
- Equivalences $f \equiv_{\mathrm{W}} g$ and $f \equiv_{\mathrm{sW}} g$ are defined as usual.

Weihrauch Reducibility

Consider $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$.

- f is Weihrauch reducible to $g, f \leq_{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H\left(\mathrm{id}_{X}, g K\right) \sqsubseteq f$.
- f is strongly Weihrauch reducible to $g, f \leq_{s W} g$, if there are computable $H: \subseteq W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H g K \sqsubseteq f$.
- Equivalences $f \equiv_{\mathrm{W}} g$ and $f \equiv_{\mathrm{sW}} g$ are defined as usual.

Examples of Mathematical Problems

- The Limit Problem is the mathematical problem $\lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}},\left\langle p_{0}, p_{1}, \ldots\right\rangle \mapsto \lim _{i \rightarrow \infty} p_{i}$ with $\operatorname{dom}(\lim):=\left\{\left\langle p_{0}, p_{1}, \ldots\right\rangle:\left(p_{i}\right)_{i}\right.$ is convergent $\}$.
- Martin-Löf Randomness is the mathematical problem MLR : $2^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$ with $\operatorname{MILR}(x):=\left\{y \in 2^{\mathbb{N}}: y\right.$ is Martin-Löf random relative to $\left.x\right\}$

$$
W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]
$$

with $\operatorname{dom}(W W K L):=\{T \in \operatorname{Tr}: \mu([T])>0\}$

Examples of Mathematical Problems

- The Limit Problem is the mathematical problem

$$
\lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}},\left\langle p_{0}, p_{1}, \ldots\right\rangle \mapsto \lim _{i \rightarrow \infty} p_{i}
$$

with $\operatorname{dom}(\lim):=\left\{\left\langle p_{0}, p_{1}, \ldots\right\rangle:\left(p_{i}\right)_{i}\right.$ is convergent $\}$.

- Martin-Löf Randomness is the mathematical problem

MLR : $2^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$ with
$\operatorname{MLR}(x):=\left\{y \in 2^{\mathbb{N}}: y\right.$ is Martin-Löf random relative to $\left.x\right\}$.

- Weak Weak Kőnig's Lemma is the mathematical problem

$$
W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]
$$

with $\operatorname{dom}(\mathrm{WWKL}):=\{T \in \operatorname{Tr}: \mu([T])>0\}$
with $\operatorname{dom}(\mathrm{IVT}):=\{f: f(0) \cdot f(1)<0\}$

Examples of Mathematical Problems

- The Limit Problem is the mathematical problem

$$
\lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}},\left\langle p_{0}, p_{1}, \ldots\right\rangle \mapsto \lim _{i \rightarrow \infty} p_{i}
$$

with $\operatorname{dom}(\lim):=\left\{\left\langle p_{0}, p_{1}, \ldots\right\rangle:\left(p_{i}\right)_{i}\right.$ is convergent $\}$.

- Martin-Löf Randomness is the mathematical problem MLR : $2^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$ with
$\operatorname{MLR}(x):=\left\{y \in 2^{\mathbb{N}}: y\right.$ is Martin-Löf random relative to $\left.x\right\}$.
- Weak Weak Kőnig's Lemma is the mathematical problem
$W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]$
with $\operatorname{dom}(W W K L):=\{T \in \operatorname{Tr}: \mu([T])>0\}$.

$$
\text { IVT }: \subseteq \operatorname{Con}[0,1] \rightrightarrows[0,1], f \mapsto f^{-1}\{0\}
$$

with $\operatorname{dom}(\mathrm{IVT}):=\{f: f(0) \cdot f(1)<0\}$

Examples of Mathematical Problems

- The Limit Problem is the mathematical problem

$$
\lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}},\left\langle p_{0}, p_{1}, \ldots\right\rangle \mapsto \lim _{i \rightarrow \infty} p_{i}
$$

with $\operatorname{dom}(\lim):=\left\{\left\langle p_{0}, p_{1}, \ldots\right\rangle:\left(p_{i}\right)_{i}\right.$ is convergent $\}$.

- Martin-Löf Randomness is the mathematical problem MLR : $2^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$ with $\operatorname{MLR}(x):=\left\{y \in 2^{\mathbb{N}}: y\right.$ is Martin-Löf random relative to $\left.x\right\}$.
- Weak Weak Kőnig's Lemma is the mathematical problem

$$
W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]
$$

with $\operatorname{dom}(W W K L):=\{T \in \operatorname{Tr}: \mu([T])>0\}$.

- The Intermediate Value Theorem is the problem

$$
\mathrm{IVT}: \subseteq \operatorname{Con}[0,1] \rightrightarrows[0,1], f \mapsto f^{-1}\{0\}
$$

with $\operatorname{dom}(\mathrm{IVT}):=\{f: f(0) \cdot f(1)<0\}$.

Examples of Mathematical Problems

- The Limit Problem is the mathematical problem

$$
\lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}},\left\langle p_{0}, p_{1}, \ldots\right\rangle \mapsto \lim _{i \rightarrow \infty} p_{i}
$$

with $\operatorname{dom}(\lim):=\left\{\left\langle p_{0}, p_{1}, \ldots\right\rangle:\left(p_{i}\right)_{i}\right.$ is convergent $\}$.

- Martin-Löf Randomness is the mathematical problem MLR : $2^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$ with
$\operatorname{MLR}(x):=\left\{y \in 2^{\mathbb{N}}: y\right.$ is Martin-Löf random relative to $\left.x\right\}$.
- Weak Weak Kőnig's Lemma is the mathematical problem

$$
W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]
$$

with $\operatorname{dom}(W W K L):=\{T \in \operatorname{Tr}: \mu([T])>0\}$.

- The Intermediate Value Theorem is the problem

$$
\mathrm{IVT}: \subseteq \operatorname{Con}[0,1] \rightrightarrows[0,1], f \mapsto f^{-1}\{0\}
$$

with $\operatorname{dom}(\mathrm{IVT}):=\{f: f(0) \cdot f(1)<0\}$.

- The Choice Problem $C_{X}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A$. PC_{X} is C_{X} restricted to sets A with $\mu(A)>0$.

Algebraic Operations

Definition

For $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq W \rightrightarrows Z$ we define:

- $f \times g: \subseteq X \times W \rightrightarrows Y \times Z,(x, w) \mapsto f(x) \times g(w)$ (Product)
- $f \sqcup g: \subseteq X \sqcup W \rightrightarrows Y \sqcup Z, z \mapsto\left\{\begin{array}{l}f(z) \text { if } z \in X \\ g(z) \text { if } z \in W\end{array}\right.$
- $f \sqcap g: \subseteq X \times W \rightrightarrows Y \sqcup Z,(x, w) \mapsto f(x) \sqcup g(w)$
- $f^{*}: \subseteq X^{*} \rightrightarrows Y^{*}, f^{*}=\bigsqcup_{i=0}^{\infty} f^{i}$
- $\widehat{f}: \subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f}=X_{i=0}^{\infty} f$
(Parallelization)
- Weihrauch reducibility induces a lattice with the coproduct \sqcup as supremum and the sum Π as infimum.
- Parallelization and star operation are closure operators in the Weihrauch lattice.

Algebraic Operations

Definition

For $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq W \rightrightarrows Z$ we define:

- $f \times g: \subseteq X \times W \rightrightarrows Y \times Z,(x, w) \mapsto f(x) \times g(w)$ (Product)
- $f \sqcup g: \subseteq X \sqcup W \rightrightarrows Y \sqcup Z, z \mapsto\left\{\begin{array}{l}f(z) \text { if } z \in X \\ g(z) \text { if } z \in W\end{array}\right.$
- $f \sqcap g: \subseteq X \times W \rightrightarrows Y \sqcup Z,(x, w) \mapsto f(x) \sqcup g(w)$
- $f^{*}: \subseteq X^{*} \rightrightarrows Y^{*}, f^{*}=\bigsqcup_{i=0}^{\infty} f^{i}$
- $\widehat{f}: \subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f}=X_{i=0}^{\infty} f$
- Weihrauch reducibility induces a lattice with the coproduct \sqcup as supremum and the sum Π as infimum.
- Parallelization and star operation are closure operators in the Weihrauch lattice.

Basic Complexity Classes and Reverse Mathematics

The Probabilistic Landscape

Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By $\varepsilon-W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}$ we denote the restriction of WKL to $\operatorname{dom}(\varepsilon-W W K L):=\{T: \mu([T])>\varepsilon\}$ for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)
ε-WWKL $<_{\mathrm{w}} \delta-\mathrm{WWKL} \Longleftrightarrow \varepsilon>\delta$ for all $\varepsilon, \delta \in[0,1]$
Proof. (Idea) " \longrightarrow " Assume $\varepsilon<\delta$. Then there are positive
integers a, b with $\varepsilon<\frac{a}{b} \leq \delta$. We consider

Then $\mathrm{C}_{a, b} \leq \mathrm{W} \varepsilon$-WWKL and $\mathrm{C}_{a, b} \not \leq \mathrm{W} \delta$-WWKL. Hence -WWKL $\neq W$-WWKL

Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By $\varepsilon-W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}$ we denote the restriction of WKL to $\operatorname{dom}(\varepsilon-W W K L):=\{T: \mu([T])>\varepsilon\}$ for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)
$\varepsilon-W W K L \leq W ~ \delta-W W K L \Longleftrightarrow \varepsilon \geq \delta$ for all $\varepsilon, \delta \in[0,1]$.
Proof. (Idea) " \Longrightarrow " Assume $\varepsilon<\delta$. Then there are positive integers a, b with $\varepsilon<\frac{a}{b} \leq \delta$. We consider

- $C_{a, b}$ which is C_{b} restricted to sets $A \subseteq\{0, \ldots, b-1\}$ with
\square
Then $\mathrm{C}_{a, b} \leq_{\mathrm{W}} \varepsilon$-WWKL and $\mathrm{C}_{a, b} \not \leq \mathrm{W} \delta$-WWKL. Hence ε-WWKL $\neq \mathrm{W} ~ \delta-W W K L$

Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By $\varepsilon-W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}$ we denote the restriction of WKL to $\operatorname{dom}(\varepsilon-W W K L):=\{T: \mu([T])>\varepsilon\}$ for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

$\varepsilon-W W K L \leq W ~$-WWKL $\Longleftrightarrow \varepsilon \geq \delta$ for all $\varepsilon, \delta \in[0,1]$.
Proof. (Idea) " \Longrightarrow " Assume $\varepsilon<\delta$. Then there are positive integers a, b with $\varepsilon<\frac{a}{b} \leq \delta$. We consider

- $C_{a, b}$ which is C_{b} restricted to sets $A \subseteq\{0, \ldots, b-1\}$ with $|A| \geq a$.
Then $C_{a, b} \leq_{W} \varepsilon$-WWKL and $C_{a, b} \not \leq_{W} \delta$-WWKL. Hence ε-WWKL $\neq \mathrm{W} \delta$-WWKL

Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By $\varepsilon-W W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}$ we denote the restriction of WKL to $\operatorname{dom}(\varepsilon-W W K L):=\{T: \mu([T])>\varepsilon\}$ for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)
 $\varepsilon-W W K L \leq W ~$-WWKL $\Longleftrightarrow \varepsilon \geq \delta$ for all $\varepsilon, \delta \in[0,1]$.

Proof. (Idea) " \Longrightarrow " Assume $\varepsilon<\delta$. Then there are positive integers a, b with $\varepsilon<\frac{a}{b} \leq \delta$. We consider

- $C_{a, b}$ which is C_{b} restricted to sets $A \subseteq\{0, \ldots, b-1\}$ with $|A| \geq a$.
Then $\mathrm{C}_{a, b} \leq \mathrm{W} \varepsilon-\mathrm{WWKL}$ and $\mathrm{C}_{a, b} \not \leq \mathrm{W} \delta$-WWKL. Hence ε-WWKL
The separation is purely topological, i.e., Weihrauch reducibility can be replaced by its continuous counterpart.

Weak Weak Kőnig's Lemma - The Uniform Scenario

Compositional Product and Implication

The Weihrauch lattice is not complete and infinite suprema and infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem f, g we define

- $f * g:=\max \left\{f_{0} \circ g_{0}: f_{0} \leq{ }_{W} f, g_{0} \leq{ }_{W} g\right\}$
- $g \rightarrow f:=\min \left\{h: f \leq_{W} g * h\right\}$
compos. product
implication

Theorem (B. and Pauly 2016)

The compositional product $f * g$ and the implication $g \rightarrow f$ exist for all problems f, g

Compositional Product and Implication

The Weihrauch lattice is not complete and infinite suprema and infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem f, g we define

- $f * g:=\max \left\{f_{0} \circ g_{0}: f_{0} \leq_{W} f, g_{0} \leq_{W} g\right\}$
- $g \rightarrow f:=\min \left\{h: f \leq_{W} g * h\right\}$
compos. product
implication

Theorem (B. and Pauly 2016)

The compositional product $f * g$ and the implication $g \rightarrow f$ exist for all problems f, g.

Martin-Löf Randomness

Proposition (B. and Pauly 2016) $M L R \equiv{ }_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right)$.

Proof. $\left(C_{\mathbb{N}} \rightarrow W W K L\right) \leq_{W}$ MLR: It suffices to prove
$W W K L \leq_{W} C_{\mathbb{N}} * M L R$, which follows from Kučera's Lemma.
$M I R<_{W}\left(C_{\mathbb{N}} \rightarrow W / M / K I\right):$ Given some h with W/M/KI $<{ }_{W} C_{\mathbb{N}} * h$
we need to prove that MLR $\leq \mathrm{w} h$. Given some universal
Martin-Löf test $\left(U_{i}\right)_{i}$, we use $A_{0}:=2^{\mathbb{N}} \backslash U_{0}$ and the fact that
Martin-Löf randoms are stable under finite changes.

Martin-Löf Randomness

Proposition (B. and Pauly 2016)
$M L R \equiv{ }_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right)$.
Proof. $\left(C_{\mathbb{N}} \rightarrow W W K L\right) \leq_{W}$ MLR: It suffices to prove $W W K L \leq_{W} C_{\mathbb{N}} * M L R$, which follows from Kučera's Lemma.
$M L R \leq_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right):$ Given some h with $W W K L \leq{ }_{W} C_{\mathbb{N}} * h$
we need to prove that MLR $\leq_{\mathrm{W}} h$. Given some universal
Martin-Löf test $\left(U_{i}\right)_{i}$, we use $A_{0}:=2^{\mathbb{N}} \backslash U_{0}$ and the fact that Martin-Löf randoms are stable under finite changes.

Martin-Löf Randomness

Proposition (B. and Pauly 2016)
$M L R \equiv{ }_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right)$.
Proof. $\left(C_{\mathbb{N}} \rightarrow W W K L\right) \leq_{W}$ MLR: It suffices to prove $W W K L \leq_{W} C_{\mathbb{N}} * M L R$, which follows from Kučera's Lemma.
$M L R \leq_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right):$ Given some h with $W W K L \leq_{W} C_{\mathbb{N}} * h$ we need to prove that $M L R \leq_{\mathrm{W}} h$. Given some universal Martin-Löf test $\left(U_{i}\right)_{i}$, we use $A_{0}:=2^{\mathbb{N}} \backslash U_{0}$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Holz 2015)
$M L R * M L R \leq W M L R$
Proof. This is a consequence of van Lambalgen's Theorem

Martin-Löf Randomness

Proposition (B. and Pauly 2016)
$M L R \equiv{ }_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right)$.
Proof. $\left(C_{\mathbb{N}} \rightarrow W W K L\right) \leq_{W}$ MLR: It suffices to prove $W W K L \leq_{W} C_{\mathbb{N}} * M L R$, which follows from Kučera's Lemma.
$M L R \leq_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right):$ Given some h with $W W K L \leq_{W} C_{\mathbb{N}} * h$ we need to prove that $M L R \leq_{\mathrm{W}} h$. Given some universal Martin-Löf test $\left(U_{i}\right)_{i}$, we use $A_{0}:=2^{\mathbb{N}} \backslash U_{0}$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)
$M L R * M L R \leq_{W} M L R$
Proof. This is a consequence of van Lambalgen's Theorem.

Martin-Löf Randomness

Proposition (B. and Pauly 2016)

$M L R \equiv{ }_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right)$.
Proof. $\left(C_{\mathbb{N}} \rightarrow W W K L\right) \leq_{W}$ MLR: It suffices to prove $W W K L \leq_{W} C_{\mathbb{N}} * M L R$, which follows from Kučera's Lemma.
$M L R \leq_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right):$ Given some h with $W W K L \leq_{W} C_{\mathbb{N}} * h$ we need to prove that $M L R \leq_{\mathrm{W}} h$. Given some universal Martin-Löf test $\left(U_{i}\right)_{i}$, we use $A_{0}:=2^{\mathbb{N}} \backslash U_{0}$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)
$M L R * M L R \leq_{W} M L R$
Proof. This is a consequence of van Lambalgen's Theorem.
\square
The class of functions $f \leq_{W}$ MLR is closed under composition.

Martin-Löf Randomness

Proposition (B. and Pauly 2016)
$M L R \equiv{ }_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right)$.
Proof. $\left(C_{\mathbb{N}} \rightarrow W W K L\right) \leq_{W}$ MLR: It suffices to prove $W W K L \leq_{W} C_{\mathbb{N}} * M L R$, which follows from Kučera's Lemma.
$M L R \leq_{W}\left(C_{\mathbb{N}} \rightarrow W W K L\right):$ Given some h with $W W K L \leq_{W} C_{\mathbb{N}} * h$ we need to prove that $M L R \leq_{\mathrm{W}} h$. Given some universal Martin-Löf test $\left(U_{i}\right)_{i}$, we use $A_{0}:=2^{\mathbb{N}} \backslash U_{0}$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)
MLR * MLR \leq_{W} MLR
Proof. This is a consequence of van Lambalgen's Theorem.

Corollary

The class of functions $f \leq_{W}$ MLR is closed under composition.

Jumps

Definition

The jump $f^{\prime}: \subseteq X \rightrightarrows Y$ of $f: \subseteq X \rightrightarrows Y$ is the same problem, but with the input representation δ of X replaced by $\delta^{\prime}:=\delta \circ$ lim.

A name of an object $x \in X$ with respect to δ^{\prime} is a sequence that converges to a name with respect to δ. Examples:

Jumps

Definition

The jump $f^{\prime}: \subseteq X \rightrightarrows Y$ of $f: \subseteq X \rightrightarrows Y$ is the same problem, but with the input representation δ of X replaced by $\delta^{\prime}:=\delta \circ$ lim.

A name of an object $x \in X$ with respect to δ^{\prime} is a sequence that converges to a name with respect to δ. Examples:

- $\mathrm{id}^{\prime} \overline{\overline{s W}}^{\lim }, W \mathrm{KL}^{\prime} \equiv_{\mathrm{sW}} \mathrm{KL} \equiv_{\mathrm{sW}} B W T_{\mathbb{R}}, n-\mathrm{RAN} \equiv_{\mathrm{sW}} \mathrm{MLR}^{(n-1)}$.

Jumps

Definition

The jump $f^{\prime}: \subseteq X \rightrightarrows Y$ of $f: \subseteq X \rightrightarrows Y$ is the same problem, but with the input representation δ of X replaced by $\delta^{\prime}:=\delta \circ$ lim.

A name of an object $x \in X$ with respect to δ^{\prime} is a sequence that converges to a name with respect to δ. Examples:

- $\mathrm{id}^{\prime} \equiv_{\mathrm{sW}} \lim , \mathrm{WKL}^{\prime} \equiv_{\mathrm{sW}} \mathrm{KL} \equiv_{\mathrm{sW}} B W T_{\mathbb{R}}, n-\mathrm{RAN} \equiv_{\mathrm{sW}} \mathrm{MLR}^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

$\mathrm{PA} \equiv_{\mathrm{W}}\left(\mathrm{C}_{\mathbb{N}}^{\prime} \rightarrow \mathrm{WKL}\right)$ and $\mathrm{COH} \equiv_{\mathrm{W}}\left(\lim \rightarrow \mathrm{WKL}^{\prime}\right)$.

Jumps

Definition

The jump $f^{\prime}: \subseteq X \rightrightarrows Y$ of $f: \subseteq X \rightrightarrows Y$ is the same problem, but with the input representation δ of X replaced by $\delta^{\prime}:=\delta \circ$ lim.

A name of an object $x \in X$ with respect to δ^{\prime} is a sequence that converges to a name with respect to δ. Examples:

- $\mathrm{id}^{\prime} \equiv_{\mathrm{sW}} \lim , \mathrm{WKL}^{\prime} \equiv_{\mathrm{sW}} \mathrm{KL} \equiv_{\mathrm{sW}} \mathrm{BWT}_{\mathbb{R}}, n-\mathrm{RAN} \equiv_{\mathrm{sW}} \mathrm{MLR}^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)
$\mathrm{PA} \equiv{ }_{\mathrm{W}}\left(\mathrm{C}_{\mathbb{N}}^{\prime} \rightarrow \mathrm{WKL}\right)$ and $\mathrm{COH} \equiv_{\mathrm{W}}\left(\lim \rightarrow \mathrm{WKL}^{\prime}\right)$.
Proposition (B., Gherardi and Marcone 2012)
\square

Jumps

Definition

The jump $f^{\prime}: \subseteq X \rightrightarrows Y$ of $f: \subseteq X \rightrightarrows Y$ is the same problem, but with the input representation δ of X replaced by $\delta^{\prime}:=\delta \circ$ lim.

A name of an object $x \in X$ with respect to δ^{\prime} is a sequence that converges to a name with respect to δ. Examples:

- $\mathrm{id}^{\prime} \equiv_{\mathrm{sW}} \lim , \mathrm{WKL}^{\prime} \equiv_{\mathrm{sW}} \mathrm{KL} \equiv_{\mathrm{sW}} B W T_{\mathbb{R}}, n-\mathrm{RAN} \equiv_{\mathrm{sW}} \mathrm{MLR}^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)
$\mathrm{PA} \equiv_{\mathrm{W}}\left(\mathrm{C}_{\mathbb{N}}^{\prime} \rightarrow \mathrm{WKL}\right)$ and $\mathrm{COH} \equiv_{\mathrm{W}}\left(\lim \rightarrow \mathrm{WKL}^{\prime}\right)$.
Proposition (B., Gherardi and Marcone 2012)
$f \leq_{\mathrm{sW}} g \Longrightarrow f^{\prime} \leq_{\mathrm{sW}} g^{\prime}$.

- $f<_{\mathrm{W}} f^{\prime}$ does not hold in general: $f \equiv_{\mathrm{sW}} f^{\prime}$ for a constant f.

Jumps

Definition

The jump $f^{\prime}: \subseteq X \rightrightarrows Y$ of $f: \subseteq X \rightrightarrows Y$ is the same problem, but with the input representation δ of X replaced by $\delta^{\prime}:=\delta \circ \lim$.

A name of an object $x \in X$ with respect to δ^{\prime} is a sequence that converges to a name with respect to δ. Examples:

- $\mathrm{id}^{\prime} \equiv_{\mathrm{sW}} \lim , \mathrm{WKL}^{\prime} \equiv_{\mathrm{sW}} \mathrm{KL} \equiv_{\mathrm{sW}} B W T_{\mathbb{R}}, n-\mathrm{RAN} \equiv_{\mathrm{sW}} \mathrm{MLR}^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)
$\mathrm{PA} \equiv_{\mathrm{W}}\left(\mathrm{C}_{\mathbb{N}}^{\prime} \rightarrow \mathrm{WKL}\right)$ and $\mathrm{COH} \equiv_{\mathrm{W}}\left(\lim \rightarrow \mathrm{WKL}^{\prime}\right)$.
Proposition (B., Gherardi and Marcone 2012)
$f \leq_{\mathrm{sW}} g \Longrightarrow f^{\prime} \leq_{\mathrm{sW}} g^{\prime}$.

- $f<_{\mathrm{W}} f^{\prime}$ does not hold in general: $f \equiv_{\mathrm{sW}} f^{\prime}$ for a constant f.
- $f<_{\mathrm{W}} g$ is compatible with $f^{\prime} \equiv_{\mathrm{W}} g^{\prime}, f^{\prime}<_{\mathrm{W}} g^{\prime}, g^{\prime}<_{\mathrm{W}} f^{\prime},\left.f^{\prime}\right|_{\mathrm{W}} g^{\prime}$.

Jump Inversion

Theorem (B., Hölzl and Kuyper 2016)

1. $f^{\prime} \leq_{\mathrm{W}} g^{\prime}$ relative to $p \Longrightarrow f \leq_{\mathrm{W}} g$ relative to p^{\prime}.
2. $f^{\prime} \leq_{\mathrm{sW}} g^{\prime}$ relative to $p \Longrightarrow f \leq_{\mathrm{sW}} g$ relative to p^{\prime}.

Proof. Jump Control Theorem (B., Hendtlass and Kreuzer 2015)

If there exist a continuous F such that the diagram commutes,

Jump Inversion

Theorem (B., Hölzl and Kuyper 2016)

1. $f^{\prime} \leq_{\mathrm{W}} g^{\prime}$ relative to $p \Longrightarrow f \leq_{\mathrm{W}} g$ relative to p^{\prime}.
2. $f^{\prime} \leq_{\mathrm{sW}} g^{\prime}$ relative to $p \Longrightarrow f \leq_{\mathrm{sW}} g$ relative to p^{\prime}.

Proof. Jump Control Theorem (B., Hendtlass and Kreuzer 2015):

If there exist a continuous F such that the diagram commutes, then G is continuous.

Jump Inversion

Theorem (B., Hölzl and Kuyper 2016)

1. $f^{\prime} \leq_{W} g^{\prime}$ relative to $p \Longrightarrow f \leq_{W} g$ relative to p^{\prime}.
2. $f^{\prime} \leq_{\mathrm{sW}} g^{\prime}$ relative to $p \Longrightarrow f \leq_{\mathrm{sW}} g$ relative to p^{\prime}.

Proof. Jump Control Theorem (B., Hendtlass and Kreuzer 2015):

If there exist F computable relative to p such that the diagram commutes, then G is computable relative to p^{\prime}.

Weak Weak Kőnig's Lemma - Jumps (work in progress)

Theorem (Hölzl and Miyabe 2015)

$W R<_{W} S R<_{W} C R<_{W} M L R<_{W} W 2 R<_{W} 2-R A N$.
Proof. The strictness has been proved using hyperimmune degrees, high degrees and minimal degrees.

- WR: Kurtz random
- SR: Schnorr random
- CR: computable random
- W2R: weakly 2-random
- n-RAN: n-random

Question

Find other characterizations of randomness notions R of the form $R \equiv{ }_{\mathrm{W}}(A \rightarrow B)$, e.g., $1-\mathrm{GEN} \equiv_{\mathrm{W}}\left(? \rightarrow \mathrm{BCT}_{0}^{\prime}\right)$.

Theorem (Hölzl and Miyabe 2015)

$W R<_{W} S R<_{W} C R<_{W} M L R<_{W} W 2 R<_{W} 2-R A N$.
Proof. The strictness has been proved using hyperimmune degrees, high degrees and minimal degrees.

- WR: Kurtz random
- SR: Schnorr random
- CR: computable random
- W2R: weakly 2-random
- n-RAN: n-random

Question

Find other characterizations of randomness notions R of the form $R \equiv_{\mathrm{W}}(A \rightarrow B)$, e.g., $1-\mathrm{GEN} \equiv_{\mathrm{W}}\left(? \rightarrow \mathrm{BCT}_{0}^{\prime}\right)$.

Uniform Theorem of Kurtz

Theorem of Kurtz. Every 2-random computes a 1-generic.
Theorem (B., Hendtass and Kreuzer 2015)
$1-G E N<w$ 2-RAN.
Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)
$\mathrm{BCT}^{\prime} \circ \star_{\mathrm{w}}$ W/W/KI ${ }^{(n)}$ for all $n \in \mathbb{N}$

Theorem of Kurtz. Every 2-random computes a 1-generic.
Theorem (B., Hendtlass and Kreuzer 2015)
$1-G E N<W$ 2-RAN.
Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)
$\mathrm{BCT}_{0}^{\prime} \not \leq \mathrm{W} W W K \mathrm{~W}^{(n)}$ for all $n \in \mathbb{N}$.
Proof.
that no point of A is low for Ω. WWKL ${ }^{(n)}$ has a realizer that maps
computable inputs to outputs that are low for Ω for $n \geq 1$. \square

Uniform Theorem of Kurtz

Theorem of Kurtz. Every 2-random computes a 1-generic.
Theorem (B., Hendtlass and Kreuzer 2015)
$1-G E N<w 2-R A N$.
Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)
$\mathrm{BCT}_{0}^{\prime} \not \mathrm{ZW}_{\mathrm{W}} \mathrm{WWKL}^{(n)}$ for all $n \in \mathbb{N}$.
Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^{\mathbb{N}}$ such that no point of A is low for Ω. WWKL ${ }^{(n)}$ has a realizer that maps computable inputs to outputs that are low for Ω for $n \geq 1$. \square

Uniform Theorem of Kurtz

Theorem of Kurtz. Every 2-random computes a 1-generic.
Theorem (B., Hendtlass and Kreuzer 2015)
$1-G E N<w 2-R A N$.
Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)
$\mathrm{BCT}_{0}^{\prime} \not \mathbb{Z}_{\mathrm{W}} \mathrm{WWKL}^{(n)}$ for all $n \in \mathbb{N}$.
Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^{\mathbb{N}}$ such that no point of A is low for Ω. WWKL ${ }^{(n)}$ has a realizer that maps computable inputs to outputs that are low for Ω for $n \geq 1$.

Corollary
$B C T_{0}^{\prime} \not \mathbb{Z}_{W} 1-G E N$.

Uniform Theorem of Kurtz

Theorem of Kurtz. Every 2-random computes a 1-generic.
Theorem (B., Hendtlass and Kreuzer 2015)
$1-G E N<w$ 2-RAN.
Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)
$\mathrm{BCT}_{0}^{\prime} \not \leq \mathrm{W} \mathrm{WWKL}^{(n)}$ for all $n \in \mathbb{N}$.
Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^{\mathbb{N}}$ such that no point of A is low for Ω. WWKL ${ }^{(n)}$ has a realizer that maps computable inputs to outputs that are low for Ω for $n \geq 1$.

Corollary

$$
\mathrm{BCT}_{0}^{\prime} \not \mathrm{Z}_{\mathrm{W}} 1-\mathrm{GEN} .
$$

Vitali Covering Theorem

Vitali Covering Theorem

- A point $x \in \mathbb{R}$ is captured by a sequence $\mathcal{I}=\left(I_{n}\right)_{n}$ of open intervals, if for every $\varepsilon>0$ there exists some $n \in \mathbb{N}$ with $\operatorname{diam}\left(I_{n}\right)<\varepsilon$ and $x \in I_{n}$.
- \mathcal{I} is a Vitali cover of $A \subseteq \mathbb{R}$, if every $x \in A$ is captured by \mathcal{I}.
- I eliminates A, if the I_{n} are pairwise disjoint and $\lambda(A \backslash \bigcup \mathcal{I})=0$ (where λ denotes the Lebesgue measure).

Theorem (Vitali Covering Theorem)

If \mathcal{I} is a Vitali cover of $[0,1]$, then thare exists a subsequence \mathcal{J} of I that eliminates $[0,1]$

Vitali Covering Theorem

- A point $x \in \mathbb{R}$ is captured by a sequence $\mathcal{I}=\left(I_{n}\right)_{n}$ of open intervals, if for every $\varepsilon>0$ there exists some $n \in \mathbb{N}$ with $\operatorname{diam}\left(I_{n}\right)<\varepsilon$ and $x \in I_{n}$.
- \mathcal{I} is a Vitali cover of $A \subseteq \mathbb{R}$, if every $x \in A$ is captured by \mathcal{I}.
- I eliminates A, if the I_{n} are pairwise disjoint and $\lambda(A \backslash \bigcup \mathcal{I})=0$ (where λ denotes the Lebesgue measure).

Theorem (Vitali Covering Theorem)

If \mathcal{I} is a Vitali cover of $[0,1]$, then there exists a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0,1]$.

Vitali Covering Theorem

Theorem (Brown, Giusto and Simpson 2002)
Over RCA_{0} the Vitali Covering Theorem is equivalent to Weak Weak König's Lemma WWKL ${ }_{0}$.
> - Weak Weak Kőnig's Lemma is Weak Kőnig's Lemma restricted to trees whose set of infinite paths has positive measure.

Vitali Covering Theorem

Theorem (Brown, Giusto and Simpson 2002)
Over RCA RC_{0} the Vitali Covering Theorem is equivalent to Weak Weak König's Lemma WWKL ${ }_{0}$.

- Weak Weak Kőnig's Lemma is Weak Kőnig's Lemma restricted to trees whose set of infinite paths has positive measure.

> Theorem (Diener and Hedin 2012)
> Using intuitionistic logic (and countable and dependent choice) the Vitali Covering Theorem is equivalent to Weak Weak Kőnig's Lemma WWKL.

Vitali Covering Theorem

Theorem (Brown, Giusto and Simpson 2002)

Over RCA_{0} the Vitali Covering Theorem is equivalent to Weak Weak König's Lemma WWKL_{0}.

- Weak Weak Kőnig's Lemma is Weak Kőnig's Lemma restricted to trees whose set of infinite paths has positive measure.

Theorem (Diener and Hedin 2012)
Using intuitionistic logic (and countable and dependent choice) the Vitali Covering Theorem is equivalent to Weak Weak König's Lemma WWKL.

Vitali Covering Theorem

- \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I}=\bigcup_{n=0}^{\infty} I_{n}$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- VCT_{0} : Given a Vitali cover \mathcal{I} of $[0,1]$, find a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0,1]$.
- VCT_{1} : Given a saturated \mathcal{I} that does not admit a subsequence that eliminates $[0,1]$, find a point that is not covered by \mathcal{I}.
- VCT_{2} : Given a sequence \mathcal{I} that does not admit a subsequence that eliminates $[0,1]$, find a point that is not captured by \mathcal{I}.

Vitali Covering Theorem

- \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I}=\bigcup_{n=0}^{\infty} I_{n}$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- VCT_{0} : Given a Vitali cover \mathcal{I} of $[0,1]$, find a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0,1]$.
- VCT_{1} : Given a saturated \mathcal{I} that does not admit a subsequence that eliminates $[0,1]$, find a point that is not covered by \mathcal{I}.
- VCT_{2} : Given a sequence \mathcal{I} that does not admit a subsequence that eliminates $[0,1]$, find a point that is not captured by \mathcal{I}.
- $\mathrm{VCT}_{0}:(S \wedge C) \rightarrow E$,
- $\mathrm{VCT}_{1}:(S \wedge \neg E) \rightarrow \neg C$,
- $\mathrm{VCT}_{2}: \neg E \rightarrow(\neg S \vee \neg C)$.

Vitali Covering Theorem

- \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I}=\bigcup_{n=0}^{\infty} I_{n}$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- VCT_{0} : Given a Vitali cover \mathcal{I} of $[0,1]$, find a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0,1]$.
- VCT_{1} : Given a saturated \mathcal{I} that does not admit a subsequence that eliminates $[0,1]$, find a point that is not covered by \mathcal{I}.
- VCT_{2} : Given a sequence \mathcal{I} that does not admit a subsequence that eliminates $[0,1]$, find a point that is not captured by \mathcal{I}.
- VCT_{0} is computable,
- $\mathrm{VCT}_{1} \equiv_{\mathrm{sW}}$ WWKL,

Vitali Covering Theorem

- \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I}=\bigcup_{n=0}^{\infty} I_{n}$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- VCT_{0} : Given a Vitali cover \mathcal{I} of $[0,1]$, find a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0,1]$.
- VCT_{1} : Given a saturated \mathcal{I} that does not admit a subsequence that eliminates $[0,1]$, find a point that is not covered by \mathcal{I}.
- VCT_{2} : Given a sequence \mathcal{I} that does not admit a subsequence that eliminates $[0,1]$, find a point that is not captured by \mathcal{I}.

Theorem (B., Gherardi, Hölzl and Pauly 2016)

- VCT_{0} is computable,
- $\mathrm{VCT}_{1} \equiv_{\mathrm{sW}}$ WWKL,
- $\mathrm{VCT}_{2} \equiv_{\mathrm{sW}} \mathrm{WWKL} \times \mathrm{C}_{\mathbb{N}}$.

Vitali Covering Theorem

Proof.

- The proof of computability of VCT_{0} is based on a construction that repeats steps of the classical proof of the Vitali Covering Theorem (and is not just based on a waiting strategy).
- The proof of $\mathrm{VCT}_{1} \equiv_{\mathrm{sW}} \mathrm{WWKL}$ is based on the equivalence chain $\mathrm{VCT}_{1} \equiv_{\mathrm{sW}} \mathrm{PC}_{[0,1]} \equiv_{\mathrm{sW}}$ WWKL.
- We use a Lemma by Brown, Giusto and Simpson on "almost Vitali covers" in order to prove $\mathrm{VCT}_{2} \leq_{s W} W W K L \times C_{\mathbb{N}}$. The harder direction is the opposite one for which it suffices to show $\mathrm{C}_{\mathbb{N}} \times \mathrm{VCT}_{2} \leq_{\mathrm{sW}} \mathrm{VCT}_{2}$ by an explicit construction:

Vitali Covering Theorem in the Weihrauch Lattice

Vitali Covering Theorem in the Weihrauch Lattice

- ACT : Int $\rightrightarrows[0,1], \mathcal{I} \mapsto[0,1] \backslash \bigcup \mathcal{I}$, where $\operatorname{dom}(A C T)$ is the set of all non-disjoint $\mathcal{I}=\left(I_{n}\right)_{n}$ with $\sum_{n=0}^{\infty} \lambda\left(I_{n}\right)<1$.

Las Vegas and Monte Carlo Computability

Non-Deterministic Turing Machines

Condition: $(\forall x \in \operatorname{dom}(f))\{r \in R: r$ does not fail with $x\} \neq \emptyset$

Las Vegas Turing Machines

Condition: $(\forall x \in \operatorname{dom}(f)) \mu\{r \in R: r$ does not fail with $x\}>0$

Monte Carlo Turing Machines

Condition: $(\forall x \in \operatorname{dom}(f)) \mu\{r \in R: r$ does not fail with $x\}>0$

Non-Deterministic Computability

Proposition (B., de Brecht and Pauly 2012)

$f \leq \mathrm{WWKL} \Longleftrightarrow f$ is non-deterministically computable.
Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

```
Theorem (Gherardi and Marcone 2009)
The class of f}\leq\mp@subsup{\leq}{W}{W}W\textrm{WL}\mathrm{ is closed under composition.
There are at least three independent proofs:
    - The original proof in terms of the separation problem
    - A proof by B. and Gherardi in terms of Kleene's ternary logic
    - A very simple proof in terms of non-deterministically
    computable functions by B., de Brecht and Pauly.
```


Non-Deterministic Computability

Proposition (B., de Brecht and Pauly 2012)
$f \leq_{W} W \mathrm{WL} \Longleftrightarrow f$ is non-deterministically computable.
Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of $f \leq W$ WKL is closed under composition.
There are at least three independent proofs:

- The original proof in terms of the separation problem.
- A proof by B. and Gherardi in terms of Kleene's ternary logic.
- A very simple proof in terms of non-deterministically computable functions by B., de Brecht and Pauly.

Non-Deterministic Computability

Proposition (B., de Brecht and Pauly 2012)
$f \leq_{W} W \mathrm{WKL} \Longleftrightarrow f$ is non-deterministically computable.
Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of $f \leq_{W} W K L$ is closed under composition.
There are at least three independent proofs:

- The original proof in terms of the separation problem.
- A proof by B. and Gherardi in terms of Kleene's ternary logic.
- A very simple proof in terms of non-deterministically computable functions by B., de Brecht and Pauly.

Corollary

$W K L \equiv_{W} W K L * W K L$.

Las Vegas Computability

Proposition (B., Gherardi and Hölzl 2015)
$f \leq_{W} W W K L \Longleftrightarrow f$ is Las Vegas computable.
Proposition
$W W K L \equiv{ }_{w W} W W K L * W K L$.
Can be proved as for WKL in terms of Las Vegas computable functions with an additional application of Fubini's Theorem.

Corellary
Las Vegas computable functions are closed under composition.

Las Vegas Computability

Proposition (B., Gherardi and Hölzl 2015)
$f \leq_{W} W W K L \Longleftrightarrow f$ is Las Vegas computable.
Proposition
$W W K L \equiv{ }_{W} W W K L * W W K L$.
Can be proved as for WKL in terms of Las Vegas computable functions with an additional application of Fubini's Theorem.

Corollary
Las Vegas computable functions are closed under composition.

Las Vegas Computability

Proposition (B., Gherardi and Hölzl 2015)

$f \leq_{W}$ WWKL $\Longleftrightarrow f$ is Las Vegas computable.

Proposition

$W W K L \equiv W W K L * W W K L$.

Can be proved as for WKL in terms of Las Vegas computable functions with an additional application of Fubini's Theorem.

Corollary

Las Vegas computable functions are closed under composition.

Monte Carlo Computability

Proposition (B., Hölzl and Kuyper 2016)
$f \leq_{\mathrm{W}} \mathrm{PC}_{\mathbb{R}}^{\prime} \equiv_{\mathrm{W}} \mathrm{WWKL}{ }^{\prime} \times \mathrm{C}_{\mathbb{N}}^{\prime} \Longleftrightarrow f$ is Monte Carlo computable.
This result is based on a classification of positive G_{δ}-choice by B ., Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)
$\mathrm{WWKL}{ }^{\prime} * W W K L^{\prime} \equiv_{\mathrm{W}} \mathrm{PC}_{2^{\mathbb{N}}}^{\prime} * \mathrm{PC}_{2^{\mathbb{N}}}^{\prime} \equiv_{\mathrm{W}} \mathrm{PC}_{\mathbb{R}^{\prime}}^{\prime} * \mathrm{PC}_{\mathbb{R}}^{\prime} \equiv{ }_{\mathrm{W}} \mathrm{PC}_{\mathbb{R}}^{\prime}$
This contrasts WML' * WIKI' $=_{W}$ W/KL'
Corollary
Monte Carlo computable functions are closed under composition.

Monte Carlo Computability

Proposition (B., Hölzl and Kuyper 2016)

$f \leq_{W} \mathrm{PC}_{\mathbb{R}}^{\prime} \equiv{ }_{\mathrm{W}} \mathrm{WWKL}{ }^{\prime} \times \mathrm{C}_{\mathbb{N}}^{\prime} \Longleftrightarrow f$ is Monte Carlo computable.
This result is based on a classification of positive G_{δ}-choice by $\mathrm{B}_{\text {., }}$ Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)
$\mathrm{WWKL}{ }^{\prime} * W W K L^{\prime} \equiv{ }_{W} \mathrm{PC}_{2^{\mathbb{N}}}^{\prime} * \mathrm{PC}_{2^{\mathbb{N}}}^{\prime} \equiv{ }_{\mathrm{W}} \mathrm{PC}_{\mathbb{R}}^{\prime} * \mathrm{PC}_{\mathbb{R}}^{\prime} \equiv{ }_{\mathrm{W}} \mathrm{PC}_{\mathbb{R}}^{\prime}$.
This contrasts $\mathrm{WKL}^{\prime} * \mathrm{WKL}^{\prime} \equiv{ }_{\mathrm{W}} \mathrm{WKL}{ }^{\prime \prime}$.
Corollary
Monte Carlo computable functions are closed under composition.

Monte Carlo Computability

Proposition (B., Hölzl and Kuyper 2016)

$f \leq_{\mathrm{W}} \mathrm{PC}_{\mathbb{R}}^{\prime} \equiv{ }_{\mathrm{W}} \mathrm{WWKL}{ }^{\prime} \times \mathrm{C}_{\mathbb{N}}^{\prime} \Longleftrightarrow f$ is Monte Carlo computable.
This result is based on a classification of positive G_{δ}-choice by $\mathrm{B}_{\text {., }}$ Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)
$W W K L^{\prime} * W W K L^{\prime} \equiv_{W} \mathrm{PC}_{2^{\mathbb{N}}}^{\prime} * \mathrm{PC}_{2^{\mathbb{N}}}^{\prime} \equiv_{\mathrm{W}} \mathrm{PC}_{\mathbb{R}}^{\prime} * \mathrm{PC}_{\mathbb{R}}^{\prime} \equiv_{\mathrm{W}} \mathrm{PC}_{\mathbb{R}}^{\prime}$.
This contrasts $\mathrm{WKL}^{\prime} * \mathrm{WKL}^{\prime} \equiv{ }_{\mathrm{W}} \mathrm{WKL}{ }^{\prime \prime}$.
Corollary
Monte Carlo computable functions are closed under composition.

Classes of Computability

\lim

Sorting

Definition

SORT $_{n}:\{0,1, \ldots, n-1\}^{\mathbb{N}} \rightarrow\{0,1, \ldots, n-1\}^{\mathbb{N}}$ is defined by

$$
\operatorname{SORT}_{n}(p):=0^{k_{0}} 1^{k_{1}} \ldots(m-1)^{k_{m-1}} \widehat{m}
$$

if $m<n$ is the smallest digit that appears infinitely often in p and each digit $i<m$ appears exactly k_{i} times in p.

Sorting

Definition

SORT $_{n}:\{0,1, \ldots, n-1\}^{\mathbb{N}} \rightarrow\{0,1, \ldots, n-1\}^{\mathbb{N}}$ is defined by

$$
\operatorname{SORT}_{n}(p):=0^{k_{0}} 1^{k_{1}} \ldots(m-1)^{k_{m-1}} \widehat{m}
$$

if $m<n$ is the smallest digit that appears infinitely often in p and each digit $i<m$ appears exactly k_{i} times in p.

0	3	2	13	31	2	1	3	4		4	3			
SORT_{5}														
0	1	1					3	3	3		3			

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

\square
\square

Sorting

Definition

$\operatorname{SORT}_{n}:\{0,1, \ldots, n-1\}^{\mathbb{N}} \rightarrow\{0,1, \ldots, n-1\}^{\mathbb{N}}$ is defined by

$$
\operatorname{SORT}_{n}(p):=0^{k_{0}} 1^{k_{1}} \ldots(m-1)^{k_{m-1}} \widehat{m}
$$

if $m<n$ is the smallest digit that appears infinitely often in p and each digit $i<m$ appears exactly k_{i} times in p.

0	3	2	$1 \mid 3$	311	12	11	3	4	促	4				
SORT_{5}														
0		1				3	3	3	3	3				

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

- $\mathrm{C}_{\mathbb{N}} \leq_{\mathrm{sW}} \mathrm{SORT}_{2} \leq_{\mathrm{sW}} \mathrm{C}_{\mathbb{N}}^{\prime}$
- IVT \leq_{W} SORT $_{2} \leq_{W} W_{W W L}{ }^{\prime}$

Sorting in the Weihrauch Lattice

Sorting and Algebraic Machine Models

Besides COH sorting is the only problem that we know that is low 2 but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)
$\lim * \lim * \mathrm{SORT}_{2} \leq_{\mathrm{W}} \lim * \lim$ and $\lim * \mathrm{SORT}_{2} \not \leq \mathrm{W} \lim$.
Neumann and Pauly proved that SORT ${ }_{2}^{*}$ characterizes the class of
functions computable by certain algebraic machine models.

Sorting and Algebraic Machine Models

Besides COH sorting is the only problem that we know that is low 2 but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)
$\lim * \lim * \mathrm{SORT}_{2} \leq_{\mathrm{W}} \lim * \lim$ and $\lim * \mathrm{SORT}_{2} \not \leq \mathrm{W} \lim$.
Neumann and Pauly proved that SORT_{2}^{*} characterizes the class of functions computable by certain algebraic machine models.

Corollary
BSS computable functions $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ are computable on Monte Carlo machines.

Sorting and Algebraic Machine Models

Besides COH sorting is the only problem that we know that is low 2 but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016) $\lim * \lim * \mathrm{SORT}_{2} \leq_{\mathrm{W}} \lim * \lim$ and $\lim * \mathrm{SORT}_{2} \not \mathrm{~K}_{\mathrm{W}} \lim$.

Neumann and Pauly proved that SORT_{2}^{*} characterizes the class of functions computable by certain algebraic machine models.

Corollary

BSS computable functions $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ are computable on Monte Carlo machines.

References

- F.G. Dorais, D.D. Dzhafarov, J.L. Hirst, J.R. Mileti, P. Shafer On Uniform Relationships Between Combinatorial Problems, Transactions of the AMS 368:2 (2016) 1321-1359
- Vasco Brattka, Guido Gherardi and Rupert Hölzl Probabilistic Computability and Choice, Information and Computation 242 (2015) 249-286
- Vasco Brattka, Guido Gherardi and Rupert Hölzl Las Vegas Computability and Algorithmic Randomness, STACS 2015, vol. 30 of LIPIcs (2015) 130-142
- Laurent Bienvenu, Rutger Kuyper

Parallel and Serial Jumps of Weak Weak Kőnig's Lemma, Rod Downey Festschrift, LNCS, Springer (to appear)

- Vasco Brattka, Guido Gherardi, Rupert Hölzl and Arno Pauly The Vitali Covering Theorem in the Weihrauch Lattice, Rod Downey Festschrift, LNCS, Springer (to appear)
- Eike Neumann and Arno Pauly A topological view on algebraic computation models, arXiv, 1602.08004, 2016.

