Probabilistic Computability and Randomness in the Weihrauch Lattice

Vasco Brattka

Universität der Bundeswehr München, Germany University of Cape Town, South Africa

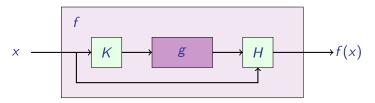
Algorithmic Randomness Interacts with Analysis and Ergodic Theory Oaxaca, Mexico, 4–9 December 2016

1 The Weihrauch Lattice

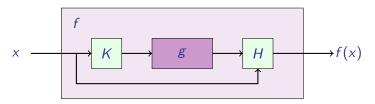
2 Vitali Covering Theorem

3 Las Vegas and Monte Carlo Computability

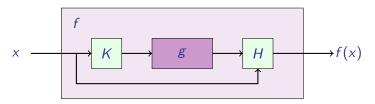
The Weihrauch Lattice



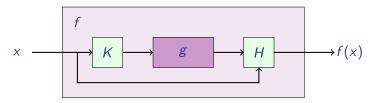
- ▶ *f* is Weihrauch reducible to *g*, $f \leq_W g$, if there are computable $H :\subseteq X \times W \Rightarrow Y$, $K :\subseteq X \Rightarrow Z$ such that $H(\operatorname{id}_X, gK) \sqsubseteq f$.
- ▶ *f* is strongly Weihrauch reducible to *g*, $f \leq_{sW} g$, if there are computable $H :\subseteq W \Rightarrow Y$, $K :\subseteq X \Rightarrow Z$ such that $HgK \sqsubseteq f$.
- Equivalences $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.



- ► f is Weihrauch reducible to g, $f \leq_W g$, if there are computable $H :\subseteq X \times W \Rightarrow Y$, $K :\subseteq X \Rightarrow Z$ such that $H(\operatorname{id}_X, gK) \sqsubseteq f$.
- *f* is strongly Weihrauch reducible to *g*, *f* ≤_{sW} *g*, if there are computable *H* :⊆ *W* ⇒ *Y*, *K* :⊆ *X* ⇒ *Z* such that *HgK* ⊑ *f*.
- Equivalences $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.



- ▶ *f* is Weihrauch reducible to *g*, $f \leq_W g$, if there are computable $H :\subseteq X \times W \Rightarrow Y$, $K :\subseteq X \Rightarrow Z$ such that $H(\operatorname{id}_X, gK) \sqsubseteq f$.
- *f* is strongly Weihrauch reducible to *g*, *f* ≤_{sW} *g*, if there are computable *H* :⊆ *W* ⇒ *Y*, *K* :⊆ *X* ⇒ *Z* such that *HgK* ⊑ *f*.
- Equivalences $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.



- ▶ *f* is Weihrauch reducible to *g*, $f \leq_W g$, if there are computable $H :\subseteq X \times W \Rightarrow Y$, $K :\subseteq X \Rightarrow Z$ such that $H(\operatorname{id}_X, gK) \sqsubseteq f$.
- ► f is strongly Weihrauch reducible to g, $f \leq_{sW} g$, if there are computable $H :\subseteq W \Rightarrow Y$, $K :\subseteq X \Rightarrow Z$ such that $HgK \sqsubseteq f$.
- Equivalences $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.

- ▶ The Limit Problem is the mathematical problem $\lim : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, ... \rangle \mapsto \lim_{i \to \infty} p_i$ with dom(lim) := { $\langle p_0, p_1, ... \rangle : (p_i)_i$ is convergent }.
- ► Martin-Löf Randomness is the mathematical problem MLR : 2^N ⇒ 2^N with

 $MLR(x) := \{y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x\}.$

▶ Weak Weak Kőnig's Lemma is the mathematical problem WWKL :⊂ Tr $\Rightarrow 2^{\mathbb{N}}$. $T \mapsto [T]$

with dom(WWKL) := { $T \in Tr : \mu([T]) > 0$ }.

The Intermediate Value Theorem is the problem

 $\mathsf{IVT}:\subseteq\mathsf{Con}[0,1]\rightrightarrows[0,1],f\mapsto f^{-1}\{0\}$

with dom(IVT) := $\{f : f(0) \cdot f(1) < 0\}$.

The Choice Problem C_X :⊆ A_(X) ⇒ X, A → A.
PC_X is C_X restricted to sets A with µ(A) > 0.

- ► The Limit Problem is the mathematical problem $\lim :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, ... \rangle \mapsto \lim_{i \to \infty} p_i$ with dom(lim) := { $\langle p_0, p_1, ... \rangle : (p_i)_i$ is convergent }.
- ▶ Martin-Löf Randomness is the mathematical problem $MLR: 2^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$ with

 $MLR(x) := \{y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x\}.$

▶ Weak Weak Kőnig's Lemma is the mathematical problem WWKL :⊆ Tr $\Rightarrow 2^{\mathbb{N}}, T \mapsto [T]$

with dom(WWKL) := { $T \in Tr : \mu([T]) > 0$ }.

The Intermediate Value Theorem is the problem

 $\mathsf{IVT}:\subseteq\mathsf{Con}[0,1]\rightrightarrows[0,1],f\mapsto f^{-1}\{0\}$

with dom(IVT) := $\{f : f(0) \cdot f(1) < 0\}.$

▶ The Choice Problem $C_X :\subseteq A_-(X) \rightrightarrows X, A \mapsto A$. PC_X is C_X restricted to sets A with $\mu(A) > 0$.

- ► The Limit Problem is the mathematical problem $\lim :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, ... \rangle \mapsto \lim_{i \to \infty} p_i$ with dom(lim) := { $\langle p_0, p_1, ... \rangle : (p_i)_i$ is convergent }.
- ▶ Martin-Löf Randomness is the mathematical problem $MLR: 2^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$ with

 $MLR(x) := \{y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x\}.$

► Weak Weak Kőnig's Lemma is the mathematical problem WWKL :⊂ Tr $\Rightarrow 2^{\mathbb{N}}$, $T \mapsto [T]$

with dom(WWKL) := { $T \in Tr : \mu([T]) > 0$ }.

The Intermediate Value Theorem is the problem

 $\mathsf{IVT}:\subseteq\mathsf{Con}[0,1]\rightrightarrows[0,1],f\mapsto f^{-1}\{0\}$

with dom(IVT) := $\{f : f(0) \cdot f(1) < 0\}.$

▶ The Choice Problem $C_X :\subseteq A_-(X) \Rightarrow X, A \mapsto A$. PC_X is C_X restricted to sets A with $\mu(A) > 0$.

- ► The Limit Problem is the mathematical problem $\lim :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, ... \rangle \mapsto \lim_{i \to \infty} p_i$ with dom(lim) := { $\langle p_0, p_1, ... \rangle : (p_i)_i$ is convergent }.
- ▶ Martin-Löf Randomness is the mathematical problem $MLR: 2^{\mathbb{N}} \rightrightarrows 2^{\mathbb{N}}$ with

 $MLR(x) := \{y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x\}.$

► Weak Weak Kőnig's Lemma is the mathematical problem WWKL :⊂ Tr $\Rightarrow 2^{\mathbb{N}}$, $T \mapsto [T]$

with dom(WWKL) := { $T \in Tr : \mu([T]) > 0$ }.

The Intermediate Value Theorem is the problem

 $\mathsf{IVT}:\subseteq\mathsf{Con}[0,1]\rightrightarrows[0,1],f\mapsto f^{-1}\{0\}$

with dom(IVT) := $\{f : f(0) \cdot f(1) < 0\}.$

▶ The Choice Problem $C_X :\subseteq A_-(X) \rightrightarrows X, A \mapsto A$. PC_X is C_X restricted to sets A with $\mu(A) > 0$.

- ▶ The Limit Problem is the mathematical problem $\lim : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, ... \rangle \mapsto \lim_{i \to \infty} p_i$ with dom(lim) := { $\langle p_0, p_1, ... \rangle : (p_i)_i$ is convergent }.
- Martin-Löf Randomness is the mathematical problem
 MLR : 2^N ⇒ 2^N with

 $MLR(x) := \{y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x\}.$

► Weak Weak Kőnig's Lemma is the mathematical problem WWKL : \subseteq Tr $\Rightarrow 2^{\mathbb{N}}, T \mapsto [T]$

with dom(WWKL) := { $T \in Tr : \mu([T]) > 0$ }.

The Intermediate Value Theorem is the problem

 $\mathsf{IVT}:\subseteq\mathsf{Con}[0,1]\rightrightarrows[0,1],f\mapsto f^{-1}\{0\}$

with dom(IVT) := $\{f : f(0) \cdot f(1) < 0\}.$

► The Choice Problem $C_X :\subseteq A_-(X) \rightrightarrows X, A \mapsto A$. PC_X is C_X restricted to sets A with $\mu(A) > 0$.

Algebraic Operations

Definition

For $f :\subseteq X \rightrightarrows Y$ and $g :\subseteq W \rightrightarrows Z$ we define:

- ► $f \times g :\subseteq X \times W \Rightarrow Y \times Z$, $(x, w) \mapsto f(x) \times g(w)$ (Product)
- ► $f \sqcup g :\subseteq X \sqcup W \Rightarrow Y \sqcup Z, z \mapsto \begin{cases} f(z) \text{ if } z \in X \\ g(z) \text{ if } z \in W \end{cases}$ (Coproduct)
- ► $f \sqcap g :\subseteq X \times W \Rightarrow Y \sqcup Z$, $(x, w) \mapsto f(x) \sqcup g(w)$ (Sum)
- $\blacktriangleright f^* :\subseteq X^* \rightrightarrows Y^*, f^* = \bigsqcup_{i=0}^{\infty} f^i$ (Star)
- $\blacktriangleright \ \widehat{f} :\subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f} = \chi_{i=0}^{\infty} f$ (Parallelization)
- Weihrauch reducibility induces a lattice with the coproduct ⊥ as supremum and the sum □ as infimum.
- Parallelization and star operation are closure operators in the Weihrauch lattice.

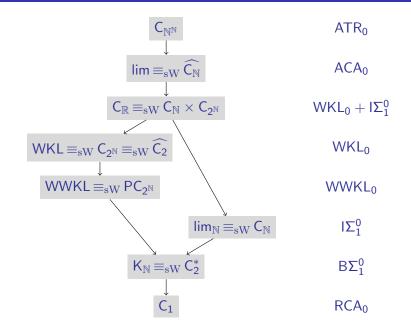
Algebraic Operations

Definition

For $f :\subseteq X \rightrightarrows Y$ and $g :\subseteq W \rightrightarrows Z$ we define:

- ► $f \times g :\subseteq X \times W \Rightarrow Y \times Z$, $(x, w) \mapsto f(x) \times g(w)$ (Product)
- ► $f \sqcup g :\subseteq X \sqcup W \Rightarrow Y \sqcup Z, z \mapsto \begin{cases} f(z) \text{ if } z \in X \\ g(z) \text{ if } z \in W \end{cases}$ (Coproduct)
- ► $f \sqcap g :\subseteq X \times W \Rightarrow Y \sqcup Z$, $(x, w) \mapsto f(x) \sqcup g(w)$ (Sum)
- $\blacktriangleright f^* :\subseteq X^* \rightrightarrows Y^*, f^* = \bigsqcup_{i=0}^{\infty} f^i$ (Star)
- $\blacktriangleright \ \widehat{f} :\subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f} = \chi_{i=0}^{\infty} f$ (Parallelization)
- ► Weihrauch reducibility induces a lattice with the coproduct as supremum and the sum as infimum.
- Parallelization and star operation are closure operators in the Weihrauch lattice.

Basic Complexity Classes and Reverse Mathematics



The Probabilistic Landscape

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε -WWKL : \subseteq Tr $\Rightarrow 2^{\mathbb{N}}$ we denote the restriction of WKL to $\operatorname{dom}(\varepsilon$ -WWKL) := { $T : \mu([T]) > \varepsilon$ } for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

 ε -WWKL $\leq_{\mathrm{W}} \delta$ -WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) " \Longrightarrow " Assume $\varepsilon < \delta$. Then there are positive integers *a*, *b* with $\varepsilon < \frac{a}{b} \le \delta$. We consider

▶ $C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, ..., b-1\}$ with $|A| \ge a$.

Then $C_{a,b} \leq_W \varepsilon$ -WWKL and $C_{a,b} \leq_W \delta$ -WWKL. Hence ε -WWKL $\leq_W \delta$ -WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε -WWKL : \subseteq Tr $\Rightarrow 2^{\mathbb{N}}$ we denote the restriction of WKL to $\operatorname{dom}(\varepsilon$ -WWKL) := { $T : \mu([T]) > \varepsilon$ } for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

 $\varepsilon\text{-WWKL}\leq_{\mathrm{W}}\delta\text{-WWKL}\iff \varepsilon\geq\delta \text{ for all }\varepsilon,\delta\in[0,1].$

Proof. (Idea) " \Longrightarrow " Assume $\varepsilon < \delta$. Then there are positive integers *a*, *b* with $\varepsilon < \frac{a}{b} \le \delta$. We consider

▶ $C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, ..., b-1\}$ with $|A| \ge a$.

Then $C_{a,b} \leq_W \varepsilon$ -WWKL and $C_{a,b} \leq_W \delta$ -WWKL. Hence ε -WWKL $\leq_W \delta$ -WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε -WWKL : \subseteq Tr $\Rightarrow 2^{\mathbb{N}}$ we denote the restriction of WKL to $\operatorname{dom}(\varepsilon$ -WWKL) := { $T : \mu([T]) > \varepsilon$ } for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

 ε -WWKL $\leq_{\mathrm{W}} \delta$ -WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) " \Longrightarrow " Assume $\varepsilon < \delta$. Then there are positive integers *a*, *b* with $\varepsilon < \frac{a}{b} \le \delta$. We consider

▶ $C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, ..., b-1\}$ with $|A| \ge a$.

Then $C_{a,b} \leq_W \varepsilon$ -WWKL and $C_{a,b} \not\leq_W \delta$ -WWKL. Hence ε -WWKL $\not\leq_W \delta$ -WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε -WWKL : \subseteq Tr $\Rightarrow 2^{\mathbb{N}}$ we denote the restriction of WKL to $\operatorname{dom}(\varepsilon$ -WWKL) := { $T : \mu([T]) > \varepsilon$ } for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

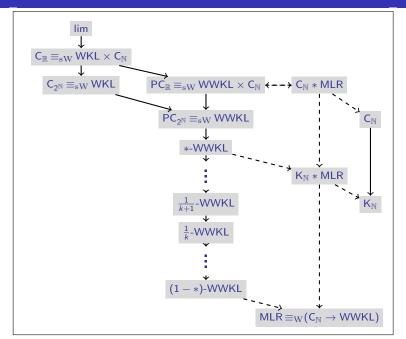
 ε -WWKL $\leq_{\mathrm{W}} \delta$ -WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) " \Longrightarrow " Assume $\varepsilon < \delta$. Then there are positive integers *a*, *b* with $\varepsilon < \frac{a}{b} \le \delta$. We consider

▶ $C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, ..., b-1\}$ with $|A| \ge a$.

Then $C_{a,b} \leq_W \varepsilon$ -WWKL and $C_{a,b} \not\leq_W \delta$ -WWKL. Hence ε -WWKL $\not\leq_W \delta$ -WWKL

Weak Weak Kőnig's Lemma - The Uniform Scenario



The Weihrauch lattice is not complete and infinite suprema and infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem f, g we define

- $f * g := \max\{f_0 \circ g_0 : f_0 \leq_W f, g_0 \leq_W g\}$
- $g \to f := \min\{h : f \leq_W g * h\}$

compos. product implication

Theorem (B. and Pauly 2016)

The compositional product $f\ast g$ and the implication $g\rightarrow f$ exist for all problems f,g.

The Weihrauch lattice is not complete and infinite suprema and infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem f, g we define

- $f * g := \max\{f_0 \circ g_0 : f_0 \leq_W f, g_0 \leq_W g\}$
- $g \to f := \min\{h : f \leq_W g * h\}$

compos. product implication

Theorem (B. and Pauly 2016)

The compositional product f * g and the implication $g \to f$ exist for all problems f, g.

Martin-Löf Randomness

Proposition (B. and Pauly 2016)

 $\mathsf{MLR} \mathop{\equiv_{\mathrm{W}}}(\mathsf{C}_{\mathbb{N}} \to \mathsf{WWKL}).$

Proof. $(C_{\mathbb{N}} \to WWKL) \leq_{W} MLR$: It suffices to prove $WWKL \leq_{W} C_{\mathbb{N}} * MLR$, which follows from Kučera's Lemma.

 $MLR \leq_W (C_N \rightarrow WWKL)$: Given some h with $WWKL \leq_W C_N * h$ we need to prove that $MLR \leq_W h$. Given some universal Martin-Löf test $(U_i)_i$, we use $A_0 := 2^N \setminus U_0$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)

 $MLR * MLR \leq_W MLR$

Proof. This is a consequence of van Lambalgen's Theorem.

Corollary

 $\mathsf{MLR}\mathop{\equiv_{\mathrm{W}}}(\mathsf{C}_{\mathbb{N}}\to\mathsf{WWKL}).$

Proof. $(C_{\mathbb{N}} \to WWKL) \leq_{W} MLR$: It suffices to prove WWKL $\leq_{W} C_{\mathbb{N}} * MLR$, which follows from Kučera's Lemma.

 $MLR \leq_W (C_N \rightarrow WWKL)$: Given some h with $WWKL \leq_W C_N * h$ we need to prove that $MLR \leq_W h$. Given some universal Martin-Löf test $(U_i)_i$, we use $A_0 := 2^N \setminus U_0$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)

 $\mathsf{MLR}*\mathsf{MLR}\mathop{\leq_{\mathrm{W}}}\mathsf{MLR}$

Proof. This is a consequence of van Lambalgen's Theorem.

Corollary

 $MLR \equiv_W (C_{\mathbb{N}} \rightarrow WWKL).$

Proof. $(C_{\mathbb{N}} \to WWKL) \leq_{W} MLR$: It suffices to prove WWKL $\leq_{W} C_{\mathbb{N}} * MLR$, which follows from Kučera's Lemma. $MLR \leq_{W} (C_{\mathbb{N}} \to WWKL)$: Given some *h* with WWKL $\leq_{W} C_{\mathbb{N}} * h$ we need to prove that $MLR \leq_{W} h$. Given some universal Martin-Löf test $(U_i)_i$, we use $A_0 := 2^{\mathbb{N}} \setminus U_0$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)

 $\mathsf{MLR}*\mathsf{MLR}\mathop{\leq_{\mathrm{W}}}\mathsf{MLR}$

Proof. This is a consequence of van Lambalgen's Theorem.

Corollary

 $\mathsf{MLR}\mathop{\equiv_{\mathrm{W}}}(\mathsf{C}_{\mathbb{N}}\to\mathsf{WWKL}).$

Proof. $(C_{\mathbb{N}} \to WWKL) \leq_{W} MLR$: It suffices to prove $WWKL \leq_{W} C_{\mathbb{N}} * MLR$, which follows from Kučera's Lemma.

 $MLR \leq_W (C_N \rightarrow WWKL)$: Given some *h* with $WWKL \leq_W C_N * h$ we need to prove that $MLR \leq_W h$. Given some universal Martin-Löf test $(U_i)_i$, we use $A_0 := 2^N \setminus U_0$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)

 $\mathsf{MLR}*\mathsf{MLR}\mathop{\leq_{\mathrm{W}}}\mathsf{MLR}$

Proof. This is a consequence of van Lambalgen's Theorem.

Corollary

 $\mathsf{MLR}\mathop{\equiv_{\mathrm{W}}}(\mathsf{C}_{\mathbb{N}}\rightarrow\mathsf{WWKL}).$

Proof. $(C_{\mathbb{N}} \to WWKL) \leq_{W} MLR$: It suffices to prove WWKL $\leq_{W} C_{\mathbb{N}} * MLR$, which follows from Kučera's Lemma. MLR $\leq_{W} (C_{\mathbb{N}} \to WWKL)$: Given some *h* with WWKL $\leq_{W} C_{\mathbb{N}} * h$ we need to prove that MLR $\leq_{W} h$. Given some universal

Martin-Löf test $(U_i)_i$, we use $A_0 := 2^{\mathbb{N}} \setminus U_0$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)

$\mathsf{MLR}*\mathsf{MLR}\mathop{\leq_{\mathrm{W}}}\mathsf{MLR}$

Proof. This is a consequence of van Lambalgen's Theorem.

Corollary

 $\mathsf{MLR}\mathop{\equiv_{\mathrm{W}}}(\mathsf{C}_{\mathbb{N}}\rightarrow\mathsf{WWKL}).$

Proof. $(C_{\mathbb{N}} \to WWKL) \leq_{W} MLR$: It suffices to prove WWKL $\leq_{W} C_{\mathbb{N}} * MLR$, which follows from Kučera's Lemma. MLR $\leq_{W} (C_{\mathbb{N}} \to WWKL)$: Given some *h* with WWKL $\leq_{W} C_{\mathbb{N}} * h$

we need to prove that $MLR \leq_W h$. Given some universal Martin-Löf test $(U_i)_i$, we use $A_0 := 2^{\mathbb{N}} \setminus U_0$ and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)

$\mathsf{MLR}*\mathsf{MLR}\mathop{\leq_{\mathrm{W}}}\mathsf{MLR}$

Proof. This is a consequence of van Lambalgen's Theorem.

Corollary

Definition

The jump $f' :\subseteq X \Rightarrow Y$ of $f :\subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ . Examples:

► $id' \equiv_{sW} lim$, $WKL' \equiv_{sW} KL \equiv_{sW} BWT_{\mathbb{R}}$, *n*-RAN $\equiv_{sW} MLR^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

 $\mathsf{PA} \equiv_{\mathrm{W}} (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL}) \text{ and } \mathsf{COH} \equiv_{\mathrm{W}} (\mathsf{lim} \to \mathsf{WKL}').$

Proposition (B., Gherardi and Marcone 2012

 $f \leq_{\mathrm{sW}} g \Longrightarrow f' \leq_{\mathrm{sW}} g'.$

f <_W *f* ′ does not hold in general: *f* ≡_{sW} *f* ′ for a constant *f*.
 f <_W *g* is compatible with *f*′≡_W*g*′, *f*′<_W*g*′, *g*′<_W*f*′, *f*′|_W*g*′.

Definition

The jump $f' :\subseteq X \Rightarrow Y$ of $f :\subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ . Examples:

► $id' \equiv_{sW} lim$, $WKL' \equiv_{sW} KL \equiv_{sW} BWT_{\mathbb{R}}$, *n*-RAN $\equiv_{sW} MLR^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

 $\mathsf{PA} \equiv_{\mathrm{W}} (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL}) \text{ and } \mathsf{COH} \equiv_{\mathrm{W}} (\mathsf{lim} \to \mathsf{WKL}').$

Proposition (B., Gherardi and Marcone 2012)

 $f \leq_{\mathrm{sW}} g \Longrightarrow f' \leq_{\mathrm{sW}} g'.$

▶ $f <_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f. ▶ $f <_W g$ is compatible with $f' \equiv_W g'$, $f' <_W g'$, $g' <_W f'$, $f'|_W g'$.

Definition

The jump $f' :\subseteq X \Rightarrow Y$ of $f :\subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ . Examples:

► $id' \equiv_{sW} lim$, $WKL' \equiv_{sW} KL \equiv_{sW} BWT_{\mathbb{R}}$, n-RAN $\equiv_{sW} MLR^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

 $\mathsf{PA} \equiv_{\mathrm{W}} (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL}) \text{ and } \mathsf{COH} \equiv_{\mathrm{W}} (\mathsf{lim} \to \mathsf{WKL}').$

Proposition (B., Gherardi and Marcone 2012)

 $f \leq_{\mathrm{sW}} g \Longrightarrow f' \leq_{\mathrm{sW}} g'.$

▶ $f <_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f. ▶ $f <_W g$ is compatible with $f' \equiv_W g'$, $f' <_W g'$, $g' <_W f'$, $f'|_W g'$.

Definition

The jump $f' :\subseteq X \Rightarrow Y$ of $f :\subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ . Examples:

► $id' \equiv_{sW} lim$, $WKL' \equiv_{sW} KL \equiv_{sW} BWT_{\mathbb{R}}$, *n*-RAN $\equiv_{sW} MLR^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

 $\mathsf{PA} \equiv_{\mathrm{W}} (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL})$ and $\mathsf{COH} \equiv_{\mathrm{W}} (\mathsf{lim} \to \mathsf{WKL}')$.

Proposition (B., Gherardi and Marcone 2012)

 $f \leq_{\mathrm{sW}} g \Longrightarrow f' \leq_{\mathrm{sW}} g'.$

• $f <_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.

• $f <_W g$ is compatible with $f' \equiv_W g'$, $f' <_W g'$, $g' <_W f'$, $f'|_W g'$.

Definition

The jump $f' :\subseteq X \Rightarrow Y$ of $f :\subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ . Examples:

► $id' \equiv_{sW} lim$, $WKL' \equiv_{sW} KL \equiv_{sW} BWT_{\mathbb{R}}$, *n*-RAN $\equiv_{sW} MLR^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

 $\mathsf{PA} \equiv_{\mathrm{W}} (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL})$ and $\mathsf{COH} \equiv_{\mathrm{W}} (\mathsf{lim} \to \mathsf{WKL}')$.

Proposition (B., Gherardi and Marcone 2012)

 $f \leq_{\mathrm{sW}} g \Longrightarrow f' \leq_{\mathrm{sW}} g'.$

• $f <_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.

• $f <_W g$ is compatible with $f' \equiv_W g'$, $f' <_W g'$, $g' <_W f'$, $f'|_W g'$.

Definition

The jump $f' :\subseteq X \Rightarrow Y$ of $f :\subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ . Examples:

► $id' \equiv_{sW} lim$, $WKL' \equiv_{sW} KL \equiv_{sW} BWT_{\mathbb{R}}$, *n*-RAN $\equiv_{sW} MLR^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

 $\mathsf{PA} \equiv_{\mathrm{W}} (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL})$ and $\mathsf{COH} \equiv_{\mathrm{W}} (\mathsf{lim} \to \mathsf{WKL}')$.

Proposition (B., Gherardi and Marcone 2012)

 $f \leq_{\mathrm{sW}} g \Longrightarrow f' \leq_{\mathrm{sW}} g'.$

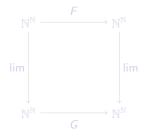
- ► $f <_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.
- $f <_W g$ is compatible with $f' \equiv_W g'$, $f' <_W g'$, $g' <_W f'$, $f'|_W g'$.

Jump Inversion

Theorem (B., Hölzl and Kuyper 2016)

f' ≤_W g' relative to p ⇒ f ≤_W g relative to p'.
 f' ≤_{sW} g' relative to p ⇒ f ≤_{sW} g relative to p'.

Proof. Jump Control Theorem (B., Hendtlass and Kreuzer 2015):



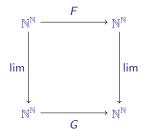
If there exist a continuous F such that the diagram commutes, then G is continuous.

Jump Inversion

Theorem (B., Hölzl and Kuyper 2016)

1. $f' \leq_W g'$ relative to $p \Longrightarrow f \leq_W g$ relative to p'. 2. $f' \leq_{sW} g'$ relative to $p \Longrightarrow f \leq_{sW} g$ relative to p'.

Proof. Jump Control Theorem (B., Hendtlass and Kreuzer 2015):

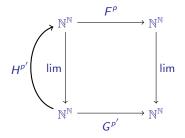


If there exist a continuous F such that the diagram commutes, then G is continuous.

Theorem (B., Hölzl and Kuyper 2016)

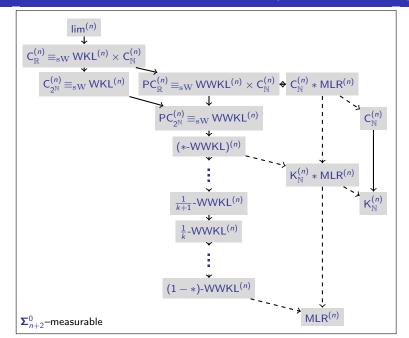
f' ≤_W g' relative to p ⇒ f ≤_W g relative to p'.
 f' ≤_{sW} g' relative to p ⇒ f ≤_{sW} g relative to p'.

Proof. Jump Control Theorem (B., Hendtlass and Kreuzer 2015):



If there exist F computable relative to p such that the diagram commutes, then G is computable relative to p'.

Weak Weak Kőnig's Lemma - Jumps (work in progress)



Further Notions of Randomness

Theorem (Hölzl and Miyabe 2015)

 $WR <_W SR <_W CR <_W MLR <_W W2R <_W 2-RAN.$

Proof. The strictness has been proved using hyperimmune degrees, high degrees and minimal degrees.

- ► WR: Kurtz random
- SR: Schnorr random
- CR: computable random
- W2R: weakly 2-random
- n-RAN: n-random

Question

Find other characterizations of randomness notions R of the form $R \equiv_{W}(A \rightarrow B)$, e.g., 1-GEN $\equiv_{W}(? \rightarrow BCT'_{0})$.

Further Notions of Randomness

Theorem (Hölzl and Miyabe 2015)

 $WR <_W SR <_W CR <_W MLR <_W W2R <_W 2-RAN.$

Proof. The strictness has been proved using hyperimmune degrees, high degrees and minimal degrees.

- ► WR: Kurtz random
- SR: Schnorr random
- CR: computable random
- ► W2R: weakly 2-random
- n-RAN: n-random

Question

Find other characterizations of randomness notions R of the form $R \equiv_{W}(A \rightarrow B)$, e.g., 1-GEN $\equiv_{W}(? \rightarrow BCT'_{0})$.

Theorem of Kurtz. Every 2-random computes a 1-generic.

Theorem (B., Hendtlass and Kreuzer 2015)

 $1-GEN <_W 2-RAN.$

Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)

 $\mathsf{BCT}'_0 \not\leq_{\mathrm{W}} \mathsf{WWKL}^{(n)}$ for all $n \in \mathbb{N}$.

Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^{\mathbb{N}}$ such that no point of A is low for Ω . WWKL⁽ⁿ⁾ has a realizer that maps computable inputs to outputs that are low for Ω for $n \geq 1$.

Corollary

 $BCT'_0 \not\leq_W 1$ -GEN.

Theorem of Kurtz. Every 2-random computes a 1-generic.

Theorem (B., Hendtlass and Kreuzer 2015)

 $1-\text{GEN} <_{W} 2-\text{RAN}.$

Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)

 $\mathsf{BCT}'_0 \not\leq_{\mathrm{W}} \mathsf{WWKL}^{(n)}$ for all $n \in \mathbb{N}$.

Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^{\mathbb{N}}$ such that no point of A is low for Ω . WWKL⁽ⁿ⁾ has a realizer that maps computable inputs to outputs that are low for Ω for $n \ge 1$.

Corollary

 $\mathsf{BCT}_0' \not\leq_{\mathrm{W}} 1\text{-}\mathsf{GEN}.$

Theorem of Kurtz. Every 2-random computes a 1-generic.

Theorem (B., Hendtlass and Kreuzer 2015)

 $1-\text{GEN} <_{W} 2-\text{RAN}.$

Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)

 $\mathsf{BCT}'_0 \not\leq_{\mathrm{W}} \mathsf{WWKL}^{(n)}$ for all $n \in \mathbb{N}$.

Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^{\mathbb{N}}$ such that no point of A is low for Ω . WWKL⁽ⁿ⁾ has a realizer that maps computable inputs to outputs that are low for Ω for $n \ge 1$.

Corollary

 $\mathsf{BCT}_0' \not\leq_{\mathrm{W}} 1\text{-}\mathsf{GEN}.$

Theorem of Kurtz. Every 2-random computes a 1-generic.

Theorem (B., Hendtlass and Kreuzer 2015)

 $1-\text{GEN} <_{W} 2-\text{RAN}.$

Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)

 $\mathsf{BCT}'_0 \not\leq_{\mathrm{W}} \mathsf{WWKL}^{(n)}$ for all $n \in \mathbb{N}$.

Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^{\mathbb{N}}$ such that no point of A is low for Ω . WWKL⁽ⁿ⁾ has a realizer that maps computable inputs to outputs that are low for Ω for $n \ge 1$.

Corollary

 $BCT'_0 \not\leq_W 1$ -GEN.

Theorem of Kurtz. Every 2-random computes a 1-generic.

Theorem (B., Hendtlass and Kreuzer 2015)

 $1-GEN <_W 2-RAN.$

Proof. (Idea) We apply the "fireworks technique" of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)

 $\mathsf{BCT}'_0 \not\leq_{\mathrm{W}} \mathsf{WWKL}^{(n)}$ for all $n \in \mathbb{N}$.

Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^{\mathbb{N}}$ such that no point of A is low for Ω . WWKL⁽ⁿ⁾ has a realizer that maps computable inputs to outputs that are low for Ω for $n \ge 1$.

Corollary

 $\mathsf{BCT}_0' \not\leq_{\mathrm{W}} 1\text{-}\mathsf{GEN}.$

- A point x ∈ ℝ is captured by a sequence I = (I_n)_n of open intervals, if for every ε > 0 there exists some n ∈ ℕ with diam(I_n) < ε and x ∈ I_n.
- \mathcal{I} is a Vitali cover of $A \subseteq \mathbb{R}$, if every $x \in A$ is captured by \mathcal{I} .
- *I* eliminates *A*, if the *I_n* are pairwise disjoint and
 λ(*A* \ ∪ *I*) = 0 (where *λ* denotes the Lebesgue measure).

Theorem (Vitali Covering Theorem)

If \mathcal{I} is a Vitali cover of [0, 1], then there exists a subsequence \mathcal{J} of \mathcal{I} that eliminates [0, 1].

- A point x ∈ ℝ is captured by a sequence I = (I_n)_n of open intervals, if for every ε > 0 there exists some n ∈ ℕ with diam(I_n) < ε and x ∈ I_n.
- \mathcal{I} is a Vitali cover of $A \subseteq \mathbb{R}$, if every $x \in A$ is captured by \mathcal{I} .
- *I* eliminates *A*, if the *I_n* are pairwise disjoint and
 λ(*A* \ ∪ *I*) = 0 (where *λ* denotes the Lebesgue measure).

Theorem (Vitali Covering Theorem)

If \mathcal{I} is a Vitali cover of [0, 1], then there exists a subsequence \mathcal{J} of \mathcal{I} that eliminates [0, 1].

Theorem (Brown, Giusto and Simpson 2002)

Over RCA_0 the Vitali Covering Theorem is equivalent to Weak Weak Kőnig's Lemma WWKL₀.

Theorem (Diener and Hedin 2012)

Using intuitionistic logic (and countable and dependent choice) the Vitali Covering Theorem is equivalent to Weak Weak Kőnig's Lemma WWKL.

Theorem (Brown, Giusto and Simpson 2002)

Over RCA_0 the Vitali Covering Theorem is equivalent to Weak Weak Kőnig's Lemma WWKL₀.

Theorem (Diener and Hedin 2012)

Using intuitionistic logic (and countable and dependent choice) the Vitali Covering Theorem is equivalent to Weak Weak Kőnig's Lemma WWKL.

Theorem (Brown, Giusto and Simpson 2002)

Over RCA_0 the Vitali Covering Theorem is equivalent to Weak Weak Kőnig's Lemma WWKL₀.

Theorem (Diener and Hedin 2012)

Using intuitionistic logic (and countable and dependent choice) the Vitali Covering Theorem is equivalent to Weak Weak Kőnig's Lemma WWKL.

• \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I} = \bigcup_{n=0}^{\infty} I_n$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- VCT₀: Given a Vitali cover I of [0, 1], find a subsequence J of I that eliminates [0, 1].
- VCT₁: Given a saturated I that does not admit a subsequence that eliminates [0, 1], find a point that is not covered by I.
- VCT₂: Given a sequence I that does not admit a subsequence that eliminates [0, 1], find a point that is not captured by I.
- ▶ $VCT_0: (S \land C) \rightarrow E$,
- ▶ $VCT_1: (S \land \neg E) \rightarrow \neg C$,
- ▶ VCT₂ : $\neg E \rightarrow (\neg S \lor \neg C)$.

• \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I} = \bigcup_{n=0}^{\infty} I_n$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- VCT₀: Given a Vitali cover I of [0, 1], find a subsequence J of I that eliminates [0, 1].
- VCT₁: Given a saturated *I* that does not admit a subsequence that eliminates [0, 1], find a point that is not covered by *I*.
- VCT₂: Given a sequence I that does not admit a subsequence that eliminates [0, 1], find a point that is not captured by I.
- VCT₀ : $(S \land C) \rightarrow E$,
- $VCT_1: (S \land \neg E) \rightarrow \neg C$,
- VCT₂ : $\neg E \rightarrow (\neg S \lor \neg C)$.

• \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I} = \bigcup_{n=0}^{\infty} I_n$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- VCT₀: Given a Vitali cover I of [0, 1], find a subsequence J of I that eliminates [0, 1].
- VCT₁: Given a saturated I that does not admit a subsequence that eliminates [0, 1], find a point that is not covered by I.
- VCT₂: Given a sequence I that does not admit a subsequence that eliminates [0, 1], find a point that is not captured by I.

Theorem (B., Gherardi, Hölzl and Pauly 2016)

- ▶ VCT₀ is computable,
- ► $VCT_1 \equiv_{sW} WWKL$,
- VCT₂ \equiv_{sW} WWKL \times C_N.

• \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I} = \bigcup_{n=0}^{\infty} I_n$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

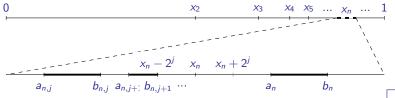
- VCT₀: Given a Vitali cover I of [0, 1], find a subsequence J of I that eliminates [0, 1].
- VCT₁: Given a saturated I that does not admit a subsequence that eliminates [0, 1], find a point that is not covered by I.
- VCT₂: Given a sequence I that does not admit a subsequence that eliminates [0, 1], find a point that is not captured by I.

Theorem (B., Gherardi, Hölzl and Pauly 2016)

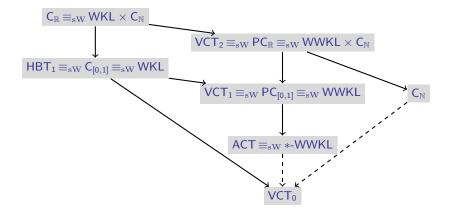
- VCT₀ is computable,
- $VCT_1 \equiv_{sW} WWKL$,
- $VCT_2 \equiv_{sW} WWKL \times C_{\mathbb{N}}$.

Proof.

- The proof of computability of VCT₀ is based on a construction that repeats steps of the classical proof of the Vitali Covering Theorem (and is not just based on a waiting strategy).
- ► The proof of VCT₁ ≡_{sW} WWKL is based on the equivalence chain VCT₁ ≡_{sW} PC_[0,1] ≡_{sW} WWKL.
- ▶ We use a Lemma by Brown, Giusto and Simpson on "almost Vitali covers" in order to prove VCT₂ \leq_{sW} WWKL × C_N. The harder direction is the opposite one for which it suffices to show C_N × VCT₂ \leq_{sW} VCT₂ by an explicit construction:

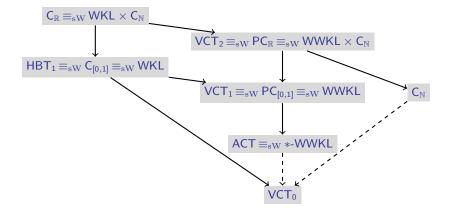


Vitali Covering Theorem in the Weihrauch Lattice



▶ ACT : Int \Rightarrow [0, 1], $\mathcal{I} \mapsto$ [0, 1] \ $\bigcup \mathcal{I}$, where dom(ACT) is the set of all non-disjoint $\mathcal{I} = (I_n)_n$ with $\sum_{n=0}^{\infty} \lambda(I_n) < 1$.

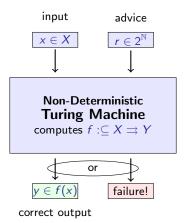
Vitali Covering Theorem in the Weihrauch Lattice



▶ ACT : Int \Rightarrow [0, 1], $\mathcal{I} \mapsto$ [0, 1] \ $\bigcup \mathcal{I}$, where dom(ACT) is the set of all non-disjoint $\mathcal{I} = (I_n)_n$ with $\sum_{n=0}^{\infty} \lambda(I_n) < 1$.

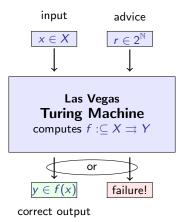
Las Vegas and Monte Carlo Computability

Non-Deterministic Turing Machines



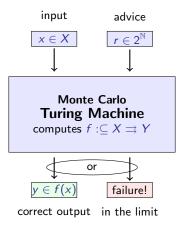
Condition: $(\forall x \in \text{dom}(f)) \{r \in R : r \text{ does not fail with } x\} \neq \emptyset$

Las Vegas Turing Machines



Condition: $(\forall x \in dom(f)) \ \mu\{r \in R : r \text{ does not fail with } x\} > 0$

Monte Carlo Turing Machines



Condition: $(\forall x \in dom(f)) \ \mu\{r \in R : r \text{ does not fail with } x\} > 0$

Non-Deterministic Computability

Proposition (B., de Brecht and Pauly 2012)

 $f \leq_{\mathrm{W}} \mathsf{WKL} \iff f$ is non-deterministically computable.

Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of $f \leq_W WKL$ is closed under composition.

There are at least three independent proofs:

- ► The original proof in terms of the separation problem.
- A proof by B. and Gherardi in terms of Kleene's ternary logic.
- A very simple proof in terms of non-deterministically computable functions by B., de Brecht and Pauly.

Corollary

 $\mathsf{WKL} \equiv_{\mathrm{W}} \mathsf{WKL} * \mathsf{WKL}.$

Non-Deterministic Computability

Proposition (B., de Brecht and Pauly 2012)

 $f \leq_{\mathrm{W}} \mathsf{WKL} \iff f$ is non-deterministically computable.

Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of $f \leq_{W} WKL$ is closed under composition.

There are at least three independent proofs:

- The original proof in terms of the separation problem.
- A proof by B. and Gherardi in terms of Kleene's ternary logic.
- A very simple proof in terms of non-deterministically computable functions by B., de Brecht and Pauly.

Corollary

$\mathsf{WKL}\mathop{\equiv_{\mathrm{W}}}\mathsf{WKL}\ast\mathsf{WKL}$

Non-Deterministic Computability

Proposition (B., de Brecht and Pauly 2012)

 $f \leq_{\mathrm{W}} \mathsf{WKL} \iff f$ is non-deterministically computable.

Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of $f \leq_{W} WKL$ is closed under composition.

There are at least three independent proofs:

- The original proof in terms of the separation problem.
- A proof by B. and Gherardi in terms of Kleene's ternary logic.
- A very simple proof in terms of non-deterministically computable functions by B., de Brecht and Pauly.

Corollary

 $\mathsf{WKL}\mathop{\equiv_{\mathrm{W}}}\mathsf{WKL}\ast\mathsf{WKL}.$

Proposition (B., Gherardi and Hölzl 2015)

 $f \leq_{\mathrm{W}} \mathsf{WWKL} \iff f$ is Las Vegas computable.

Proposition

 $WWKL \equiv_W WWKL * WWKL.$

Can be proved as for WKL in terms of Las Vegas computable functions with an additional application of Fubini's Theorem.

Corollary

Las Vegas computable functions are closed under composition.

Proposition (B., Gherardi and Hölzl 2015)

 $f \leq_{\mathrm{W}} \mathsf{WWKL} \iff f$ is Las Vegas computable.

Proposition

 $WWKL \equiv_W WWKL * WWKL.$

Can be proved as for WKL in terms of Las Vegas computable functions with an additional application of Fubini's Theorem.

Corollary

Las Vegas computable functions are closed under composition.

Proposition (B., Gherardi and Hölzl 2015)

 $f \leq_{\mathrm{W}} \mathsf{WWKL} \iff f$ is Las Vegas computable.

Proposition

 $WWKL \equiv_W WWKL * WWKL.$

Can be proved as for WKL in terms of Las Vegas computable functions with an additional application of Fubini's Theorem.

Corollary

Las Vegas computable functions are closed under composition.

Proposition (B., Hölzl and Kuyper 2016)

 $f \leq_W \mathsf{PC}'_{\mathbb{R}} \equiv_W \mathsf{WWKL}' \times \mathsf{C}'_{\mathbb{N}} \iff f \text{ is Monte Carlo computable.}$

This result is based on a classification of positive G_{δ} -choice by B., Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)

 $\mathsf{WWKL}' * \mathsf{WWKL}' \equiv_{\mathrm{W}} \mathsf{PC}'_{2^{\mathbb{N}}} * \mathsf{PC}'_{2^{\mathbb{N}}} \equiv_{\mathrm{W}} \mathsf{PC}'_{\mathbb{R}} * \mathsf{PC}'_{\mathbb{R}} \equiv_{\mathrm{W}} \mathsf{PC}'_{\mathbb{R}}.$

This contrasts $WKL' * WKL' \equiv_W WKL''$.

Corollary

Monte Carlo computable functions are closed under composition.

Proposition (B., Hölzl and Kuyper 2016)

 $f \leq_W \mathsf{PC}'_{\mathbb{R}} \equiv_W \mathsf{WWKL}' \times \mathsf{C}'_{\mathbb{N}} \iff f \text{ is Monte Carlo computable.}$

This result is based on a classification of positive G_{δ} -choice by B., Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)

 $\mathsf{WWKL}' * \mathsf{WWKL}' \equiv_{\mathrm{W}} \mathsf{PC}'_{2^{\mathbb{N}}} * \mathsf{PC}'_{2^{\mathbb{N}}} \equiv_{\mathrm{W}} \mathsf{PC}'_{\mathbb{R}} * \mathsf{PC}'_{\mathbb{R}} \equiv_{\mathrm{W}} \mathsf{PC}'_{\mathbb{R}}.$

This contrasts $WKL' * WKL' \equiv_W WKL''$.

Corollary

Monte Carlo computable functions are closed under composition.

Proposition (B., Hölzl and Kuyper 2016)

 $f \leq_W \mathsf{PC}'_{\mathbb{R}} \equiv_W \mathsf{WWKL}' \times \mathsf{C}'_{\mathbb{N}} \iff f \text{ is Monte Carlo computable.}$

This result is based on a classification of positive G_{δ} -choice by B., Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)

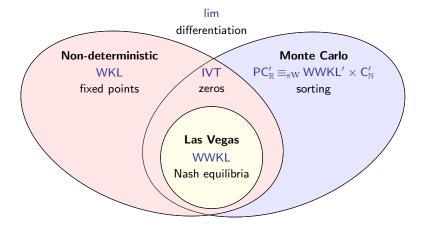
 $\mathsf{WWKL}' * \mathsf{WWKL}' \equiv_{\mathrm{W}} \mathsf{PC}'_{2^{\mathbb{N}}} * \mathsf{PC}'_{2^{\mathbb{N}}} \equiv_{\mathrm{W}} \mathsf{PC}'_{\mathbb{R}} * \mathsf{PC}'_{\mathbb{R}} \equiv_{\mathrm{W}} \mathsf{PC}'_{\mathbb{R}}.$

This contrasts $WKL' * WKL' \equiv_W WKL''$.

Corollary

Monte Carlo computable functions are closed under composition.

Classes of Computability



Sorting

Definition

$$\mathsf{SORT}_n: \{0,1,...,n-1\}^\mathbb{N} o \{0,1,...,n-1\}^\mathbb{N}$$
 is defined by

$$SORT_n(p) := 0^{k_0} 1^{k_1} ... (m-1)^{k_{m-1}} \widehat{m}$$

if m < n is the smallest digit that appears infinitely often in p and each digit i < m appears exactly k_i times in p.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

- $\blacktriangleright \ \mathsf{C}_{\mathbb{N}} \mathop{\leq_{\mathrm{sW}}} \mathsf{SORT}_2 \mathop{\leq_{\mathrm{sW}}} \mathsf{C}'_{\mathbb{N}}$
- $\blacktriangleright \mathsf{IVT} \leq_W \mathsf{SORT}_2 \leq_W \mathsf{WWKL}'$

Sorting

Definition

$$\mathsf{SORT}_n: \{0,1,...,n-1\}^\mathbb{N} \to \{0,1,...,n-1\}^\mathbb{N}$$
 is defined by

$$SORT_n(p) := 0^{k_0} 1^{k_1} ... (m-1)^{k_{m-1}} \widehat{m}$$

if m < n is the smallest digit that appears infinitely often in p and each digit i < m appears exactly k_i times in p.



Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

- $\blacktriangleright \ \mathsf{C}_{\mathbb{N}} \mathop{\leq_{\mathrm{sW}}} \mathsf{SORT}_2 \mathop{\leq_{\mathrm{sW}}} \mathsf{C}'_{\mathbb{N}}$
- $IVT \leq_W SORT_2 \leq_W WWKL'$

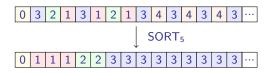
Sorting

Definition

$$\mathsf{SORT}_n: \{0,1,...,n-1\}^\mathbb{N} o \{0,1,...,n-1\}^\mathbb{N}$$
 is defined by

$$SORT_n(p) := 0^{k_0} 1^{k_1} ... (m-1)^{k_{m-1}} \widehat{m}$$

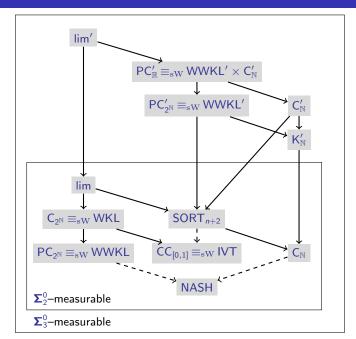
if m < n is the smallest digit that appears infinitely often in p and each digit i < m appears exactly k_i times in p.



Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

- $\blacktriangleright \ C_{\mathbb{N}} \mathop{\leq_{\mathrm{sW}}} \mathsf{SORT}_2 \mathop{\leq_{\mathrm{sW}}} C'_{\mathbb{N}}$
- $IVT \leq_W SORT_2 \leq_W WWKL'$

Sorting in the Weihrauch Lattice



Besides COH sorting is the only problem that we know that is low_2 but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

 $\mathsf{lim} * \mathsf{lim} * \mathsf{SORT}_2 \leq_W \mathsf{lim} * \mathsf{lim} \text{ and } \mathsf{lim} * \mathsf{SORT}_2 \not\leq_W \mathsf{lim}.$

Neumann and Pauly proved that SORT^{*}₂ characterizes the class of functions computable by certain algebraic machine models.

Corollary

BSS computable functions $f:\mathbb{R}^*\to\mathbb{R}^*$ are computable on Monte Carlo machines.

Besides COH sorting is the only problem that we know that is low_2 but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

 $\lim * \lim * \text{SORT}_2 \leq_W \lim * \lim \text{ and } \lim * \text{SORT}_2 \not\leq_W \lim$.

Neumann and Pauly proved that SORT₂^{*} characterizes the class of functions computable by certain algebraic machine models.

Corollary

BSS computable functions $f:\mathbb{R}^*\to\mathbb{R}^*$ are computable on Monte Carlo machines.

Besides COH sorting is the only problem that we know that is low_2 but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

 $\lim * \lim * \text{SORT}_2 \leq_W \lim * \lim \text{ and } \lim * \text{SORT}_2 \not\leq_W \lim$.

Neumann and Pauly proved that SORT₂^{*} characterizes the class of functions computable by certain algebraic machine models.

Corollary

BSS computable functions $f : \mathbb{R}^* \to \mathbb{R}^*$ are computable on Monte Carlo machines.

References

- F.G. Dorais, D.D. Dzhafarov, J.L. Hirst, J.R. Mileti, P. Shafer On Uniform Relationships Between Combinatorial Problems, *Transactions of the AMS* 368:2 (2016) 1321–1359
- Vasco Brattka, Guido Gherardi and Rupert Hölzl Probabilistic Computability and Choice, Information and Computation 242 (2015) 249–286
- Vasco Brattka, Guido Gherardi and Rupert Hölzl Las Vegas Computability and Algorithmic Randomness, STACS 2015, vol. 30 of LIPIcs (2015) 130–142
- Vasco Brattka, Guido Gherardi, Rupert Hölzl and Arno Pauly The Vitali Covering Theorem in the Weihrauch Lattice, Rod Downey Festschrift, LNCS, Springer (to appear)
- Eike Neumann and Arno Pauly A topological view on algebraic computation models, arXiv, 1602.08004, 2016.