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The Weihrauch Lattice



Weihrauch Reducibility

Consider f :⊆ X ⇒ Y and g :⊆ Z ⇒W .

K Hg

f

x f (x)

I f is Weihrauch reducible to g , f ≤W g , if there are computable
H :⊆ X ×W ⇒ Y , K :⊆ X ⇒ Z such that H(idX , gK ) v f .

I f is strongly Weihrauch reducible to g , f ≤sW g , if there are
computable H :⊆W ⇒ Y , K :⊆ X ⇒ Z such that HgK v f .

I Equivalences f ≡W g and f ≡sW g are defined as usual.
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Examples of Mathematical Problems

I The Limit Problem is the mathematical problem

lim :⊆ NN → NN, 〈p0, p1, ...〉 7→ limi→∞ pi

with dom(lim) := {〈p0, p1, ...〉 : (pi )i is convergent}.
I Martin-Löf Randomness is the mathematical problem

MLR : 2N ⇒ 2N with

MLR(x) := {y ∈ 2N : y is Martin-Löf random relative to x}.
I Weak Weak Kőnig’s Lemma is the mathematical problem

WWKL :⊆ Tr⇒ 2N,T 7→ [T ]

with dom(WWKL) := {T ∈ Tr : µ([T ]) > 0}.
I The Intermediate Value Theorem is the problem

IVT :⊆ Con[0, 1]⇒ [0, 1], f 7→ f −1{0}
with dom(IVT) := {f : f (0) · f (1) < 0}.

I The Choice Problem CX :⊆ A−(X )⇒ X ,A 7→ A.
PCX is CX restricted to sets A with µ(A) > 0.
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Algebraic Operations

Definition

For f :⊆ X ⇒ Y and g :⊆W ⇒ Z we define:

I f × g :⊆ X ×W ⇒ Y × Z , (x ,w) 7→ f (x)× g(w) (Product)

I f t g :⊆ X tW ⇒ Y t Z , z 7→
{
f (z) if z ∈ X
g(z) if z ∈W

(Coproduct)

I f u g :⊆ X ×W ⇒ Y t Z , (x ,w) 7→ f (x) t g(w) (Sum)

I f ∗ :⊆ X ∗ ⇒ Y ∗, f ∗ =
⊔∞

i=0 f
i (Star)

I f̂ :⊆ XN ⇒ Y N, f̂ = X∞i=0 f (Parallelization)

I Weihrauch reducibility induces a lattice with the coproduct t
as supremum and the sum u as infimum.

I Parallelization and star operation are closure operators in the
Weihrauch lattice.
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Basic Complexity Classes and Reverse Mathematics

limN≡sW CN

KN≡sW C∗2

WWKL≡sW PC2N

WKL≡sW C2N ≡sW Ĉ2

CR≡sW CN × C2N

lim≡sW ĈN

CNN

C1 RCA0

BΣ0
1

IΣ0
1

ACA0

ATR0

WKL0

WKL0 + IΣ0
1

WWKL0



The Probabilistic Landscape



Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε-WWKL :⊆ Tr⇒ 2N we denote the restriction of WKL to
dom(ε-WWKL) := {T : µ([T ]) > ε} for ε ∈ R.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

ε-WWKL≤W δ-WWKL ⇐⇒ ε ≥ δ for all ε, δ ∈ [0, 1].

Proof. (Idea) “=⇒” Assume ε < δ. Then there are positive
integers a, b with ε < a

b ≤ δ. We consider

I Ca,b which is Cb restricted to sets A ⊆ {0, ..., b − 1} with
|A| ≥ a.

Then Ca,b ≤W ε-WWKL and Ca,b 6≤W δ-WWKL. Hence
ε-WWKL 6≤W δ-WWKL �
The separation is purely topological, i.e., Weihrauch reducibility
can be replaced by its continuous counterpart.
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Weak Weak Kőnig’s Lemma - The Uniform Scenario

lim

CR≡sW WKL× CN

PCR≡sW WWKL× CNC2N ≡sW WKL

PC2N ≡sW WWKL

∗-WWKL

...
1

k+1
-WWKL

1
k
-WWKL

...
(1− ∗)-WWKL

MLR≡W(CN →WWKL)

KN ∗MLR

CN ∗MLR

KN

CN



Compositional Product and Implication

The Weihrauch lattice is not complete and infinite suprema and
infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem f , g we define

I f ∗ g := max{f0 ◦ g0 : f0≤W f , g0≤W g} compos. product

I g → f := min{h : f ≤W g ∗ h} implication

Theorem (B. and Pauly 2016)

The compositional product f ∗ g and the implication g → f exist
for all problems f , g .
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Martin-Löf Randomness

Proposition (B. and Pauly 2016)

MLR≡W(CN →WWKL).

Proof. (CN →WWKL)≤W MLR: It suffices to prove
WWKL≤W CN ∗MLR, which follows from Kučera’s Lemma.

MLR≤W(CN →WWKL): Given some h with WWKL≤W CN ∗ h
we need to prove that MLR≤W h. Given some universal
Martin-Löf test (Ui )i , we use A0 := 2N \ U0 and the fact that
Martin-Löf randoms are stable under finite changes. �

Proposition (B., Gherardi and Hölzl 2015)

MLR ∗MLR≤W MLR

Proof. This is a consequence of van Lambalgen’s Theorem. �

Corollary

The class of functions f ≤W MLR is closed under composition.
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Jumps

Definition

The jump f ′ :⊆ X ⇒ Y of f :⊆ X ⇒ Y is the same problem, but
with the input representation δ of X replaced by δ′ := δ ◦ lim.

A name of an object x ∈ X with respect to δ′ is a sequence that
converges to a name with respect to δ. Examples:

I id′≡sWlim, WKL′≡sWKL≡sWBWTR, n-RAN≡sWMLR(n−1).

Proposition (B., Hendtlass and Kreuzer 2015)

PA≡W(C′N →WKL) and COH≡W(lim→WKL′).

Proposition (B., Gherardi and Marcone 2012)

f ≤sW g =⇒ f ′≤sW g ′.

I f <W f ′ does not hold in general: f ≡sW f ′ for a constant f .

I f <W g is compatible with f ′≡Wg ′, f ′<Wg ′, g ′<Wf ′, f ′|Wg ′.
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Jump Inversion

Theorem (B., Hölzl and Kuyper 2016)

1. f ′≤W g ′ relative to p =⇒ f ≤W g relative to p′.

2. f ′≤sW g ′ relative to p =⇒ f ≤sW g relative to p′.

Proof. Jump Control Theorem (B., Hendtlass and Kreuzer 2015):

NN

NN

NN

NN

F

G

lim lim

If there exist a continuous F such that the diagram commutes,
then G is continuous. �
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NN

NN
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If there exist F computable relative to p such that the diagram
commutes, then G is computable relative to p′. �



Weak Weak Kőnig’s Lemma - Jumps (work in progress)

lim(n)

C
(n)
R ≡sW WKL(n) × C

(n)
N
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(n)
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(n)
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Further Notions of Randomness

Theorem (Hölzl and Miyabe 2015)

WR<W SR<W CR<W MLR<W W2R<W 2-RAN.

Proof. The strictness has been proved using hyperimmune
degrees, high degrees and minimal degrees. �

I WR: Kurtz random

I SR: Schnorr random

I CR: computable random

I W2R: weakly 2-random

I n-RAN: n-random

Question

Find other characterizations of randomness notions R of the form
R ≡W(A→ B), e.g., 1-GEN≡W(?→ BCT′0).
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Uniform Theorem of Kurtz

Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreuzer 2015)

1-GEN<W 2-RAN.

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev
and Shen to get a uniform reduction. �

Theorem (B., Hendtlass and Kreuzer 2015)

BCT′0 6≤W WWKL(n) for all n ∈ N.

Proof. (Idea) There exists a co-c.e. comeager set A ⊆ 2N such
that no point of A is low for Ω. WWKL(n) has a realizer that maps
computable inputs to outputs that are low for Ω for n ≥ 1. �

Corollary

BCT′0 6≤W 1-GEN.
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Vitali Covering Theorem



Vitali Covering Theorem

I A point x ∈ R is captured by a sequence I = (In)n of open
intervals, if for every ε > 0 there exists some n ∈ N with
diam(In) < ε and x ∈ In.

I I is a Vitali cover of A ⊆ R, if every x ∈ A is captured by I.

I I eliminates A, if the In are pairwise disjoint and
λ(A \

⋃
I) = 0 (where λ denotes the Lebesgue measure).

Theorem (Vitali Covering Theorem)

If I is a Vitali cover of [0, 1], then there exists a subsequence J of
I that eliminates [0, 1].
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Vitali Covering Theorem

Theorem (Brown, Giusto and Simpson 2002)

Over RCA0 the Vitali Covering Theorem is equivalent to Weak
Weak Kőnig’s Lemma WWKL0.

I Weak Weak Kőnig’s Lemma is Weak Kőnig’s Lemma
restricted to trees whose set of infinite paths has positive
measure.

Theorem (Diener and Hedin 2012)

Using intuitionistic logic (and countable and dependent choice) the
Vitali Covering Theorem is equivalent to Weak Weak Kőnig’s
Lemma WWKL.
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Vitali Covering Theorem

I I is called saturated, if I is a Vitali cover of
⋃
I =

⋃∞
n=0 In.

Definition (Contrapositive versions of the Vitali Covering Theorem)

I VCT0: Given a Vitali cover I of [0, 1], find a subsequence J
of I that eliminates [0, 1].

I VCT1: Given a saturated I that does not admit a subsequence
that eliminates [0, 1], find a point that is not covered by I.

I VCT2: Given a sequence I that does not admit a subsequence
that eliminates [0, 1], find a point that is not captured by I.

I VCT0 : (S ∧ C )→ E ,

I VCT1 : (S ∧ ¬E )→ ¬C ,

I VCT2 : ¬E → (¬S ∨ ¬C ).
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that eliminates [0, 1], find a point that is not captured by I.

Theorem (B., Gherardi, Hölzl and Pauly 2016)

I VCT0 is computable,

I VCT1≡sW WWKL,

I VCT2≡sW WWKL× CN.
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Vitali Covering Theorem

Proof.

I The proof of computability of VCT0 is based on a construction
that repeats steps of the classical proof of the Vitali Covering
Theorem (and is not just based on a waiting strategy).

I The proof of VCT1≡sW WWKL is based on the equivalence
chain VCT1≡sW PC[0,1]≡sW WWKL.

I We use a Lemma by Brown, Giusto and Simpson on “almost
Vitali covers” in order to prove VCT2≤sW WWKL× CN. The
harder direction is the opposite one for which it suffices to
show CN × VCT2≤sW VCT2 by an explicit construction:

0 1x2 x3 x4 x5 ... xn ...

xn xn + 2jxn − 2j

an bnan,j+1bn,j+1an,j bn,j ...
�



Vitali Covering Theorem in the Weihrauch Lattice

CR≡sW WKL× CN

CN

HBT1≡sW C[0,1]≡sW WKL

VCT2≡sW PCR≡sW WWKL× CN

VCT1≡sW PC[0,1]≡sW WWKL

ACT≡sW ∗-WWKL

VCT0

I ACT : Int⇒ [0, 1], I 7→ [0, 1] \
⋃
I, where dom(ACT) is the

set of all non-disjoint I = (In)n with
∑∞

n=0 λ(In) < 1.
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Las Vegas and Monte Carlo
Computability



Non-Deterministic Turing Machines

input advice

Non-Deterministic
Turing Machine

correct output

Condition: (∀x ∈ dom(f )) {r ∈ R : r does not fail with x} 6= ∅

or

computes f :⊆ X ⇒ Y

y ∈ f (x) failure!

x ∈ X r ∈ 2N



Las Vegas Turing Machines

input advice

Las Vegas

Turing Machine

correct output

Condition: (∀x ∈ dom(f )) µ{r ∈ R : r does not fail with x} > 0

or

computes f :⊆ X ⇒ Y

y ∈ f (x) failure!

x ∈ X r ∈ 2N



Monte Carlo Turing Machines

input advice

Monte Carlo
Turing Machine

correct output

Condition: (∀x ∈ dom(f )) µ{r ∈ R : r does not fail with x} > 0

or

computes f :⊆ X ⇒ Y

y ∈ f (x) failure!

in the limit

x ∈ X r ∈ 2N



Non-Deterministic Computability

Proposition (B., de Brecht and Pauly 2012)

f ≤W WKL ⇐⇒ f is non-deterministically computable.

Non-deterministically computable functions (in this model) were
first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of f ≤W WKL is closed under composition.

There are at least three independent proofs:

I The original proof in terms of the separation problem.

I A proof by B. and Gherardi in terms of Kleene’s ternary logic.

I A very simple proof in terms of non-deterministically
computable functions by B., de Brecht and Pauly.

Corollary

WKL≡W WKL ∗WKL.
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Las Vegas Computability

Proposition (B., Gherardi and Hölzl 2015)

f ≤W WWKL ⇐⇒ f is Las Vegas computable.

Proposition

WWKL≡W WWKL ∗WWKL.

Can be proved as for WKL in terms of Las Vegas computable
functions with an additional application of Fubini’s Theorem.

Corollary

Las Vegas computable functions are closed under composition.
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Monte Carlo Computability

Proposition (B., Hölzl and Kuyper 2016)

f ≤W PC′R≡W WWKL′ × C′N ⇐⇒ f is Monte Carlo computable.

This result is based on a classification of positive Gδ–choice by B.,
Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)

WWKL′ ∗WWKL′≡W PC′2N ∗ PC′2N ≡W PC′R ∗ PC′R≡W PC′R.

This contrasts WKL′ ∗WKL′≡W WKL′′.

Corollary

Monte Carlo computable functions are closed under composition.
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Classes of Computability

Non-deterministic Monte Carlo

Las Vegas

fixed points sortingzeros

Nash equilibria

differentiation

WKL

WWKL

PC′R≡sW WWKL′ × C′N

lim

IVT



Sorting

Definition

SORTn : {0, 1, ..., n − 1}N → {0, 1, ..., n − 1}N is defined by

SORTn(p) := 0k01k1 ...(m − 1)km−1m̂

if m < n is the smallest digit that appears infinitely often in p and
each digit i < m appears exactly ki times in p.

0 3 2 1 3 1 2 1 3 4 3 4 3 4 3 ...

0 1 1 1 2 2 3 3 3 3 3 3 3 3 3 ...

SORT5

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

I CN≤sW SORT2≤sW C′N
I IVT≤W SORT2≤W WWKL′
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Sorting in the Weihrauch Lattice

lim

lim′

PC′R≡sW WWKL′ × C′N

C2N ≡sW WKL

PC2N ≡sW WWKL

PC′2N ≡sW WWKL′

SORTn+2

CC[0,1]≡sW IVT

K′N

C′N

CN

NASH
Σ0

2–measurable

Σ0
3–measurable



Sorting and Algebraic Machine Models

Besides COH sorting is the only problem that we know that is low2

but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

lim ∗ lim ∗SORT2≤W lim ∗ lim and lim ∗SORT2 6≤W lim.

Neumann and Pauly proved that SORT∗2 characterizes the class of
functions computable by certain algebraic machine models.

Corollary

BSS computable functions f : R∗ → R∗ are computable on Monte
Carlo machines.
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