Normality in non-integer bases and polynomial time randomness

Javier Almarza and Santiago Figueira

University of Buenos Aires

CMO BIRS 2016
Algorithmic Randomness Interacts with Analysis and Ergodic Theory

Normality

- a weak notion of randomness
- introduced by Borel in 1909
- "law of large numbers" for blocks of events

Definition

Let $b \in \mathbb{N}, b \geq 2$, and $\Sigma=\{0, \ldots, b-1\}$. A real x is normal in base \boldsymbol{b} if for every string $\sigma \in \Sigma^{*}$

$$
\lim _{n} \frac{\begin{array}{l}
\text { number of occurrences of } \sigma \text { in the first } n \\
\text { digits of the expansion of } x \text { in base } b
\end{array}}{n}=b^{-|\sigma|}
$$

- almost all numbers are normal to all bases
- normality is not base invariant

Martingales

Definition

Let $b \in \mathbb{N}, b \geq 2$, and $\Sigma=\{0, \ldots, b-1\}$.
A martingale in base \boldsymbol{b} is a function $f: \Sigma^{*} \rightarrow \mathbb{R}^{\geq 0}$ such that

$$
f(\sigma)=b^{-1} \sum_{a \in \Sigma} f(\sigma a)
$$

We say that M succeeds on $s \in \Sigma^{\mathbb{N}}$ iff

$$
\lim \sup f(s \upharpoonright n)=\infty
$$

- A martingale is a formalization of a betting strategy
- $f(\sigma)$ is the capital of the gambler after having seen σ. He starts with an initial capital of $f(\emptyset)$
- The betting is fair in that the expected capital after the next bet is equal to the current capital

Outline

(1) Normality for non-uniform measures and DFA martingales

Outline

(1) Normality for non-uniform measures and DFA martingales
(2) Normality for non-integer bases and polytime martingales

Outline

(1) Normality for non-uniform measures and DFA martingales
(2) Normality for non-integer bases and polytime martingales

Normality and martingales generated by finite automata

Definition (Schnorr \& Stimm, 1972)

A martingale f is generated by a DFA if there is a DFA $M=\left\langle Q, \Sigma, \delta, q_{0}, Q_{f}\right\rangle$, and a function $g: Q \times \Sigma \rightarrow \mathbb{R}$ such that

$$
f(\sigma a)=g\left(\delta^{*}\left(\sigma, q_{0}\right), a\right) f(\sigma)
$$

for any word $\sigma \in \Sigma^{*}$ and symbol a.

- the betting factors $\frac{f(\sigma a)}{f(\sigma)}$ only depend on the instantaneous state $\delta^{*}\left(\sigma, q_{0}\right)$ and the symbol a
- the value of the betting factor is not computed by the DFA, just selected through g

Normality and martingales generated by finite automata

Definition (Schnorr \& Stimm, 1972)

A martingale f is generated by a DFA if there is a DFA $M=\left\langle Q, \Sigma, \delta, q_{0}, Q_{f}\right\rangle$, and a function $g: Q \times \Sigma \rightarrow \mathbb{R}$ such that

$$
f(\sigma a)=g\left(\delta^{*}\left(\sigma, q_{0}\right), a\right) f(\sigma)
$$

for any word $\sigma \in \Sigma^{*}$ and symbol a.

- the betting factors $\frac{f(\sigma a)}{f(\sigma)}$ only depend on the instantaneous state $\delta^{*}\left(\sigma, q_{0}\right)$ and the symbol a
- the value of the betting factor is not computed by the DFA, just selected through g

Theorem (Schnorr \& Stimm, 1972)
 x is normal in base b if and only if no martingale in base b generated by a DFA succeeds on the expansion of x in base b.

We extend this result to "normality" for other measures, and "martingales" for other measures.

Subshifts

Let Σ be a finite alphabet.

Definition

A subshift is a tuple (X, T) where

- X is some closed subset of $\Sigma^{\mathbb{N}}$ with the product topology
- X is invariant under T, i.e. $T(X) \subseteq X$
- T is the continuous mapping defined by $(T(s))_{n}=s_{n+1}$.

Subshifts

Let Σ be a finite alphabet.

Definition

A subshift is a tuple (X, T) where

- X is some closed subset of $\Sigma^{\mathbb{N}}$ with the product topology
- X is invariant under T, i.e. $T(X) \subseteq X$
- T is the continuous mapping defined by $(T(s))_{n}=s_{n+1}$.
(X, T) is a subshift if and only if there exists a set $A \subseteq \Sigma^{*}$ such that X coincides with the set of sequences having no substrings in A.
- if A is finite then (X, T) is called a Markov subshift (or subshift of finite type, SFT)
- if A is a regular language then (X, T) is called sofic subshift

Examples of subshifts

The Cantor space $\{0,1\}^{\mathbb{N}}$ is the full subshift

Examples of subshifts

The Cantor space $\{0,1\}^{\mathbb{N}}$ is the full subshift

$$
X=\begin{aligned}
& \text { sequences in }\{0,1\}^{\mathbb{N}} \text { such that the next } \\
& \text { symbol after a } 1 \text { is always a } 0
\end{aligned}
$$

is Markov: $A=\{11\}$

Examples of subshifts

The Cantor space $\{0,1\}^{\mathbb{N}}$ is the full subshift

$$
X=\text { sequences in }\{0,1\}^{\mathbb{N}} \text { such that the next }
$$

is Markov: $A=\{11\}$

$$
X=\text { sequences in }\{0,1\}^{\mathbb{N}} \text { with at most one occurrence of } 1
$$

is not Markov but it is sofic: $A=10^{*} 1=\{11,101,1001,10001, \ldots\}$

Normality for other measures

An invariant measure on a subshift (X, T) is a probability measure P on X such that $P \circ T^{-1}=P$.

Definition

Let P be an invariant measure. We say $s \in X$ is distributed according to \boldsymbol{P} if for all continuous $f: X \rightarrow \mathbb{R}$ we have

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n<N} f\left(T^{n} s\right)}{N}=\int f d P
$$

Normality for other measures

An invariant measure on a subshift (X, T) is a probability measure P on X such that $P \circ T^{-1}=P$.

Definition

Let P be an invariant measure. We say $s \in X$ is distributed according to \boldsymbol{P} if for all continuous $f: X \rightarrow \mathbb{R}$ we have

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n<N} f\left(T^{n} s\right)}{N}=\int f d P
$$

If X is the full subshift on $\Sigma=\{0, \ldots, b-1\}$ and $\lambda(a)=b^{-1}$ for $a \in \Sigma$ is the uniform measure then
s is distributed according to λ iff (written in base b) is normal in base b

Martingales for other measures

Definition

Let $L \subseteq \Sigma^{*}$ and let P be a probability measure P on $\Sigma^{\mathbb{N}}$ which is L-supported $(P(\sigma)>0$ iff $\sigma \in L)$.
A \boldsymbol{P}-martingale is a function $f: L \rightarrow \mathbb{R}^{\geq 0}$ such that

$$
f(\sigma)=\sum_{\substack{a \in \Sigma \\ \sigma a \in L}} P(\sigma a \mid \sigma) f(\sigma a)
$$

Martingales for other measures

Definition

Let $L \subseteq \Sigma^{*}$ and let P be a probability measure P on $\Sigma^{\mathbb{N}}$ which is L-supported $(P(\sigma)>0$ iff $\sigma \in L)$.
A \boldsymbol{P}-martingale is a function $f: L \rightarrow \mathbb{R} \geq 0$ such that

$$
f(\sigma)=\sum_{\substack{a \in \Sigma \\ \sigma a \in L}} P(\sigma a \mid \sigma) f(\sigma a)
$$

When $P=\lambda$, the uniform measure on $\{0, \ldots, b-1\}$, the classical definition of a martingale is recovered:

$$
\lambda(\sigma a \mid \sigma)=\lambda(a)=b^{-1}
$$

The result by Schnorr \& Stimm for Markov measures

Let L_{X} be the set of all words appearing in the sequences of X.

Theorem

Let (X, T) be a Markov subshift and let P be a L_{X}-supported Markov measure which is invariant and irreducible. Then $s \in X$ is distributed according to P iff no P-martingale generated by a DFA succeeds on s.

- the original Schnorr and Stimm's result is the special case when $X=\Sigma^{\mathbb{N}}$ and $P=\lambda$ is the uniform measure
- the Markov condition is used because we need some form of memorylessness on the measure to make it compatible with the memoryless computation of a finite automaton

Outline

(1) Normality for non-uniform measures and DFA martingales
(2) Normality for non-integer bases and polytime martingales

From integer to real bases

Proposition
Let $b \in \mathbb{N}, b>1$.
x is normal in base b iff $\left(x b^{n}\right)_{n \in \mathbb{N}}$ is u.d. modulo one.

From integer to real bases

```
Proposition
```


Let $b \in \mathbb{N}, b>1$.

```
\(x\) is normal in base \(b\) iff \(\left(x b^{n}\right)_{n \in \mathbb{N}}\) is u.d. modulo one.
```

We propose to study this notion:

Definition (Normality for real bases)

Let $\beta \in \mathbb{R}, \beta>1$. x is normal in base $\boldsymbol{\beta}$ iff $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is u.d. modulo one.

By a result of Brown, Moran and Pearce (1986), there are irrational β 's such that there are uncountably many reals x which are normal in any integer base but not normal in base β.

Normality and polytime computable martingales

Definition

x is polynomial time random in base \boldsymbol{b} if no polynomial time computable martingale succeeds on the expansion of x in base b.

Normality and polytime computable martingales

Definition
 x is polynomial time random in base \boldsymbol{b} if no polynomial time computable martingale succeeds on the expansion of x in base b.

- polynomial time random in base $b \Rightarrow$ normal in base b (Schnorr 1971)
- polynomial time randomness is base invariant (F, Nies 2015)
- polynomial time random in a single integer base $\geq 2 \Rightarrow$ normal for all integer bases ≥ 2

Question

polynomial time randomness \Rightarrow normal in base $\beta \in \mathbb{Q}(\beta>1)$?

The formulation of normality in terms of u.d.

x is normal in base $\boldsymbol{\beta}$ iff $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is u.d. modulo one

If β is integer:

- the map

$$
T_{\beta}(x)=(\beta x) \quad \bmod 1
$$

is equivalent to a "shift" rightwards in the space of sequences $\{0, \ldots, \beta-1\}^{\mathbb{N}}$ when x is mapped to its expansion in base β

- $\left(x \beta^{n}\right) \bmod 1=T_{\beta}^{n}(x)$

The formulation of normality in terms of u.d.

x is normal in base $\boldsymbol{\beta}$ iff $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is u.d. modulo one

If β is integer:

- the map

$$
T_{\beta}(x)=(\beta x) \quad \bmod 1
$$

is equivalent to a "shift" rightwards in the space of sequences $\{0, \ldots, \beta-1\}^{\mathbb{N}}$ when x is mapped to its expansion in base β

- if β is not integer, how to represent numbers in base β ?
- $\left(x \beta^{n}\right) \bmod 1=T_{\beta}^{n}(x)$

The formulation of normality in terms of u.d.

x is normal in base $\boldsymbol{\beta}$ iff $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is u.d. modulo one

If β is integer:

- the map

$$
T_{\beta}(x)=(\beta x) \quad \bmod 1
$$

is equivalent to a "shift" rightwards in the space of sequences $\{0, \ldots, \beta-1\}^{\mathbb{N}}$ when x is mapped to its expansion in base β

- if β is not integer, how to represent numbers in base β ?
- $\left(x \beta^{n}\right) \bmod 1=T_{\beta}^{n}(x)$
- if β is not integer, this is false

β-expansions

Let $\beta \in \mathbb{R}, \beta>1$. A $\boldsymbol{\beta}$-expansion of x is

$$
a_{0} \cdot a_{1} a_{2} a_{3} \ldots
$$

- $x=a_{0}+\sum_{n>0} \frac{a_{n}}{\beta^{n}}$,
- $a_{n} \in \mathbb{N}$, and
- $0 \leq a_{n}<\beta$ for $n>0$

β-expansions

Let $\beta \in \mathbb{R}, \beta>1$. A $\boldsymbol{\beta}$-expansion of x is

$$
a_{0} . a_{1} a_{2} a_{3} \ldots
$$

- $x=a_{0}+\sum_{n>0} \frac{a_{n}}{\beta^{n}}$,
- $a_{n} \in \mathbb{N}$, and
- $0 \leq a_{n}<\beta$ for $n>0$
- for all $n>0, \sum_{i>n} a_{i} / \beta^{i}<1 / \beta^{n}$

β-expansions

Let $\beta \in \mathbb{R}, \beta>1$. A $\boldsymbol{\beta}$-expansion of x is

$$
a_{0} . a_{1} a_{2} a_{3} \ldots
$$

- $x=a_{0}+\sum_{n>0} \frac{a_{n}}{\beta^{n}}$,
- $a_{n} \in \mathbb{N}$, and
- $0 \leq a_{n}<\beta$ for $n>0$
- for all $n>0, \sum_{i>n} a_{i} / \beta^{i}<1 / \beta^{n}$

Example

- $\beta=2$:
- The β-expansion of $3 / 4$ is $0.11000000000 \ldots$

β-expansions

Let $\beta \in \mathbb{R}, \beta>1$. A $\boldsymbol{\beta}$-expansion of x is

$$
a_{0} . a_{1} a_{2} a_{3} \ldots
$$

- $x=a_{0}+\sum_{n>0} \frac{a_{n}}{\beta^{n}}$,
- $a_{n} \in \mathbb{N}$, and
- $0 \leq a_{n}<\beta$ for $n>0$
- for all $n>0, \sum_{i>n} a_{i} / \beta^{i}<1 / \beta^{n}$

Example

- $\beta=2$:
- The β-expansion of $3 / 4$ is $0.11000000000 \ldots$
- The β-expansion of $2 \cdot 3 / 4$ is $1.10000000000 \ldots$

β-expansions

Let $\beta \in \mathbb{R}, \beta>1$. A $\boldsymbol{\beta}$-expansion of x is

$$
a_{0} . a_{1} a_{2} a_{3} \ldots
$$

- $x=a_{0}+\sum_{n>0} \frac{a_{n}}{\beta^{n}}$,
- $a_{n} \in \mathbb{N}$, and
- $0 \leq a_{n}<\beta$ for $n>0$
- for all $n>0, \sum_{i>n} a_{i} / \beta^{i}<1 / \beta^{n}$

Example

- $\beta=2$:
- The β-expansion of $3 / 4$ is $0.11000000000 \ldots$
- The β-expansion of $2 \cdot 3 / 4$ is $1.10000000000 \ldots$
- $\beta=\phi$, the golden ratio $\left(\beta \approx 1.618, \beta^{2}-\beta-1=0\right)$:
- The β-expansion of $1 / \beta$ is $0.1000000000 \ldots$

β-expansions

Let $\beta \in \mathbb{R}, \beta>1$. A $\boldsymbol{\beta}$-expansion of x is

$$
a_{0} \cdot a_{1} a_{2} a_{3} \ldots
$$

- $x=a_{0}+\sum_{n>0} \frac{a_{n}}{\beta^{n}}$,
- $a_{n} \in \mathbb{N}$, and
- $0 \leq a_{n}<\beta$ for $n>0$
- for all $n>0, \sum_{i>n} a_{i} / \beta^{i}<1 / \beta^{n}$

Example

- $\beta=2$:
- The β-expansion of $3 / 4$ is $0.11000000000 \ldots$
- The β-expansion of $2 \cdot 3 / 4$ is $1.10000000000 \ldots$
- $\beta=\phi$, the golden ratio $\left(\beta \approx 1.618, \beta^{2}-\beta-1=0\right)$:
- The β-expansion of $1 / \beta$ is $0.1000000000 \ldots$
- The β-expansion of β is $1.10000000000 \ldots$

β-expansions of 1

We are interested in the β-expansion of numbers in $[0,1)$. We represent them simply by

$$
\text { ax. } a_{1} a_{2} a_{3} \ldots
$$

For the special case of 1 , we extend the above representation by continuity (we force a_{0} to be 0 ; the condition in red is not satisfied)

Example

- The 2 -expansion of 1 is $11111111 \ldots\left(1=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\ldots\right)$
- The ϕ-expansion of 1 is $10101010 \ldots\left(1=\frac{1}{\phi}+\frac{1}{\phi^{3}}+\frac{1}{\phi^{5}}+\frac{1}{\phi^{7}}+\ldots\right)$

β-shifts

Let $\Sigma=\{0, \ldots,\lceil\beta\rceil-1]\}$. The β-expansions of $[0,1)$ is the set

$$
\left\{s \in \Sigma^{\mathbb{N}} \mid(\forall n) T^{n} s<_{\text {lex }} \text { the } \beta \text {-expansion of } 1\right\}
$$

β-shifts

Let $\Sigma=\{0, \ldots,\lceil\beta\rceil-1]\}$. The β-expansions of $[0,1)$ is the set

$$
\left\{s \in \Sigma^{\mathbb{N}} \mid(\forall n) T^{n} s<_{\text {lex }} \text { the } \beta \text {-expansion of } 1\right\}
$$

Definition

The $\boldsymbol{\beta}$-shift is the subshift $\left(X_{\beta}, T\right)$, where

$$
X_{\beta}=\left\{s \in \Sigma^{\mathbb{N}} \mid(\forall n) T^{n} s \leq_{\text {lex }} \text { the } \beta \text {-expansion of } 1\right\}
$$

β-shifts

Let $\Sigma=\{0, \ldots,\lceil\beta\rceil-1]\}$. The β-expansions of $[0,1)$ is the set

$$
\left\{s \in \Sigma^{\mathbb{N}} \mid(\forall n) T^{n} s<_{\text {lex }} \text { the } \beta \text {-expansion of } 1\right\}
$$

Definition

The $\boldsymbol{\beta}$-shift is the subshift (X_{β}, T), where

$$
X_{\beta}=\left\{s \in \Sigma^{\mathbb{N}} \mid(\forall n) T^{n} s \leq_{\text {lex }} \text { the } \beta \text {-expansion of } 1\right\}
$$

Example

- The 2 -shift is the full shift $\{0,1\}^{\mathbb{N}}$
- The ϕ-shift is the set of sequences on $\{0,1\}^{\mathbb{N}}$ such that no two 1 's occur consecutively in them

Pisot numbers

Definition

$\beta \in \mathbb{R}$ is Pisot if $\beta>1$ and β is the root of a monic polynomial in integer coefficients, such that all its conjugate values (that is, all the other roots of its minimal polynomial) have absolute values <1.

Pisot numbers

Definition

$\beta \in \mathbb{R}$ is Pisot if $\beta>1$ and β is the root of a monic polynomial in integer coefficients, such that all its conjugate values (that is, all the other roots of its minimal polynomial) have absolute values <1.

Example

- all integers $n>1$ are Pisot numbers
- rational Pisot numbers are integers
- the golden ratio 1.618...

Pisot numbers

Definition

$\beta \in \mathbb{R}$ is Pisot if $\beta>1$ and β is the root of a monic polynomial in integer coefficients, such that all its conjugate values (that is, all the other roots of its minimal polynomial) have absolute values <1.

Example

- all integers $n>1$ are Pisot numbers
- rational Pisot numbers are integers
- the golden ratio 1.618...

Pisot numbers are "asymptotically integers" (Bertrand 1986):
β is Pisot iff $\quad \sum_{n \geq 0}\left(\right.$ distance from β^{n} to its closest integer $)<\infty$

Pisot numbers

Definition

$\beta \in \mathbb{R}$ is Pisot if $\beta>1$ and β is the root of a monic polynomial in integer coefficients, such that all its conjugate values (that is, all the other roots of its minimal polynomial) have absolute values <1.

Example

- all integers $n>1$ are Pisot numbers
- rational Pisot numbers are integers
- the golden ratio 1.618...

Pisot numbers are "asymptotically integers" (Bertrand 1986):
β is Pisot iff $\quad \sum_{n \geq 0}\left(\right.$ distance from β^{n} to its closest integer $)<\infty$ For β Pisot we have (Bertrand 1986):

- the β-expansion of 1 is eventually periodic and X_{β} is a sofic subshift
- if a real number x has a β-expansion that is distributed according to P_{β} (the Parry measure), then x is normal in base β

Putting all pieces together

Theorem

If x is polynomial time random then x is normal in base β for all Pisot β.

Putting all pieces together

Theorem

If x is polynomial time random then x is normal in base β for all Pisot β.

Proof sketch

- Suppose $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is not u.d. mod 1. Let $s=\beta$-expansion of x.

Putting all pieces together

Theorem

If x is polynomial time random then x is normal in base β for all Pisot β.

Proof sketch

- Suppose $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is not u.d. mod 1. Let $s=\beta$-expansion of x.
- By Bertrand's theorem, s is not distributed according to P_{β}.

Putting all pieces together

Theorem

If x is polynomial time random then x is normal in base β for all Pisot β.

Proof sketch

- Suppose $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is not u.d. mod 1 . Let $s=\beta$-expansion of x.
- By Bertrand's theorem, s is not distributed according to P_{β}.
- Consider $\left(X_{\beta}, T\right)$ and use

Theorem

Let (X, T) be a Markov subshift and let P be a Markov measure with support X which is invariant and irreducible. Then $s \in X$ is distributed according to P iff no P-martingale generated by a DFA succeeds on s.

Putting all pieces together

Theorem

If x is polynomial time random then x is normal in base β for all Pisot β.

Proof sketch

- Suppose $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is not u.d. mod 1 . Let $s=\beta$-expansion of x.
- By Bertrand's theorem, s is not distributed according to P_{β}.
- $\left(X_{\beta}, T\right)$ is not Markov, so we can't use

Theorem

Let (X, T) be a Markov subshift and let P be a Markov measure with support X which is invariant and irreducible. Then $s \in X$ is distributed according to P iff no P-martingale generated by a DFA succeeds on s.

Putting all pieces together

Theorem

If x is polynomial time random then x is normal in base β for all Pisot β.

Proof sketch

- Suppose $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is not u.d. mod 1. Let $s=\beta$-expansion of x.
- By Bertrand's theorem, s is not distributed according to P_{β}.
- $\left(X_{\beta}, T\right)$ is not Markov, so we can't use

Theorem

Let (X, T) be a Markov subshift and let P be a Markov measure with support X which is invariant and irreducible. Then $s \in X$ is distributed according to P iff no P-martingale generated by a DFA succeeds on s.

Putting all pieces together

Theorem

If x is polynomial time random then x is normal in base β for all Pisot β.

Proof sketch

- Suppose $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is not u.d. mod 1. Let $s=\beta$-expansion of x.
- By Bertrand's theorem, s is not distributed according to P_{β}.
- $\left(X_{\beta}, T\right)$ is not Markov, so we can't use But $\left(X_{\beta}, T\right)$ is sofic, and

Theorem

Let (X, T) be a Markov subshift and let P be a Markov measure with support X which is invariant and irreducible. Then $s \in X$ is distributed according to P iff no P-martingale generated by a DFA succeeds on s.
we can use

Another Theorem

The generalization of \Leftarrow to sofic subshifts still holds.

- There is a P_{β}-martingale f generated by a DFA which succeeds on s.

Putting all pieces together

Theorem

If x is polynomial time random then x is normal in base β for all Pisot β.

Proof sketch

- Suppose $\left(x \beta^{n}\right)_{n \in \mathbb{N}}$ is not u.d. mod 1. Let $s=\beta$-expansion of x.
- By Bertrand's theorem, s is not distributed according to P_{β}.
- $\left(X_{\beta}, T\right)$ is not Markov, so we can't use

Theorem

Let (X, T) be a Markov subshift and let P be a Markov measure with support X which is invariant and irreducible. Then $s \in X$ is distributed according to P iff no P-martingale But $\left(X_{\beta}, T\right)$ is sofic, and we can use

Another Theorem

The generalization of \Leftarrow to sofic subshifts still holds. generated by a DFA succeeds on s.

- There is a P_{β}-martingale f generated by a DFA which succeeds on s.
- Use that s and P_{β} are polytime computable to obtain, from f, a classical polytime martingale in base 2 which succeeds on the binary representation of x.

Thank you!

