The Ergodic Theorem	Construction 000000000	What comes next? 00	We don't have a plan 00

Birkhoff's ergodic theorem for measure-preserving transformations: the harder part

Johanna Franklin and Henry Towsner

Hofstra University

University of Pennsylvania

12/6/16

The Ergodic Theorem	Construction	We don't have a plan
0000	0000000000	

Definition

 $(\Omega, \mathcal{B}, \mu, T)$ is a *dynamical system* if

- $(\Omega, \mathcal{B}, \mu)$ is a probability measure space, and
- $T : \Omega \to \Omega$ is a function so that for every $B \in \mathcal{B}$, $T^{-1}(B)$ is measurable and $\mu(T^{-1}(B)) = \mu(B)$.

When $f: \Omega \to \mathbb{R}$, the *ergodic averages* are the functions

$$(A_N f)(x) = \frac{1}{N} \sum_{i=0}^{N-1} f(T^i x).$$

Theorem (Birkhoff's Pointwise Ergodic Theorem)

Suppose $(\Omega, \mathcal{B}, \mu, T)$ is a dynamical system and $f : \Omega \to \mathbb{R}$ is an L_1 function. Then for almost every $x \in \Omega$, the limit

 $\lim_{N\to\infty} (A_N f)(x)$

exists.

Theorem (Birkhoff's Pointwise Ergodic Theorem)

Suppose $(\Omega, \mathcal{B}, \mu, T)$ is a dynamical system and $f : \Omega \to \mathbb{R}$ is an L_1 function. Then for almost every $x \in \Omega$, the limit

 $\lim_{N\to\infty} (A_N f)(x)$

exists.

Definition

We say x is weak Birkhoff for $(\Omega, \mathcal{B}, \mu, T)$ and f if $\lim_{N\to\infty} (A_N f)(x)$ exists.

Question

Under computability assumptions on $(\Omega, \mathcal{B}, \mu, T)$ and f, which points are weak Birkhoff?

The Ergodic Theorem	Construction	What comes next?	We don't have a plan
○○●○	000000000	00	00

In this talk:

- $\Omega=2^{\mathbb{N}}$ is always Cantor space.
- \mathcal{B} is the σ -algebra generated by the basic clopen sets: when $\sigma: [0, n-1] \rightarrow \{0, 1\}$ is a finite sequence,

$$[\sigma] = \{ \omega \in \Omega \mid \omega \upharpoonright n = \sigma \}$$

is a basic clopen set.

- the measure is always given by $\mu([\sigma]) = 2^{-|\sigma|}$,
- T is always computable.

The Ergodic Theorem	Construction	We don't have a plan
0000		

Theorem (V'yugin)

If f is computable and x is Martin-Löf random then x is weak Birkhoff.

Theorem (F.-T.)

If x is not Martin-Löf random then there is a T and a computable f so that x is not weak Birkhoff.

The Ergodic Theorem	Construction	We don't have a plan
0000		

Theorem (V'yugin)

If f is computable and x is Martin-Löf random then x is weak Birkhoff.

Theorem (F.-T.)

If x is not Martin-Löf random then there is a T and a computable f so that x is not weak Birkhoff.

Theorem (Miyabe-Nies-Zhang)

If f is lower semi-computable and x is OW-random then x is weak Birkhoff.

The Ergodic Theorem	Construction	We don't have a plan
	•00000000	

Definition

When $\alpha < \beta,$ we say that x has $k \ \alpha - \beta \text{-}upcrossings}$ if there is a sequence

$$i_0 < j_0 < i_1 < j_1 < \dots < i_{k-1} < j_{k-1}$$

such that for each $n \leq k$,

•
$$(A_{i_n}f)(x) > \beta$$
, and

•
$$(A_{j_n}f)(x) < \alpha$$
.

The Ergodic Theorem	Construction	What comes next?	We don't have a plan
	000000000	00	00

We are given a Martin-Löf test $\{U_i\}$. We partition $\Omega = A \cup B \cup C$.

- We only try to create upcrossings for points $x \in A \cap \bigcap_i [U_i]$.
- $f = \chi_B$: we create upcrossings by ensuring that $\{T^i x, T^{i+1} x, \dots, T^j x\} \subseteq B$ for long intervals [i, j].
- C is the "cool-down" space: we complete an upcrossing by ensuring that {T^{j+1}x,...,T^kx} ⊆ C for long intervals [j + 1, k].

The Ergodic Theorem	Construction	We don't have a plan
	00000000	

We construct the transformation T stage by stage as we enumerate the sets U_i .

We need a way to give partial information about the transformation T. A partial transformation T_n should specify, for each $\sigma \in 2^{<\omega}$, a $T_n(\sigma) \in 2^{<\omega}$, meaning that $T([\sigma]) \subseteq [T_n(\sigma)]$.

The Ergodic Theorem	Construction	We don't have a plan
	00000000	

We construct the transformation T stage by stage as we enumerate the sets U_i .

We need a way to give partial information about the transformation T. A partial transformation T_n should specify, for each $\sigma \in 2^{<\omega}$, a $T_n(\sigma) \in 2^{<\omega}$, meaning that $T([\sigma]) \subseteq [T_n(\sigma)]$.

We make the following assumption: at stage *n*, there is a value *k* so that, for each $\sigma \in 2^k$, either:

- $|T_n(\sigma)| < |\sigma|$ and, for all $\tau \supseteq \sigma$, $T_n(\tau) = T_n(\sigma)$ (i.e. we have not fully specified what the behavior of T will be on $[\sigma]$, and have made no decisions on longer sequences), or
- |*T_n*(σ)| = |σ|, and for all ρ, *T_n*(σ[¬]ρ) = *T_n*(σ)[¬]ρ (i.e. we have specified exactly where [σ] goes, have also determined the behavior on extensions of σ, and the behavior on extensions is very simple).

0000 0000000 00 00	The Ergodic Theorem	Construction		We don't have a plan
	0000	00000000	00	00

• The diagram is read bottom up: $T_n(\sigma_0) = \sigma_1$, etc.

The Ergodic Theorem	Construction		We don't have a plan
0000	00000000	00	00

- The diagram is read bottom up: $T_n(\sigma_0) = \sigma_1$, etc.
- Stacked boxes indicate "perfect fits": $|\sigma_0| = |\sigma_1|$.

The Ergodic Theorem	Construction		We don't have a plan
0000	00000000	00	00

- The diagram is read bottom up: $T_n(\sigma_0) = \sigma_1$, etc.
- Stacked boxes indicate "perfect fits": $|\sigma_0| = |\sigma_1|$.
- The notation above a top box indicates partial information: |σ| < |σ₄|,

The Ergodic Theorem	Construction		We don't have a plan
0000	00000000	00	00

- The diagram is read bottom up: $T_n(\sigma_0) = \sigma_1$, etc.
- Stacked boxes indicate "perfect fits": $|\sigma_0| = |\sigma_1|$.
- The notation above a top box indicates partial information: |σ| < |σ₄|,
- The notation on top always has to allow the possibility of a loop: $\sigma \sqsubset \sigma_0$.

The Erg	godic Theorem	Construction 0000●00000	What comes next? 00	We don't have a plan 00
	$\langle \rangle$		$\langle \rangle$	

[1]

[0]

The Ergodic Theorem	Construction	We don't have a plan
	000000000	

$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$
[00]	[01]	[10]	[11]

The Ergodic Theorem	Construction	What comes next?	We don't have a plan
	000000000	00	00

The Ergodic Theorem	Construction	We don't have a plan
	000000000	

The Ergodic Theorem	Construction	What comes next?	We don't have a plan
	000000000	00	00

We build a sequence of partial transformations T_n that extend each other with limit T.

At alternate stages, we'll act to ensure that

- the limit T of this sequence is a transformation except on an effective F_{σ} set with measure 0 and
- lim_{N→∞}(A_Nf)(x) does not exist for any x in (a particular subset of) the intersection of a universal Martin-Löf test.

The Ergodic Theorem	Construction	We don't have a plan
	0000000000	

Outrun

Thinning Loops Lemma

We can extend a partial transformation with an open loop to one in which this open loop is replaced by one of the same measure but arbitrarily small width. In fact, we can do so in a way that guarantees that some fraction of the open loop remains untouched.

The Ergodic Theorem	Construction	We don't have a plan
	0000000000	
Outlast		

Escape Lemma

If σ_0 appears in an open loop in T, we can extend T to a new partial transformation where $[\sigma_0]$ is contained in an open loop with $\langle \rangle$ on top.

The Ergodic Theorem	Construction		We don't have a plan
0000	0000000000	00	00
A 1			
Cutting and sta	cking		

Build T to be the limit of finite partial transformations T_n .

- Put aside portions of B to guarantee that (A_{n1}χ_B)(x) ≥ ¹/₂ for some n₁ and portions of C to guarantee that (A_{n2}χ_B)(x) ≤ ¹/₃ for a larger n₂.
- If we see some σ enter V_i , we map σ through a portion of B repeatedly, then through a portion of C.

This will ensure that there are infinitely many upcrossings for any $x \in \bigcap_i [V_i]$.

The Ergodic Theorem	Construction	We don't have a plan
	000000000	
The 26 induct	ive conditions	

- 1–12 Structure of components. Ensure that each partial transformation is extendible to another of the right kind.
- 13–22 Upcrossing management.
- 23–26 Totality management.

The Ergodic Theorem	Construction	What comes next?	We don't have a plan
Lower semicompu	table <i>f</i>		

Theorem (F.-T.)

If f is lower semi-computable and x is weakly 2-random then x is weak Birkhoff.

Later, this was improved to:

The Ergodic Theorem	Construction	What comes next?	We don't have a plan
		0	
Lower semicor	nnutable f		

Theorem (F.-T.)

If f is lower semi-computable and x is weakly 2-random then x is weak Birkhoff.

Later, this was improved to:

Theorem (Miyabe-Nies-Zhang)

If f is lower semi-computable and x is OW-random then x is weak Birkhoff.

The Ergodic Theorem	Construction	What comes next?	We don't have a plan
		00	

$\mathsf{W2R} \subset \mathsf{OW} \subseteq \mathsf{DensityR} \subset \mathsf{DiffR} \subset \mathsf{ML}$

 Difference randomness: A real x is difference random if it is in the intersection of every difference test: a sequence {U_i, V_i} such that µ([U_i] − [V_i]) ≤ 2⁻ⁱ

The Ergodic Theorem	Construction	What comes next?	We don't have a plan
0000	000000000	00	●○

Because we are dealing with a computably enumerable function, creating the high points of upcrossings is (fairly) easy: we can simply increase the value of the function on a certain interval to make the ergodic average go up.

But to bring the ergodic average back down, we need many points where the value of the function is small. This is a limited resource we have to manage carefully. The following situation seems inevitable:

- A segment $[\sigma]$ gets enumerated into some U_i .
- We arrange for every point in $[\sigma]$ to get an upcrossing.
- Many stages pass. Some points in $[\sigma]$ are allocated additional upcrossings.
- Some [τ] ⊆ [σ] is added to V_i and some new [τ'] is enumerated into U_i. We need to reclaim the measure used to give [τ] an upcrossing to make a new upcrossing somewhere else.
- But $[\tau]$ is in the middle of a stack of upcrossings which remain valid.
- Because of the recursion theorem, this situation seems unavoidable: under even weak uniformity assumptions, an opponent can wait until this situation happens and then enumerate a τ which it knows to cause this problem.