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Definition
(Ω,B, µ,T ) is a dynamical system if

(Ω,B, µ) is a probability measure space, and
T : Ω→ Ω is a function so that for every B ∈ B, T−1(B) is
measurable and µ(T−1(B)) = µ(B).

When f : Ω→ R, the ergodic averages are the functions

(AN f )(x) = 1
N

N−1∑
i=0

f (T i x).
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Theorem (Birkhoff’s Pointwise Ergodic Theorem)
Suppose (Ω,B, µ,T ) is a dynamical system and f : Ω→ R is an
L1 function. Then for almost every x ∈ Ω, the limit

lim
N→∞

(AN f )(x)

exists.

Definition
We say x is weak Birkhoff for (Ω,B, µ,T ) and f if
limN→∞(AN f )(x) exists.

Question
Under computability assumptions on (Ω,B, µ,T ) and f , which
points are weak Birkhoff?
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In this talk:
Ω = 2N is always Cantor space.
B is the σ-algebra generated by the basic clopen sets: when
σ : [0, n − 1]→ {0, 1} is a finite sequence,

[σ] = {ω ∈ Ω | ω � n = σ}

is a basic clopen set.
the measure is always given by µ([σ]) = 2−|σ|,
T is always computable.
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Theorem (V’yugin)
If f is computable and x is Martin-Löf random then x is weak
Birkhoff.

Theorem (F.-T.)
If x is not Martin-Löf random then there is a T and a computable
f so that x is not weak Birkhoff.

Theorem (Miyabe-Nies-Zhang)
If f is lower semi-computable and x is OW-random then x is weak
Birkhoff.
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Birkhoff.

Theorem (F.-T.)
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Definition
When α < β, we say that x has k α− β-upcrossings if there is a
sequence

i0 < j0 < i1 < j1 < · · · < ik−1 < jk−1

such that for each n ≤ k,
(Ain f )(x) > β, and
(Ajn f )(x) < α.
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We are given a Martin-Löf test {Ui}. We partition Ω = A∪B ∪C .
We only try to create upcrossings for points x ∈ A ∩

⋂
i [Ui ].

f = χB: we create upcrossings by ensuring that
{T i x ,T i+1x , . . . ,T jx} ⊆ B for long intervals [i , j].
C is the “cool-down” space: we complete an upcrossing by
ensuring that {T j+1x , . . . ,T kx} ⊆ C for long intervals
[j + 1, k].
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We construct the transformation T stage by stage as we
enumerate the sets Ui .

We need a way to give partial information about the
transformation T . A partial transformation Tn should specify, for
each σ ∈ 2<ω, a Tn(σ) ∈ 2<ω, meaning that T ([σ]) ⊆ [Tn(σ)].

We make the following assumption: at stage n, there is a value k
so that, for each σ ∈ 2k , either:

|Tn(σ)| < |σ| and, for all τ w σ, Tn(τ) = Tn(σ) (i.e. we have
not fully specified what the behavior of T will be on [σ], and
have made no decisions on longer sequences), or
|Tn(σ)| = |σ|, and for all ρ, Tn(σ_ρ) = Tn(σ)_ρ (i.e. we
have specified exactly where [σ] goes, have also determined
the behavior on extensions of σ, and the behavior on
extensions is very simple).
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To describe these transformations, we worked with “tower
diagrams”:

· · · · · · · · ·σ0

σ1

σ2

σ3

σ4

σ

τ0

τ1

τ2

〈〉

The diagram is read bottom
up: Tn(σ0) = σ1, etc.

Stacked boxes indicate
“perfect fits”: |σ0| = |σ1|.
The notation above a top
box indicates partial
information: |σ| < |σ4|,
The notation on top always
has to allow the possibility
of a loop: σ @ σ0.
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[0]

〈〉

[1]

〈〉
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We build a sequence of partial transformations Tn that extend
each other with limit T .

At alternate stages, we’ll act to ensure that

the limit T of this sequence is a transformation except on an
effective Fσ set with measure 0 and

limN→∞(AN f )(x) does not exist for any x in (a particular
subset of) the intersection of a universal Martin-Löf test.
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Outrun

Thinning Loops Lemma
We can extend a partial transformation with an open loop to one
in which this open loop is replaced by one of the same measure but
arbitrarily small width. In fact, we can do so in a way that
guarantees that some fraction of the open loop remains untouched.
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Outlast

Escape Lemma
If σ0 appears in an open loop in T , we can extend T to a new
partial transformation where [σ0] is contained in an open loop with
〈〉 on top.
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Cutting and stacking

Build T to be the limit of finite partial transformations Tn.

Put aside portions of B to guarantee that (An1χB)(x) ≥ 1
2 for

some n1 and portions of C to guarantee that (An2χB)(x) ≤ 1
3

for a larger n2.

If we see some σ enter Vi , we map σ through a portion of B
repeatedly, then through a portion of C .

This will ensure that there are infinitely many upcrossings for any
x ∈ ∩i [Vi ].
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The 26 inductive conditions

1–12 Structure of components. Ensure that each partial
transformation is extendible to another of the right
kind.

13–22 Upcrossing management.

23–26 Totality management.
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Lower semicomputable f

Theorem (F.-T.)
If f is lower semi-computable and x is weakly 2-random then x is
weak Birkhoff.

Later, this was improved to:

Theorem (Miyabe-Nies-Zhang)
If f is lower semi-computable and x is OW-random then x is weak
Birkhoff.
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W2R ⊂ OW ⊆ DensityR ⊂ DiffR ⊂ ML

Difference randomness: A real x is difference random if it is in
the intersection of every difference test: a sequence {Ui ,Vi}
such that µ([Ui ]− [Vi ]) ≤ 2−i
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Because we are dealing with a computably enumerable function,
creating the high points of upcrossings is (fairly) easy: we can
simply increase the value of the function on a certain interval to
make the ergodic average go up.

But to bring the ergodic average back down, we need many points
where the value of the function is small. This is a limited resource
we have to manage carefully.
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The following situation seems inevitable:

A segment [σ] gets enumerated into some Ui .
We arrange for every point in [σ] to get an upcrossing.
Many stages pass. Some points in [σ] are allocated additional
upcrossings.
Some [τ ] ⊆ [σ] is added to Vi and some new [τ ′] is
enumerated into Ui . We need to reclaim the measure used to
give [τ ] an upcrossing to make a new upcrossing somewhere
else.
But [τ ] is in the middle of a stack of upcrossings which
remain valid.
Because of the recursion theorem, this situation seems
unavoidable: under even weak uniformity assumptions, an
opponent can wait until this situation happens and then
enumerate a τ which it knows to cause this problem.
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