The Uniform Martin Conjecture and Wadge Degrees

Takayuki Kihara

Joint Work with Antonio Montalbán

Department of Mathematics, University of California, Berkeley, USA

Algorithmic Randomness Interacts with Analysis and Ergodic Theory, Oaxaca, Mexico, Dec 8, 2016

Main Theorem (K. and Montalbán)

 (AD^+) Let Q be BQO. There is an isomorphism between

the "natural" many-one degrees of Q-valued functions on ω

and

the Wadge degrees of Q-valued functions on ω^{ω} .

Main Theorem (K. and Montalbán)

 (AD^+) Let Q be BQO. There is an isomorphism between

the "natural" many-one degrees of Q-valued functions on ω

and

the Wadge degrees of Q-valued functions on ω^{ω} .

(Q = 2) The natural many-one degrees are exactly the Wadge degrees.

Main Theorem (K. and Montalbán)

 (AD^+) Let Q be BQO. There is an isomorphism between

the "natural" many-one degrees of Q-valued functions on ω and

the Wadge degrees of Q-valued functions on ω^{ω} .

(Q = 2) The natural many-one degrees are exactly the Wadge degrees.

The assumption AD^+ can be slightly weakened as: ZF + DC + AD+ "All subsets of ω^{ω} are completely Ramsey (that is, every subset of ω^{ω} has the Baire property w.r.t. the Ellentuck topology)".

Definition

Let A, B ⊆ ω. A is many-one reducible to B if there is a computable function Φ : ω → ω such that (∀n ∈ ω) n ∈ A ⇔ Φ(n) ∈ B.
Let A, B ⊆ ω^ω. A is Wadge reducible to B if there is a continuous function Ψ : ω^ω → ω^ω such that (∀x ∈ ω^ω) x ∈ A ⇔ Ψ(x) ∈ B.

Definition

Let A, B ⊆ ω. A is many-one reducible to B if there is a computable function Φ : ω → ω such that (∀n ∈ ω) n ∈ A ⇔ Φ(n) ∈ B.
Let A, B ⊆ ω^ω. A is Wadge reducible to B if there is a continuous function Ψ : ω^ω → ω^ω such that (∀x ∈ ω^ω) x ∈ A ⇔ Ψ(x) ∈ B.

Many-one degrees versus Wadge degrees

The structure of the many-one degrees is very complicated:

- There are continuum-size antichains, every countable distributive lattice is isomorphic to an initial segment, etc.
- (Nerode-Shore 1980) The theory of the many-one degrees is computably isomorphic to the true second-order arithmetic.

• clopen =
$$\Delta_1$$

• clopen = Δ_1 ; open = Σ_1

• clopen =
$$\Delta_1$$
; open = Σ_1 ; the α -th level in the diff. hierarchy = Σ_{α} ;

•
$$F_{\sigma} \left(\sum_{\sim 2}^{0} \right) = \sum_{\omega_{1}}$$

•
$$F_{\sigma} \left(\sum_{2}^{0} \right) = \Sigma_{\omega_{1}}; G_{\delta} \left(\prod_{2}^{0} \right) = \Pi_{\omega_{1}}$$

•
$$F_{\sigma} \left(\sum_{2}^{0} \right) = \Sigma_{\omega_{1}}; G_{\delta} \left(\prod_{2}^{0} \right) = \Pi_{\omega_{1}}; G_{\delta\sigma} \left(\sum_{3}^{0} \right) = \Sigma_{\omega_{1}}^{\omega_{1}}$$

•
$$F_{\sigma}(\sum_{2}^{0}) = \Sigma_{\omega_{1}}; G_{\delta}(\prod_{2}^{0}) = \Pi_{\omega_{1}}; G_{\delta\sigma}(\sum_{3}^{0}) = \Sigma_{\omega_{1}^{\omega_{1}}}; F_{\sigma\delta}(\prod_{3}^{0}) = \Pi_{\omega_{1}^{\omega_{1}}}$$

• A natural degree should be relativizable and degree invariant.

 A natural degree should be relativizable and degree invariant. In other words, it is induced by a homomorphism f from ≡_T to ≡_T, that is, X ≡_T Y implies f(X) ≡_T f(Y).

- A natural degree should be relativizable and degree invariant. In other words, it is induced by a homomorphism f from ≡_T to ≡_T, that is, X ≡_T Y implies f(X) ≡_T f(Y).
- (AD) The Martin measure μ is defined on \equiv_T -invariant sets in 2^{ω} by:

$$\mu(\mathbf{A}) = \begin{cases} 1 & \text{if } (\exists x) (\forall y \ge_T x) \ y \in \mathbf{A}, \\ 0 & \text{otherwise.} \end{cases}$$

• For homomorphisms f, g from \equiv_T to \equiv_T , define

$$f \leq_T^{\nabla} g \iff f(x) \leq_T g(x), \mu$$
-a.e.

The Martin Conjecture (1960's)

- For every homomorphism **f** from \equiv_T to \equiv_T
 - either **f** maps a μ -conull set into a single \equiv_T -class
 - or f is increasing, that is, $f(x) \ge_T x$, μ -a.e.
- 2 The increasing homomorphisms from \equiv_T to \equiv_T are
 - well-ordered by \leq_{τ}^{∇} ,
 - and each successor rank is given by the Turing jump.

Natural Turing degrees and Wadge degrees

- (Steel, Slaman-Steel 80's) The Martin conjecture is true for uniform homomorphisms!
- In particular, increasing uniform homomorphisms are well-ordered, and each successor rank is given by the Turing jump.
- (Becker 1988) Indeed, increasing uniform homomorphisms form a well-order of type Θ.

Natural Turing degrees and Wadge degrees

- (Steel, Slaman-Steel 80's) The Martin conjecture is true for uniform homomorphisms!
- In particular, increasing uniform homomorphisms are well-ordered, and each successor rank is given by the Turing jump.
- (Becker 1988) Indeed, increasing uniform homomorphisms form a well-order of type Θ.

(Hypothesis) Natural degrees are induced by homomorphisms.

Definition

f : $2^{\omega} \rightarrow 2^{\omega}$ is a uniform homomorphism from \equiv_T to \equiv_m (abbreviated as (\equiv_T, \equiv_m) -UH) if there is a function $u : \omega^2 \rightarrow \omega^2$ such that for all $X, Y \in 2^{\omega}$,

 $X \equiv_T Y$ via $(i, j) \implies f(X) \equiv_m f(Y)$ via u(i, j).

(Hypothesis) Natural degrees are induced by homomorphisms.

Definition

f : $2^{\omega} \rightarrow 2^{\omega}$ is a uniform homomorphism from \equiv_T to \equiv_m (abbreviated as (\equiv_T, \equiv_m) -UH) if there is a function $\boldsymbol{u} : \omega^2 \rightarrow \omega^2$ such that for all $\boldsymbol{X}, \boldsymbol{Y} \in 2^{\omega}$,

$$X \equiv_T Y$$
 via $(i, j) \implies f(X) \equiv_m f(Y)$ via $u(i, j)$.

Definition

Given $f, g: 2^{\omega} \to 2^{\omega}$, we say that f is many-one reducible to g on a cone (written as $f \leq_{m}^{\nabla} g$) if

$$(\exists C \in 2^{\omega})(\forall X \geq_T C) f(X) \leq_m^C g(X).$$

Here \leq_m^c is many-one reducibility relative to **C**.

Theorem (K. and Montalbán)

 $(\mathbf{ZF} + \mathbf{DC}_{\mathbb{R}} + \mathbf{AD})$ The \equiv_{m}^{∇} -degrees of uniform homomorphisms from \equiv_{T} to \equiv_{m} are isomorphic to the Wadge degrees.

(Cor.) The \equiv_{m}^{∇} -degrees of (\equiv_{T}, \equiv_{m}) -UHs form a semi-well-order.

Natural many-one degrees \simeq Wadge degrees

Generalize our result to Q-valued functions for any better-quasi-order (BQO) Q.

Definition

Let Q be a quasi-order.

• Let $A, B : \omega \to Q$. A is many-one reducible to B if there is a computable function $\Phi : \omega \to \omega$ such that

 $(\forall n \in \omega) A(n) \leq_Q B \circ \Phi(n).$

2 Let $A, B : \omega^{\omega} \to Q$. A is Wadge reducible to B if there is a continuous function $\Psi : \omega^{\omega} \to \omega^{\omega}$ such that $(\forall x \in \omega^{\omega}) A(x) \leq_Q B \circ \Psi(x).$

What is the motivation of thinking about *Q*-valued functions?

Theorem (Marks)

- The many-one equivalence on 2-valued functions is not a uniformly universal countable Borel equivalence relation.
- The many-one equivalence on 3-valued functions is a uniformly universal countable Borel equivalence relation.

What is the motivation of thinking about *Q*-valued functions?

Theorem (Marks)

- The many-one equivalence on 2-valued functions is not a uniformly universal countable Borel equivalence relation.
- The many-one equivalence on 3-valued functions is a uniformly universal countable Borel equivalence relation.

In particular, \equiv_T is uniformly Borel reducible to \equiv_m on $\mathbf{3}^{\omega}$. Such a reduction has to be *uniform homomorphism from* \equiv_T to \equiv_m !

Our earlier motivation was to understand why $2 \neq 3$...

What is the motivation of thinking about *Q*-valued functions?

Theorem (Marks)

- The many-one equivalence on 2-valued functions is not a uniformly universal countable Borel equivalence relation.
- The many-one equivalence on 3-valued functions is a uniformly universal countable Borel equivalence relation.

In particular, \equiv_T is uniformly Borel reducible to \equiv_m on $\mathbf{3}^{\omega}$. Such a reduction has to be *uniform homomorphism from* \equiv_T to \equiv_m !

Our earlier motivation was to understand why $2 \neq 3$...

- We had conjectured that the structure of natural *m*-degrees on 2^ω is too simple to be uniformly universal, while that on 3^ω has to be sufficiently complicated to be uniformly universal.
- However, we eventually concluded that both structures are very very simple!

Theorem (K. and Montalbán) (\mathbf{AD}^+) Let \mathbf{Q} be BQO. The $\equiv_{\mathbf{m}}^{\nabla}$ -degrees of uniform hom. from $(\mathbf{2}^{\omega}; \equiv_{T})$ to $(\mathbf{Q}^{\omega}; \equiv_{m})$ are isomorphic to the Wadge degrees of \mathbf{Q} -valued functions on ω^{ω} .

(Woodin) $AD^+ = DC_{\mathbb{R}} +$ "every set of reals is ∞ -Borel" + "< Θ -Ordinal Determinacy".

The assumption **AD**⁺ can be slightly weakened as:

ZF + **DC** + **AD**+"All subsets of ω^{ω} are completely Ramsey"

(every subset of ω^{ω} has the Baire property w.r.t. the Ellentuck topology).

Natural Q-many-one degrees = Q-Wadge degrees.

Natural Q-many-one degrees = Q-Wadge degrees.

The structure of **2**-Wadge degrees is very simple. How does the structure of *Q*-Wadge degrees look like?

Natural Q-many-one degrees = Q-Wadge degrees.

The structure of **2**-Wadge degrees is very simple. How does the structure of *Q*-Wadge degrees look like?

- Tree(S): The set of all S-labeled well-founded countable trees.
- "Tree(S): The set of all forests written as a countable disjoint union of trees in Tree(S).

Theorem (extending Duparc's and Selivanov's works)

Let *Q* be a BQO.

- The *Q*-Wadge degrees of Δ_2^0 -functions $\simeq {}^{\sqcup}$ **Tree**(*Q*).
- The *Q*-Wadge degrees of Δ_{q}^{0} -functions $\simeq \Box \operatorname{Tree}(\operatorname{Tree}(Q))$.
- The *Q*-Wadge degrees of Δ_{A}^{0} -functions $\simeq \Box \operatorname{Tree}(\operatorname{Tree}(\operatorname{Tree}(Q)))$.
- The *Q*-Wadge degrees of Δ_{F}^{0} -functions $\simeq {}^{\sqcup}$ **Tree**(**Tree**(**Tree**(**Tree**(*Q*)))).
- and so on... (similar results hold for all transfinite ranks)

The Wadge degree of a *Q*-valued $\Delta^{0}_{\sim \omega}$ -function (hence the *m*-degree of a *Q*-valued natural Δ^{0}_{ω} -function) can be described by a *term* in the language consisting of:

- Constant symbols q (for $q \in Q$).
- 2 A 2-ary function symbol →.
- 3 An ω -ary function symbol \square .

A unary function symbol (•).

We need additional function symbols $\langle \cdot \rangle^{\omega^{\alpha}}$ to represent all Borel Wadge degrees.

Example

- The term $0 \rightarrow 1$ represents open sets (c.e. sets).
- 2 The term $1 \rightarrow 0$ represents closed sets (co-c.e. sets).
- ③ The term 0 ⊔ 1 represents clopen sets (computable sets).
- The term 0→1→0 represents differences of two open sets (d-c.e. sets).
- **5** The term $(0^{\rightarrow}1)$ represents F_{σ} sets (\emptyset' -c.e. sets).

Definition

For a term T, define the class Σ_T of functions as follows:

- **1** Σ_q consists only of the constant function $x \mapsto q$.
- If ∈ Σ_{⊔iSi} iff there is a clopen partition (C_i)_{i∈ω} of ω^ω such that f ↾ C_i is in Σ_{Si}.
- **③** $f \in \Sigma_{S \to T}$ iff there is an open set **U** ⊆ $ω^{ω}$ such that $f \upharpoonright U$ is in Σ_T and $f \upharpoonright (ω^{ω} \setminus U)$ is in Σ_S .
- $f \in \Sigma_{\langle T \rangle}$ iff it is decomposed as $f = g \circ h$, where g is in Σ_T and h is Baire-one.
- $\Sigma_{0 \to 1} = \sum_{1}^{0}, \Sigma_{1 \to 0} = \prod_{1}^{0}, \text{ and } \Sigma_{0 \sqcup 1} = \Delta_{1}^{0}.$

2 $\Sigma_{0 \to 1 \to 0}$ = differences of $\Sigma_{1 \to 0}^{0}$ sets.

• No term corresponds to Δ_{2}^{0} (this reflects the fact that there is no Δ_{2}^{0} -complete set; Δ_{2}^{0} is divided into unbounded ω_{1} -many Wadge degrees).

We define a quasi-order ≤ on terms, which is shown to be isomorphic to the Wadge degrees of finite Borel rank.

Definition of *⊴*

We inductively define a quasi-order ≤ on terms as follows:

 $p \trianglelefteq q \iff p \le_Q q,$ $\langle U \rangle \trianglelefteq \langle V \rangle \iff U \trianglelefteq V,$

and if **S** and **T** are of the form $\langle U \rangle^{\rightarrow} \bigsqcup_{i} S_{i}$ and $\langle V \rangle^{\rightarrow} \bigsqcup_{j} T_{j}$, then

$$S \trianglelefteq T \iff \begin{cases} (\forall i) \ S_i \trianglelefteq T & \text{if } \langle U \rangle \trianglelefteq \langle V \rangle, \\ (\exists j) \ S \trianglelefteq T_j & \text{if } \langle U \rangle \not \trianglelefteq \langle V \rangle. \end{cases}$$

We can extend this quasi-order \leq to terms in the extended language (which has additional function symbols $\langle \cdot \rangle^{\omega^{\alpha}}$ representing transfinite nests of trees). This extended version is shown to be isomorphic to the Wadge degrees of all Borel functions.

Theorem (K. and Montalbán)

(ZFC) Let Q be BQO. The following structures are all isomorphic:

- The \equiv_{m}^{∇} -degrees of $\Delta_{-1+\xi}^{0}$ -measurable (\equiv_{T}, \equiv_{m})-uniform homomorphisms from ($2^{\omega}; \equiv_{T}$) to ($Q^{\omega}; \equiv_{m}$).
- **2** The Wadge degrees of Q-valued $\Delta^0_{-1+\xi}$ -measurable functions.

 $\bigcirc \ ({}^{\sqcup}\mathrm{Tree}^{\xi}(Q), \trianglelefteq).$

(Very very rough idea of) proof

- (1) ⇐⇒ (2): Block's recent work on "very strong BQO" + Game-theoretic argument + degree-theoretic analysis of thin ⊓⁰₁ classes.
- (2) ↔ (3): Introduce an operation which bridges Δ⁰_n and Δ⁰_{n+1} by using Montalbán's recent notion of "the *jump operator via true stages*", and then apply the Friedberg jump inversion theorem.

Theorem (K. and Montalbán [1])

- (AD + DC_ℝ) There is an isomorphism between the ≡^v_m-degrees of UH decision problems and the Wadge degrees of subsets of ω^ω.
- (AD⁺) For any BQO Q, there is an isomorphim between the ^v/_m-degrees of UH Q-valued problems and the Wadge degrees of Q-valued functions on ω^ω.
- **AD** = The Axiom of Determinacy (every set of reals is determined).
- $\mathbf{DC}_{\mathbb{R}} =$ The Dependent Choice on \mathbb{R} .
- $AD^+ = DC_{\mathbb{R}} +$ "every set of reals is ∞ -Borel" + "< Θ -Ordinal Determinacy".

Theorem (K. and Montalbán [2])

$$({\scriptstyle {\Delta_{1+\xi}^{0}}}^{-}\mathsf{UH}(\omega^{\omega},Q^{\omega}),\leq_{\mathsf{m}}^{\mathsf{v}})\simeq({\scriptstyle {\Delta_{1+\xi}^{0}}}(\omega^{\omega},Q),\leq_{\mathsf{w}})\simeq({\scriptstyle {}^{\sqcup}\mathsf{Tree}^{\xi}(Q)},\trianglelefteq)$$

- [1] T. Kihara and A. Montalbán, The uniform Martin's conjecture for many-one degrees, submitted (arXiv:1608.05065).
- [2] T. Kihara and A. Montalbán, On the structure of the Wadge degrees of BQO-valued Borel functions, in preparation.

Appendix

Let Q be a quasi-order.

Q is a well-quasi-order (WQO) if it has no infinite decreasing seq. and no infinite antichain. It is equivalent to saying that (∀f : ω → Q)(∃m < n) f(m) ≤_Q f(n).
 (Nash-Williams 1965) Q is a better-quasi-order (BQO) if (∀f : [ω]^ω → Q continuous)(∃X ∈ [ω]^ω) f(X) ≤_Q f(X⁻).

where X^- is the shift of X, that is, $X^- = X \setminus \{\min X\}$.

 $BQO \implies WQO.$ (Example) A finite quasi-order is a BQO. A well-order is a BQO.

- (computable/clopen) Given an input x, effectively decide x ∉ A (indicated by 0) or x ∈ A (indicated by 1).
- (c.e./open) Given an input x, begin with x ∉ A (indicated by 0) and later x can be enumerated into A (indicated by 1).
- (co-c.e./closed) Given an input x, begin with $x \in A$ (indicated by 1) and later x can be removed from A (indicated by 0).
- (d-c.e.) Begin with x ∉ A (indicated by 0), later x can be enumerated into A (indicated by 1), and x can be removed from A again (indicated by 0).

Forest-representation of a complete ω -c.e. set:

(ω -c.e.) The representation of " ω -c.e." is a forest consists of linear orders of finite length (a linear order of length n + 1 represents "n-c.e.").

 Given an input x, effectively choose a number n ∈ ω giving a bound of the number of times of mind-changes until deciding x ∈ A.

Tree/Forest-representation of ${\Delta^0_{\sim 3}}$ sets

The Wadge degrees of Δ^0_{23} sets are exactly those represented by forests labeled by trees.

Tree/Forest-representation of $\Delta^0_{\!_{4}}$ sets

The Wadge degrees of $\Delta_{\sim 4}^0$ sets are exactly those represented by forests labeled by trees which are labeled by trees.

Definition

- We say that A ⊆ [ω]^ω is Ramsey if there is X ∈ [ω]^ω such that either [X]^ω ⊆ A or [X]^ω ∩ A = Ø.
- C-Det is the hypothesis "every Γ set of reals is determined".
- Γ-Ramsey is the hypothesis "every Γ set of reals is Ramsey".

Remark

What we really need is the hypothesis

"every **Г** set of reals is completely Ramsey"

(i.e., every **Г** set has the Baire property w.r.t. Ellentuck topology)

but for most natural pointclasses Γ , this hypothesis is known to be equivalent to Γ -Ramsey (Brendle-Löwe (1999)).

Definition

- We say that A ⊆ [ω]^ω is Ramsey if there is X ∈ [ω]^ω such that either [X]^ω ⊆ A or [X]^ω ∩ A = Ø.
- C-Det is the hypothesis "every Γ set of reals is determined".
- Γ-Ramsey is the hypothesis "every Γ set of reals is Ramsey".
 - (Martin 1975) **ZF** + **DC** ⊢ **Borel-Det**.
 - (Galvin-Prikry 1973; Silver 1970) ZF + DC + Σ₁¹-Ramsey.
 - (Harrington-Kechris 1981) PD implies Projective-Ramsey.
 - Indeed, they showed that Δ_{2n+2}^1 -Det implies Π_{2n+2}^1 -Ramsey.
 - (Fang-Magidor-Woodin 1992) Σ_1^1 -Det implies Σ_2^1 -Ramsey.
 - (Open Problem) Does AD imply that every set of reals is Ramsey?
 - (Solovay; Woodin) AD⁺ implies that every set of reals is Ramsey.
 - $AD^+ = DC_{\mathbb{R}} +$ "every set of reals is ∞ -Borel" + "< Θ -Ordinal Determinacy".

Why **Γ-Ramsey**? Because we need the following lemma:

Lemma (**ZF** + **DC** $_{\mathbb{R}}$ + **\Gamma-Det + \Gamma-Ramsey**)

Let Q be a BQO.

- The Q-Wadge degrees of Γ -functions form a BQO.
- **2** A *Q*-Wadge degree of Γ -functions is self-dual if and only if it is σ -join-reducible.

Proof

- Louveau-Simpson (1982) showed that if a function *f* from [ω]^ω into a metric space has the Baire property w.r.t. Ellentuck topology, then there is an infinite set *X* such that the restriction *f* ↑ [*X*]^ω is continuous w.r.t. Baire topology. Combine this result with van Engelen-Miller-Steel (1987).
- **?** For Q = (2, =), it has been shown by Steel-van Wesep (1978) (without **F**-**Ramsey**). Recently Block (2014) introduced the notion of vsBQO and extended the Steel-van Wesep Theorem to vsBQO. Analyze Block's proof, and combine it with Louveau-Simpson (1982).