Cototality and the skip operator

Joseph S. Miller University of Wisconsin–Madison

Casa Matemática Oaxaca

joint work with Andrews, Ganchev, Kuyper, Lempp, A. Soskova, and M. Soskova

Definition

• A subshift is a closed set $X \subseteq 2^{\omega}$ such that $a\alpha \in X$ implies $\alpha \in X$.

Definition

- A subshift is a closed set $X \subseteq 2^{\omega}$ such that $a\alpha \in X$ implies $\alpha \in X$.
- X is minimal if there is no nonempty, proper subshift $Y \subset X$.

Definition

- A subshift is a closed set $X \subseteq 2^{\omega}$ such that $a\alpha \in X$ implies $\alpha \in X$.
- X is minimal if there is no nonempty, proper subshift $Y \subset X$.

Given a minimal subshift X, we would like to characterize the set of Turing degrees of members of X.

Definition

- A subshift is a closed set $X \subseteq 2^{\omega}$ such that $a\alpha \in X$ implies $\alpha \in X$.
- X is minimal if there is no nonempty, proper subshift $Y \subset X$.

Given a minimal subshift X, we would like to characterize the set of Turing degrees of members of X.

Definition

The *language* of subshift X is the set

 $L_X = \{ \sigma \in 2^{<\omega} \colon (\exists \alpha \in X) \ \sigma \text{ is a subword of } \alpha \}.$

Definition

- A subshift is a closed set $X \subseteq 2^{\omega}$ such that $a\alpha \in X$ implies $\alpha \in X$.
- X is minimal if there is no nonempty, proper subshift $Y \subset X$.

Given a minimal subshift X, we would like to characterize the set of Turing degrees of members of X.

Definition

The *language* of subshift X is the set

 $L_X = \{ \sigma \in 2^{<\omega} \colon (\exists \alpha \in X) \ \sigma \text{ is a subword of } \alpha \}.$

• If X is minimal and $\sigma \in L_X$, then for every $\alpha \in X$, σ is a subword of α .

Definition

- A subshift is a closed set $X \subseteq 2^{\omega}$ such that $a\alpha \in X$ implies $\alpha \in X$.
- X is minimal if there is no nonempty, proper subshift $Y \subset X$.

Given a minimal subshift X, we would like to characterize the set of Turing degrees of members of X.

Definition

The *language* of subshift X is the set $L_X = \{ \sigma \in 2^{<\omega} : (\exists \alpha \in X) \sigma \text{ is a subword of } \alpha \}.$

If X is minimal and σ ∈ L_X, then for every α ∈ X, σ is a subword of α.
So every element of X can enumerate the set L_X.

Definition

- A subshift is a closed set $X \subseteq 2^{\omega}$ such that $a\alpha \in X$ implies $\alpha \in X$.
- X is *minimal* if there is no nonempty, proper subshift $Y \subset X$.

Given a minimal subshift X, we would like to characterize the set of Turing degrees of members of X.

Definition

The *language* of subshift X is the set $L_X = \{ \sigma \in 2^{<\omega} : (\exists \alpha \in X) \sigma \text{ is a subword of } \alpha \}.$

- **1** If X is minimal and $\sigma \in L_X$, then for every $\alpha \in X$, σ is a subword of α . So every element of X can enumerate the set L_X .
- 2 If we can enumerate L_X , then we can compute a member of X.

Definition

 $A \leq_e B$ if every enumeration of B can compute an enumeration of A.

Definition

 $A \leq_e B$ if every enumeration of B can compute an enumeration of A.

The enumeration degree of L_X characterizes the set of Turing degrees of members of X.

Definition

 $A \leq_e B$ if every enumeration of B can compute an enumeration of A.

The enumeration degree of L_X characterizes the set of Turing degrees of members of X.

Proposition (Jeandel)

If we can enumerate the set of *forbidden words* $\overline{L_X}$, then we can enumerate L_X .

Definition

 $A \leq_e B$ if every enumeration of B can compute an enumeration of A.

The enumeration degree of L_X characterizes the set of Turing degrees of members of X.

Proposition (Jeandel)

If we can enumerate the set of *forbidden words* $\overline{L_X}$, then we can enumerate L_X . I.e., $L_X \leq_e \overline{L_X}$.

Definition

 $A \leq_e B$ if every enumeration of B can compute an enumeration of A.

The enumeration degree of L_X characterizes the set of Turing degrees of members of X.

Proposition (Jeandel)

If we can enumerate the set of *forbidden words* $\overline{L_X}$, then we can enumerate L_X . I.e., $L_X \leq_e \overline{L_X}$.

This is an interesting property for a set to have.

Definition

A set A is cototal if $A \leq_e \overline{A}$.

A degree a is *cototal* if it contains a cototal set.

 A set A is total if A ≤e A. A degree a is total if it contains a total set. Equivalently, a contains the graph of a total function Gf or even the graph of a {0,1}-valued total function.

A degree **a** is *cototal* if it contains a cototal set.

- A set A is total if A ≤_e A. A degree a is total if it contains a total set. Equivalently, a contains the graph of a total function G_f or even the graph of a {0,1}-valued total function.
- (Solon) A degree a is *graph-cototal* if it contains the complement of the graph of a total function.
- A degree **a** is *cototal* if it contains a cototal set.

- A set A is total if A ≤_e A. A degree a is total if it contains a total set. Equivalently, a contains the graph of a total function G_f or even the graph of a {0,1}-valued total function.
- (Solon) A degree a is *graph-cototal* if it contains the complement of the graph of a total function.
- A degree **a** is *cototal* if it contains a cototal set.
- (Solon) A degree a is Solon cototal if it contains a set A such that A is of total degree.

- A set A is total if A ≤_e A. A degree a is total if it contains a total set. Equivalently, a contains the graph of a total function G_f or even the graph of a {0,1}-valued total function.
- (Solon) A degree a is *graph-cototal* if it contains the complement of the graph of a total function.
- A degree **a** is *cototal* if it contains a cototal set.
- (Solon) A degree a is Solon cototal if it contains a set A such that A is of total degree.

total \Rightarrow graph-cototal \Rightarrow cototal \Rightarrow Solon cototal.

Σ^0_2 enumeration degrees are graph-cototal

The degrees that contain Σ_2^0 sets are called Σ_2^0 *enumeration degrees*.

Σ^0_2 enumeration degrees are graph-cototal

The degrees that contain Σ_2^0 sets are called Σ_2^0 *enumeration degrees*.

Proposition

Every Σ_2^0 e-degree is graph-cototal.

Σ_2^0 enumeration degrees are graph-cototal

The degrees that contain Σ_2^0 sets are called Σ_2^0 *enumeration degrees*.

Proposition

Every Σ_2^0 e-degree is graph-cototal.

Proof.

Fix a Σ_2^0 set A and an approximation $\{A_s\}_{s<\omega}$. Let

 $f(a) = \begin{cases} 0, & \text{if } a \notin A; \\ \text{the least } s \text{ such that } a \in A_t \text{ for all } t \ge s - 1, & \text{otherwise.} \end{cases}$

Σ_2^0 enumeration degrees are graph-cototal

The degrees that contain Σ_2^0 sets are called Σ_2^0 *enumeration degrees*.

Proposition

Every Σ_2^0 e-degree is graph-cototal.

Proof.

Fix a Σ_2^0 set A and an approximation $\{A_s\}_{s<\omega}$. Let

 $f(a) = \begin{cases} 0, & \text{if } a \notin A; \\ \text{the least } s \text{ such that } a \in A_t \text{ for all } t \ge s - 1, & \text{otherwise.} \end{cases}$

It is not hard to see that $\overline{G_f} \equiv_e A$.

Σ_2^0 enumeration degrees are graph-cototal

The degrees that contain Σ_2^0 sets are called Σ_2^0 *enumeration degrees*.

Proposition

Every Σ_2^0 e-degree is graph-cototal.

Proof.

Fix a Σ_2^0 set A and an approximation $\{A_s\}_{s<\omega}$. Let

 $f(a) = \begin{cases} 0, & \text{if } a \notin A; \\ \text{the least } s \text{ such that } a \in A_t \text{ for all } t \ge s - 1, & \text{otherwise.} \end{cases}$

It is not hard to see that $\overline{G_f} \equiv_e A$.

This shows that cototal does not imply total.

Definition

Let $G = (\omega, E)$ be a graph. A set $M \subseteq \omega$ is *independent*, if no two members of M are edge related.

Definition

Let $G = (\omega, E)$ be a graph. A set $M \subseteq \omega$ is *independent*, if no two members of M are edge related. M is a *Maximal independent* set, if it has no independent proper superset.

Definition

Let $G = (\omega, E)$ be a graph. A set $M \subseteq \omega$ is *independent*, if no two members of M are edge related. M is a *Maximal independent* set, if it has no independent proper superset.

Proposition

A maximal independent set in a computable graph is total (i.e., $\overline{M} \leq_e M$).

Definition

Let $G = (\omega, E)$ be a graph. A set $M \subseteq \omega$ is *independent*, if no two members of M are edge related. M is a *Maximal independent* set, if it has no independent proper superset.

Proposition

A maximal independent set in a computable graph is total (i.e., $\overline{M} \leq_e M$).

This means that \overline{M} is cototal.

Definition

Let $G = (\omega, E)$ be a graph. A set $M \subseteq \omega$ is *independent*, if no two members of M are edge related. M is a *Maximal independent* set, if it has no independent proper superset.

Proposition

A maximal independent set in a computable graph is total (i.e., $\overline{M} \leq_e M$).

This means that \overline{M} is cototal.

Theorem

Every cototal enumeration degree contains the complement of a maximal independent set for the graph $\omega^{<\omega}$.

Theorem

There is a maximal independent set S for $\omega^{<\omega}$ such that \overline{S} does not have graph-cototal degree.

Theorem

There is a maximal independent set S for $\omega^{<\omega}$ such that \overline{S} does not have graph-cototal degree.

The proof is terrible; it is a 0''' priority argument over 0'.

Theorem

There is a maximal independent set S for $\omega^{<\omega}$ such that \overline{S} does not have graph-cototal degree.

The proof is terrible; it is a 0''' priority argument over 0'.

Theorem

Cototal does not imply graph-cototal.

Theorem (McCarthy)

An enumeration degree is cototal if and only if it contains:

• The complement of a maximal antichain in $\omega^{<\omega}$.

Theorem (McCarthy)

An enumeration degree is cototal if and only if it contains:

- **①** The complement of a maximal antichain in $\omega^{<\omega}$.
- A uniform enumeration pointed tree.

Theorem (McCarthy)

An enumeration degree is cototal if and only if it contains:

- **①** The complement of a maximal antichain in $\omega^{<\omega}$.
- A uniform enumeration pointed tree.

A *uniform enumeration pointed* tree $T \subseteq 2^{<\omega}$ is a tree with no dead ends such that there is a single algorithm that enumerates T from any infinite path in T.

Theorem (McCarthy)

An enumeration degree is cototal if and only if it contains:

- **①** The complement of a maximal antichain in $\omega^{<\omega}$.
- A uniform enumeration pointed tree.

A uniform enumeration pointed tree $T \subseteq 2^{<\omega}$ is a tree with no dead ends such that there is a single algorithm that enumerates T from any infinite path in T.

McCarthy also proved that (non-uniform) enumeration pointed trees have cototal degree; these came up in work of Montalbán on the spectra of structures.

More universal examples of cototal degrees

Theorem (McCarthy)

An enumeration degree is cototal if and only if it contains:

- **①** The complement of a maximal antichain in $\omega^{<\omega}$.
- A uniform enumeration pointed tree.

A *uniform enumeration pointed* tree $T \subseteq 2^{<\omega}$ is a tree with no dead ends such that there is a single algorithm that enumerates T from any infinite path in T.

McCarthy also proved that (non-uniform) enumeration pointed trees have cototal degree; these came up in work of Montalbán on the spectra of structures.

Theorem (McCarthy)

Every cototal enumeration degree contains the language of a minimal subshift.

Definition

$X \leq_e Y$ if and only if there is a c.e. set Γ such that $X = \Gamma[Y] = \{x \colon (\exists D) \langle x, D \rangle \in \Gamma \land D \subseteq Y\}.$

Definition

 $X \leq_e Y$ if and only if there is a c.e. set Γ such that $X = \Gamma[Y] = \{x \colon (\exists D) \ \langle x, D \rangle \in \Gamma \land D \subseteq Y\}.$

Let $K_A = \bigoplus_e \Gamma_e[A]$, where $\{\Gamma_e\}_{e \in \omega}$ is an effective list of all enumeration operators.

Definition

 $X \leq_e Y$ if and only if there is a c.e. set Γ such that $X = \Gamma[Y] = \{x \colon (\exists D) \ \langle x, D \rangle \in \Gamma \land D \subseteq Y\}.$

Let $K_A = \bigoplus_e \Gamma_e[A]$, where $\{\Gamma_e\}_{e \in \omega}$ is an effective list of all enumereation operators. Note that $K_A \equiv_e A$.

Definition

$$\begin{split} X \leq_e Y \text{ if and only if there is a c.e. set } \Gamma \text{ such that} \\ X = \Gamma[Y] = \{x \colon (\exists D) \ \langle x, D \rangle \in \Gamma \ \land \ D \subseteq Y \}. \end{split}$$

Let $K_A = \bigoplus_e \Gamma_e[A]$, where $\{\Gamma_e\}_{e \in \omega}$ is an effective list of all enumeration operators. Note that $K_A \equiv_e A$.

Definition

• (Cooper 1984) The (enumeration) jump of A is $A' = K_A \oplus \overline{K_A}$.

Definition

$$\begin{split} X \leq_e Y \text{ if and only if there is a c.e. set } \Gamma \text{ such that} \\ X = \Gamma[Y] = \{x \colon (\exists D) \ \langle x, D \rangle \in \Gamma \ \land \ D \subseteq Y \}. \end{split}$$

Let $K_A = \bigoplus_e \Gamma_e[A]$, where $\{\Gamma_e\}_{e \in \omega}$ is an effective list of all enumeration operators. Note that $K_A \equiv_e A$.

- (Cooper 1984) The (enumeration) jump of A is $A' = K_A \oplus \overline{K_A}$.
- The *skip* of A is the set $A^{\Diamond} = \overline{K_A}$.

Definition

$$\begin{split} X \leq_e Y \text{ if and only if there is a c.e. set } \Gamma \text{ such that} \\ X = \Gamma[Y] = \{x \colon (\exists D) \ \langle x, D \rangle \in \Gamma \ \land \ D \subseteq Y \}. \end{split}$$

Let $K_A = \bigoplus_e \Gamma_e[A]$, where $\{\Gamma_e\}_{e \in \omega}$ is an effective list of all enumeration operators. Note that $K_A \equiv_e A$.

Definition

- (Cooper 1984) The (enumeration) jump of A is $A' = K_A \oplus \overline{K_A}$.
- The *skip* of A is the set $A^{\Diamond} = \overline{K_A}$.

O Both notions induce operations on degrees.

Definition

$$\begin{split} X \leq_e Y \text{ if and only if there is a c.e. set } \Gamma \text{ such that} \\ X = \Gamma[Y] = \{x \colon (\exists D) \ \langle x, D \rangle \in \Gamma \ \land \ D \subseteq Y \}. \end{split}$$

Let $K_A = \bigoplus_e \Gamma_e[A]$, where $\{\Gamma_e\}_{e \in \omega}$ is an effective list of all enumeration operators. Note that $K_A \equiv_e A$.

- (Cooper 1984) The (enumeration) jump of A is $A' = K_A \oplus \overline{K_A}$.
- The *skip* of A is the set $A^{\Diamond} = \overline{K_A}$.
- O Both notions induce operations on degrees.
- **2** Both notions produce a set $\not\leq_e A$.

Definition

$$\begin{split} X \leq_e Y \text{ if and only if there is a c.e. set } \Gamma \text{ such that} \\ X = \Gamma[Y] = \{x \colon (\exists D) \ \langle x, D \rangle \in \Gamma \ \land \ D \subseteq Y \}. \end{split}$$

Let $K_A = \bigoplus_e \Gamma_e[A]$, where $\{\Gamma_e\}_{e \in \omega}$ is an effective list of all enumeration operators. Note that $K_A \equiv_e A$.

- (Cooper 1984) The (enumeration) jump of A is $A' = K_A \oplus \overline{K_A}$.
- The *skip* of A is the set $A^{\Diamond} = \overline{K_A}$.
- O Both notions induce operations on degrees.
- **2** Both notions produce a set $\not\leq_e A$.
- Solution Note that $A' = K_A \oplus A^{\Diamond} \equiv_e A \oplus A^{\Diamond}$.

Definition

$$\begin{split} X \leq_e Y \text{ if and only if there is a c.e. set } \Gamma \text{ such that} \\ X = \Gamma[Y] = \{x \colon (\exists D) \ \langle x, D \rangle \in \Gamma \ \land \ D \subseteq Y \}. \end{split}$$

Let $K_A = \bigoplus_e \Gamma_e[A]$, where $\{\Gamma_e\}_{e \in \omega}$ is an effective list of all enumeration operators. Note that $K_A \equiv_e A$.

- (Cooper 1984) The (enumeration) jump of A is $A' = K_A \oplus \overline{K_A}$.
- The *skip* of A is the set $A^{\Diamond} = \overline{K_A}$.
- O Both notions induce operations on degrees.
- **2** Both notions produce a set $\leq_e A$.
- Solution Note that $A' = K_A \oplus A^{\Diamond} \equiv_e A \oplus A^{\Diamond}$.
- In other words, the jump is the "increasing version" of the skip.

If A is cototal, then $K_A \equiv_e A \leq_e \overline{A} \leq_e \overline{K_A}$.

If A is cototal, then $K_A \equiv_e A \leq_e \overline{A} \leq_e \overline{K_A}$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

If A is cototal, then $K_A \equiv_e A \leq_e \overline{A} \leq_e \overline{K_A}$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

Theorem (Skip inversion)

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

If A is cototal, then $K_A \equiv_e A \leq_e \overline{A} \leq_e \overline{K_A}$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

Theorem (Skip inversion)

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We can further ensure that if S is not total, then A is not of cototal degree.

If A is cototal, then $K_A \equiv_e A \leq_e \overline{A} \leq_e \overline{K_A}$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

Theorem (Skip inversion)

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We can further ensure that if S is not total, then A is not of cototal degree.

In some ways, the skip in the enumeration degrees acts like the jump in the Turing degrees.

If A is cototal, then $K_A \equiv_e A \leq_e \overline{A} \leq_e \overline{K_A}$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

Theorem (Skip inversion)

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We can further ensure that if S is not total, then A is not of cototal degree.

In some ways, the skip in the enumeration degrees acts like the jump in the Turing degrees.

• The skip maps onto the cone above $\mathbf{0}' \equiv_e \mathbf{0}^{\Diamond}$.

If A is cototal, then $K_A \equiv_e A \leq_e \overline{A} \leq_e \overline{K_A}$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

Theorem (Skip inversion)

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We can further ensure that if S is not total, then A is not of cototal degree.

In some ways, the skip in the enumeration degrees acts like the jump in the Turing degrees.

- The skip maps onto the cone above $\mathbf{0}' \equiv_e \mathbf{0}^{\Diamond}$.
- $\ \, @ \ \, A \leq_e B \text{ if and only if } A^{\Diamond} \leq_1 B^{\Diamond}.$

If A is cototal, then $K_A \equiv_e A \leq_e \overline{A} \leq_e \overline{K_A}$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

Theorem (Skip inversion)

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We can further ensure that if S is not total, then A is not of cototal degree.

In some ways, the skip in the enumeration degrees acts like the jump in the Turing degrees.

- The skip maps onto the cone above $\mathbf{0}' \equiv_e \mathbf{0}^{\Diamond}$.
- $A \leq_e B \text{ if and only if } A^{\Diamond} \leq_1 B^{\Diamond}.$

Neither property holds for the enumeration jump.

Solon cototal does not imply cototal

Recall that an enumeration degree is *Solon cototal* if it contains a set A such that \overline{A} has total degree.

Solon cototal does not imply cototal

Recall that an enumeration degree is *Solon cototal* if it contains a set A such that \overline{A} has total degree.

Corollary

Solon cototal does not imply cototal.

Solon cototal does not imply cototal

Recall that an enumeration degree is *Solon cototal* if it contains a set A such that \overline{A} has total degree.

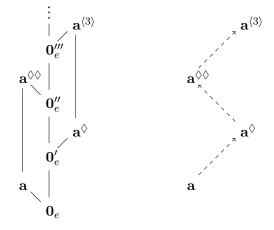
Corollary

Solon cototal does not imply cototal.

Proof.

Start with S that is not total, but of total degree. Skip-invert to A. Then the degree of A is not cototal, but it is *Solon cototal*, because the complement of K_A is of total degree.

Iterated skips



Two properties of skips:

The generic case

Proposition

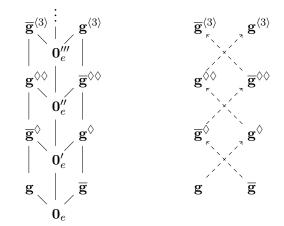
If G is generic relative to a total set X, then $(G \oplus X)^{\Diamond} \equiv_e \overline{G} \oplus X'$.

The generic case

Proposition

If G is generic relative to a total set X, then $(G \oplus X)^{\Diamond} \equiv_e \overline{G} \oplus X'$.

If G is arithmetically generic, then the skips of G and \overline{G} form a double zigzag.



A very special case: a skip two-cycle

Proposition

There are sets A and B such that $B = A^{\Diamond}$ and $A = B^{\Diamond}$.

A very special case: a skip two-cycle

Proposition

There are sets A and B such that $B = A^{\Diamond}$ and $A = B^{\Diamond}$.

This is easy to prove: The double skip operator is monotone, so apply the Knaster–Tarski's fixed-point theorem.

A very special case: a skip two-cycle

Proposition

There are sets A and B such that $B = A^{\Diamond}$ and $A = B^{\Diamond}$.

This is easy to prove: The double skip operator is monotone, so apply the Knaster–Tarski's fixed-point theorem.

Such set A and B must be above all hyperarithmetical sets.

Thank you!