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Motivation from symbolic dynamics

Definition
A subshift is a closed set X ⊆ 2ω such that aα ∈ X implies α ∈ X .

X is minimal if there is no nonempty, proper subshift Y ⊂ X .

Given a minimal subshift X , we would like to characterize the set of Turing
degrees of members of X .

Definition
The language of subshift X is the set

LX = {σ ∈ 2<ω : (∃α ∈ X) σ is a subword of α}.

1 If X is minimal and σ ∈ LX , then for every α ∈ X , σ is a subword of α.
So every element of X can enumerate the set LX .

2 If we can enumerate LX , then we can compute a member of X .
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The enumeration degrees and cototal sets

Definition
A ≤e B if every enumeration of B can compute an enumeration of A.

The enumeration degree of LX characterizes the set of Turing degrees of
members of X .

Proposition (Jeandel)

If we can enumerate the set of forbidden words LX , then we can enumerate
LX . I.e., LX ≤e LX .

This is an interesting property for a set to have.

Definition
A set A is cototal if A ≤e A.
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Four classes of enumeration degrees

1 A set A is total if A ≤e A. A degree a is total if it contains a total set.

Equivalently, a contains the graph of a total function Gf or even the
graph of a {0, 1}-valued total function.

2 (Solon) A degree a is graph-cototal if it contains the complement of the
graph of a total function.

3 A degree a is cototal if it contains a cototal set.

4 (Solon) A degree a is Solon cototal if it contains a set A such that A is of
total degree.

total⇒ graph-cototal⇒ cototal⇒ Solon cototal.
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Σ0
2 enumeration degrees are graph-cototal

The degrees that contain Σ0
2 sets are called Σ0

2 enumeration degrees.

Proposition

Every Σ0
2 e-degree is graph-cototal.

Proof.
Fix a Σ0

2 set A and an approximation {As}s<ω. Let

f(a) =

{
0, if a /∈ A;
the least s such that a ∈ At for all t ≥ s− 1, otherwise.

It is not hard to see that Gf ≡e A.

This shows that cototal does not imply total.
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Complements of maximal independent sets

Definition
Let G = (ω,E) be a graph. A set M ⊆ ω is independent, if no two members
of M are edge related.

M is a Maximal independent set, if it has no
independent proper superset.

Proposition

A maximal independent set in a computable graph is total (i.e., M ≤e M ).

This means that M is cototal.

Theorem
Every cototal enumeration degree contains the complement of a maximal
independent set for the graph ω<ω.
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Cototal does not imply graph-cototal

Theorem
There is a maximal independent set S for ω<ω such that S does not have
graph-cototal degree.

The proof is terrible; it is a 0′′′ priority argument over 0′.

Theorem
Cototal does not imply graph-cototal.
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More universal examples of cototal degrees

Theorem (McCarthy)
An enumeration degree is cototal if and only if it contains:

1 The complement of a maximal antichain in ω<ω.

2 A uniform enumeration pointed tree.

A uniform enumeration pointed tree T ⊆ 2<ω is a tree with no dead ends such
that there is a single algorithm that enumerates T from any infinite path in T .

McCarthy also proved that (non-uniform) enumeration pointed trees have
cototal degree; these came up in work of Montalbán on the spectra of
structures.

Theorem (McCarthy)
Every cototal enumeration degree contains the language of a minimal subshift.
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The skip and the jump
Definition
X ≤e Y if and only if there is a c.e. set Γ such that

X = Γ[Y ] = {x : (∃D) 〈x,D〉 ∈ Γ ∧ D ⊆ Y }.

Let KA =
⊕

e Γe[A], where {Γe}e∈ω is an effective list of all enumereation
operators. Note that KA ≡e A.

Definition
(Cooper 1984) The (enumeration) jump of A is A′ = KA ⊕KA.

The skip of A is the set A♦ = KA.

1 Both notions induce operations on degrees.
2 Both notions produce a set �e A.
3 Note that A′ = KA ⊕A♦ ≡e A⊕A♦.
4 In other words, the jump is the “increasing version” of the skip.
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The skip (and cototality)
If A is cototal, then KA ≡e A ≤e A ≤e KA.

Proposition

A degree a is cototal if and only if a ≤ a♦ (if and only if a♦ = a′).

Theorem (Skip inversion)

Let S ≥e ∅′. There is a set A such that A♦ ≡e S.

We can further ensure that if S is not total, then A is not of cototal degree.

In some ways, the skip in the enumeration degrees acts like the jump in the
Turing degrees.

1 The skip maps onto the cone above 0′ ≡e 0
♦.

2 A ≤e B if and only if A♦ ≤1 B
♦.

Neither property holds for the enumeration jump.
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In some ways, the skip in the enumeration degrees acts like the jump in the
Turing degrees.

1 The skip maps onto the cone above 0′ ≡e 0
♦.

2 A ≤e B if and only if A♦ ≤1 B
♦.

Neither property holds for the enumeration jump.
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Solon cototal does not imply cototal

Recall that an enumeration degree is Solon cototal if it contains a set A such
that A has total degree.

Corollary
Solon cototal does not imply cototal.

Proof.
Start with S that is not total, but of total degree. Skip-invert to A. Then the
degree of A is not cototal, but it is Solon cototal, because the complement of
KA is of total degree.
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Iterated skips

0e

a

0′e

a♦

0′′e

a♦♦

0′′′e

a〈3〉
...

a

a♦

a♦♦

a〈3〉

Two properties of skips:
1 If a ≤ b, then a♦ ≤ b♦;
2 a ≤ a♦♦.
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The generic case
Proposition

If G is generic relative to a total set X , then (G⊕X)♦ ≡e G⊕X ′.

If G is arithmetically generic, then the skips of G and G form a double zigzag.

0e

g g

0′e

g♦g♦

0′′e

g♦♦ g♦♦

0′′′e

g〈3〉g〈3〉
...

g

g♦

g♦♦

g〈3〉

g

g♦

g♦♦

g〈3〉
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A very special case: a skip two-cycle

Proposition

There are sets A and B such that B = A♦ and A = B♦.

This is easy to prove: The double skip operator is monotone, so apply the
Knaster–Tarski’s fixed-point theorem.

Such set A and B must be above all hyperarithmetical sets.
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Thank you!
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