Arithmetic Progressions and Symbolic Dynamical Systems

Satyadev Nandakumar Indian Institute of Technology Kanpur
(joint work with Rod Downey and André Nies)

December 8, 2016

van der Waerden's Theorem

van der Waerden's theorem

Theorem: van der Waerden 1927

Suppose \mathbb{N} is partitioned into two sets S_{1} and S_{2}. Then either S_{1} or S_{2} has arbitrarily long arithmetic progressions - i.e. $\exists S_{i}$ such that for every $k \geq 2$, there are integers a and b such that have

$$
a, a+2 b, \quad \ldots, a+(k-1) b \in S_{i}
$$

van der Waerden's theorem

Theorem: van der Waerden 1927

Suppose \mathbb{N} is partitioned into two sets S_{1} and S_{2}. Then either S_{1} or S_{2} has arbitrarily long arithmetic progressions - i.e. $\exists S_{i}$ such that for every $k \geq 2$, there are integers a and b such that have

$$
a, a+2 b, \quad \ldots, a+(k-1) b \in S_{i}
$$

Proof due to Ron Graham, that within 325, you can find an arithmetic progression of length 3:

van der Waerden's theorem

Theorem: van der Waerden 1927

Suppose \mathbb{N} is partitioned into two sets S_{1} and S_{2}. Then either S_{1} or S_{2} has arbitrarily long arithmetic progressions - i.e. $\exists S_{i}$ such that for every $k \geq 2$, there are integers a and b such that have

$$
a, a+2 b, \quad \ldots, a+(k-1) b \in S_{i}
$$

Proof due to Ron Graham, that within 325, you can find an arithmetic progression of length 3:
Divide 325 into 65 blocks, [1-5], [6-10], ..., [321-325]. Each number is colored either red or blue (say).

van der Waerden's theorem

Theorem: van der Waerden 1927

Suppose \mathbb{N} is partitioned into two sets S_{1} and S_{2}. Then either S_{1} or S_{2} has arbitrarily long arithmetic progressions - i.e. $\exists S_{i}$ such that for every $k \geq 2$, there are integers a and b such that have

$$
a, a+2 b, \ldots, a+(k-1) b \in S_{i} .
$$

Proof due to Ron Graham, that within 325, you can find an arithmetic progression of length 3:
Divide 325 into 65 blocks, [1-5], [6-10], ..., [321-325]. Each number is colored either red or blue (say).
There are 32 possible block colorings. Pigeonhole $\Longrightarrow 2$ blocks in the first 33 are colored the same.

Proof of vdW

000

Erdős' Conjecture

Definition

A set $S \subseteq \mathbb{Z}$ has positive upper Banach density if

$$
\limsup _{N \rightarrow \infty} \frac{|S \cap[-N, N]|}{2 N+1}>0 .
$$

Erdős' Conjecture

Definition

A set $S \subseteq \mathbb{Z}$ has positive upper Banach density if

$$
\limsup _{N \rightarrow \infty} \frac{|S \cap[-N, N]|}{2 N+1}>0 .
$$

Erdős conjectured that if a set S of positive upper Banach density is partitioned into two, one of the partitions has arbitrarily long arithmetic progressions.

Erdős' Conjecture

Definition

A set $S \subseteq \mathbb{Z}$ has positive upper Banach density if

$$
\limsup _{N \rightarrow \infty} \frac{|S \cap[-N, N]|}{2 N+1}>0 .
$$

Erdős conjectured that if a set S of positive upper Banach density is partitioned into two, one of the partitions has arbitrarily long arithmetic progressions.

Theorem: (Szemerédi 1975)

Erdős conjecture holds.
Proof uses his "regularity lemma".

Some highlights

1. Roth 1956 Erdős Conjecture holds for length 3 A.P.
2. Szemerédi's Theorem 1975
3. Furstenberg's ergodic theory proof 1978
4. Gowers' Fourier Analytic proof, 1996
5. Green-Tao A.P. in primes

Topological Dynamics

Connections between topological dynamics and integer sets.

Definition

If X is a compact space and $T: X \rightarrow X$ is a continuous map, then (X, T) is said to be a dynamical system.

Topological Dynamics

Connections between topological dynamics and integer sets.

Definition

If X is a compact space and $T: X \rightarrow X$ is a continuous map, then (X, T) is said to be a dynamical system.

We are typically interested in the behavior of the orbit of a point or a set - e.g. $\left\{T^{n} x \mid x \in X, n \in \mathbb{Z}\right\}$ or

Topological Dynamics

Connections between topological dynamics and integer sets.

Definition

If X is a compact space and $T: X \rightarrow X$ is a continuous map, then (X, T) is said to be a dynamical system.

We are typically interested in the behavior of the orbit of a point or a set - e.g. $\left\{T^{n} x \mid x \in X, n \in \mathbb{Z}\right\}$ or $\left\{T^{n} U \mid U \subset X, n \in \mathbb{Z}\right\}$.

Pigeonhole principle and Recurrence in Open Covers

Pigeonhole and Basic Recurrence

Theorem: The infinite pigeonhole principle
If \mathbb{Z} is colored using finitely many colours, then at least one color appears i.o.

Pigeonhole and Basic Recurrence

Theorem: The infinite pigeonhole principle

If \mathbb{Z} is colored using finitely many colours, then at least one color appears i.o.

Theorem: Recurrence in Open Covers

Let (X, T) be a toplogical dynamical system, and $\left(U_{\alpha}\right)_{\alpha \in \Omega}$ be an open cover of X. Then there is a U_{α} in the cover for which for infinitely many $n, U_{\alpha} \cap T^{n} U_{\alpha} \neq \emptyset$.

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_{1}, \ldots, U_{n} covers X.

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_{1}, \ldots, U_{n} covers X.
Pick $x \in X$. Consider its orbit

$$
\ldots, T^{-1} x, x, T x, \ldots
$$

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_{1}, \ldots, U_{n} covers X.
Pick $x \in X$. Consider its orbit

$$
\ldots, T^{-1} x, x, T x, \ldots
$$

Pigeonhole Principle \Rightarrow there is some $U_{i}, 1 \leq i \leq n$ such that for infinitely many $n, T^{n} x \in U_{i}$.

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_{1}, \ldots, U_{n} covers X.
Pick $x \in X$. Consider its orbit

$$
\ldots, T^{-1} x, x, T x, \ldots
$$

Pigeonhole Principle \Rightarrow there is some $U_{i}, 1 \leq i \leq n$ such that for infinitely many $n, T^{n} x \in U_{i}$.

Consider $O=\left\{n \in \mathbb{Z} \mid T^{n} x \in U_{i}\right\}$. Pick some $n_{0} \in O$.

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_{1}, \ldots, U_{n} covers X.
Pick $x \in X$. Consider its orbit

$$
\ldots, T^{-1} x, x, T x, \ldots
$$

Pigeonhole Principle \Rightarrow there is some $U_{i}, 1 \leq i \leq n$ such that for infinitely many $n, T^{n} x \in U_{i}$.

Consider $O=\left\{n \in \mathbb{Z} \mid T^{n} x \in U_{i}\right\}$. Pick some $n_{0} \in O$.
$\forall n \in O, \quad T^{n_{0}} x=T^{n_{0}-n} T^{n} x$. Hence $T^{n_{0}} x \in U_{i} \cap T^{n_{0}-n} U_{i}$.

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_{1}, \ldots, U_{n} covers X.
Pick $x \in X$. Consider its orbit

$$
\ldots, T^{-1} x, x, T x, \ldots
$$

Pigeonhole Principle \Rightarrow there is some $U_{i}, 1 \leq i \leq n$ such that for infinitely many $n, T^{n} x \in U_{i}$.

Consider $O=\left\{n \in \mathbb{Z} \mid T^{n} x \in U_{i}\right\}$. Pick some $n_{0} \in O$.
$\forall n \in O, \quad T^{n_{0}} x=T^{n_{0}-n} T^{n} x$. Hence $T^{n_{0}} x \in U_{i} \cap T^{n_{0}-n} U_{i}$.
Hence for infinitely many $n, U_{i} \cap T^{n_{0}-n} U_{i} \neq \emptyset$.

BROC \Longrightarrow PhP

This uses the idea of subsystems.

BROC \Longrightarrow PhP

This uses the idea of subsystems.
Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z}. Consider the tds $\left(\Omega^{\mathbb{Z}}, T\right)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$.

BROC $\Longrightarrow \mathrm{PhP}$

This uses the idea of subsystems.
Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z}. Consider the tds $\left(\Omega^{\mathbb{Z}}, T\right)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$. Define

$$
X_{a}=\overline{\left\{T^{n} a \mid n \in Z\right\}} .
$$

$\mathrm{BROC} \Longrightarrow \mathrm{PhP}$

This uses the idea of subsystems.
Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z}. Consider the tds $\left(\Omega^{\mathbb{Z}}, T\right)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$.
Define

$$
X_{a}=\overline{\left\{T^{n} a \mid n \in Z\right\}} .
$$

Consider the cover $\left(U_{c}\right)_{c \in \Omega}$ where U_{c} are the points in X_{a} with 0 colored c.

BROC $\Longrightarrow \mathrm{PhP}$

This uses the idea of subsystems.
Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z}. Consider the tds $\left(\Omega^{\mathbb{Z}}, T\right)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$.
Define

$$
X_{a}=\overline{\left\{T^{n} a \mid n \in Z\right\}} .
$$

Consider the cover $\left(U_{c}\right)_{c \in \Omega}$ where U_{c} are the points in X_{a} with 0 colored c.

By recurrence in open covers,

$$
\begin{equation*}
\exists c \in \Omega \quad \exists^{\infty} n \quad U_{c} \cap T^{n} U_{c} \neq \emptyset . \tag{1}
\end{equation*}
$$

$\mathrm{BROC} \Longrightarrow \mathrm{PhP}$

This uses the idea of subsystems.
Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z}. Consider the tds $\left(\Omega^{\mathbb{Z}}, T\right)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$.
Define

$$
X_{a}=\overline{\left\{T^{n} a \mid n \in Z\right\}} .
$$

Consider the cover $\left(U_{c}\right)_{c \in \Omega}$ where U_{c} are the points in X_{a} with 0 colored c.

By recurrence in open covers,

$$
\begin{equation*}
\exists c \in \Omega \quad \exists^{\infty} n \quad U_{c} \cap T^{n} U_{c} \neq \emptyset \tag{1}
\end{equation*}
$$

Since X_{a} is the orbit closure of a, there is a $k \in \mathbb{Z}$ such that $T^{k} a \in U_{c} \cap T^{n} U_{c}$. That is, $a_{-k}=c$ and $a_{-k+n}=c$. This is true for all n in (1).

van der Waerden's Theorem and Multiple Recurrence in Open Covers

The version of recurrence in tds which is equivalent to Van der Waerden's theorem is the following.

Theorem: Multiple Recurrence in Open Covers

Let (X, T) be a topological dynamical system and $\left(U_{\alpha}\right)_{\alpha \in \Omega}$ be an open cover of X. Then there is a U_{α} in the cover such that

$$
\forall k \geq 2 \exists n>0 \quad U_{\alpha} \cap T^{n} U_{\alpha} \cap \cdots \cap T^{(k-1) n} U_{\alpha} \neq \emptyset
$$

Szemerédi's Theorem and Furstenberg Multiple Recurrence Theorem

Dynamical Systems view of Szemerédi's Theorem

For Szemerédi's theorem, we now have to consider measure as well. Definition

A measure-preserving topological dynamical system is a quadruple (X, \mathcal{X}, μ, T) is a space where

- X is a compact topological space,
- \mathcal{X} is a σ-algebra on X,
- μ a probability measure on \mathcal{X} and
- $T: X \rightarrow X$ is a measure-preserving homeomorphism.

Multiple Recurrence

Theorem: Multiple Recurrence Theorem

Let (X, \mathcal{X}, μ, T) be a mtds. Then for any $E \in \mathcal{X}$ with $\mu(E)>0$, we have

$$
\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0 .
$$

Furstenberg Correspondence Principle

Lemma

Let (X, \mathcal{X}, μ, T) be as in the FMRT, and E have positive measure. Then there is an $F, \mu(F)>0$ such that for every x in F,

$$
\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}
$$

has positive upper density.

Proof of Lemma

Proof.

- Define $\delta_{N}(x)$ to be the frequency with which $T^{-N} x, \ldots$, $T^{N} x$ visits E. Then the expected value of δ_{N} is $\mu(E)$.
- The probability of

$$
A_{N}=\left\{x \in X \left\lvert\, \delta_{N}(x) \geq \frac{1}{2} \mu(E)\right.\right\}
$$

is at least $1 / 2 \mu(E)$.

- Then F is the set $\bigcap_{N} \bigcup_{m>N} A_{m}$.

Effective Versions

Furstenberg Multiple Recurrence Theorem - Pointwise

Theorem: (Pointwise)

Let (X, \mathcal{B}, μ) be a probability space. Let T be a measurepreserving operator. Let $A \in \mathcal{B}$ with $\mu(A)>0$.
Then $\forall k$, for μ-a.e. $x \in A$,

$$
\exists n x \in T^{-n}(A) \wedge x \in T^{-2 n} A \wedge \cdots \wedge x \in T^{-k n} A .
$$

Effective Versions - Cantor Space, Left Shift

Definition

We say that a point X in Cantor Space is k-recurrent in $P \in \mathcal{B}$ if $\exists n \geq 1$ such that $X \in \cap_{i=1}^{k} X \in T^{-i n}(P)$.

Effective Versions - Cantor Space, Left Shift

Definition

We say that a point X in Cantor Space is k-recurrent in $P \in \mathcal{B}$ if $\exists n \geq 1$ such that $X \in \cap_{i=1}^{k} X \in T^{-i n}(P)$.

Location (P)	Randomness Notion (X)
clopen	Kurtz Randomness
Π_{1}^{0} with eff. positive measure	Schnorr Randomness
non-null Π_{1}^{0}	Martin-Löf randomness

Kurtz Randomness and Clopen Sets

Definition

X is Kurtz-random if it is in no null Π_{1}^{0} class.

Kurtz Randomness and Clopen Sets

Definition

X is Kurtz-random if it is in no null Π_{1}^{0} class.

Theorem

If P is a non-empty clopen set, then every Kurtz random X is multiply recurrent in P.

Proof. (Sketch) Suppose every string in P is shorter than N bits. Let $n_{0}=N, n_{1}=(k+1) n_{0}, n_{2}=(k+1) n_{1}, \ldots$. Test:

$$
Q=\bigcap_{t \in \mathbb{N}}\left\{Y \mid \exists i \in[1, k] Y_{i n_{t}} \notin P\right\} .
$$

Effectively Positive Π_{1}^{0} sets and Schnorr randoms

Theorem

Let $P \in 2^{\mathbb{N}}$ be a Π_{1}^{0} class with a computable positive measure $\lambda(P)$. Then each Schnorr random is multiply recurrent in P.

(Proof)

- Let $B=2^{N}-P=\cup_{s} B_{s}$, an effectively open set.
- At any finite stage s, we check X is multiply recurrent in $2^{\mathbb{N}}-B_{s}$.
- Let $n_{t} \geq n_{t-1}(k+1)$ be so large that

$$
\lambda\left(B-B_{n_{t}}\right) \leq 2^{-(t+v+k)} .
$$

- Q_{v} is the set of all sequences Z with at least one of $2^{n_{t}} Z$, $2^{2 n_{t}} Z, \ldots, 2^{k n_{t}} Z$ in $B_{n_{t}}$. (hence non- k-recurrent in P).
- This set Q_{v} is Π_{1}^{0} and null. Hence if $Z \in Q_{v}$, then Z is Kurtz-non-random, hence Schnorr-non-random.

Proof (continued)

- The error class for v at stage t is

$$
G_{v}^{t}=\left\{Y \mid \exists i \in[1, k] \quad Y_{i n_{t}} \in\left(B-B_{n_{t}}\right)\right\}
$$

- Then $\lambda\left(G_{v}^{t}\right) \leq k 2^{-(t+v+k)}$, by the union bound and computable.
- Then $G_{v}=\cup_{t} G_{v}^{t}$ has probability less than 2^{-v}.
- Hence if Z is Schnorr-random, then there is a G_{v} excluding Z. Hence Z is multiply recurrent in P.

Positive Π_{1}^{0} sets and Martin-Löf randoms

Theorem

Let $P \in 2^{\mathbb{N}}$ be a Π_{1}^{0} class with measure $\lambda(P)>0$. Then each Martin-Löf random is multiply recurrent in P.

Effective Versions - Kronecker Systems

Definition

Let G be a compact group, and for some $a \in G$, define T_{a} : $G \rightarrow G$ by $T_{a}(x)=a \cdot x$. Then $\left(G, T_{a}\right)$ is called a Kronecker System.

Effective Versions - Kronecker Systems

Definition

Let G be a compact group, and for some $a \in G$, define T_{a} : $G \rightarrow G$ by $T_{a}(x)=a \cdot x$. Then $\left(G, T_{a}\right)$ is called a Kronecker System.
e.g. Irrational Rotations on the unit circle.

Effective Versions - Kronecker Systems

Definition

Let G be a compact group, and for some $a \in G$, define T_{a} : $G \rightarrow G$ by $T_{a}(x)=a \cdot x$. Then $\left(G, T_{a}\right)$ is called a Kronecker System.
e.g. Irrational Rotations on the unit circle.

Since G is a group, if there is any recurrent point in it, then every point in it must be recurrent.

Theorem
Every point in a Kronecker System is multiply recurrent.

Thank You!

