Arithmetic Progressions and Symbolic Dynamical Systems

Satyadev Nandakumar Indian Institute of Technology Kanpur

(joint work with Rod Downey and André Nies)

December 8, 2016

van der Waerden's Theorem

Suppose \mathbb{N} is partitioned into two sets S_1 and S_2 . Then either S_1 or S_2 has arbitrarily long arithmetic progressions — i.e. $\exists S_i$ such that for every $k \ge 2$, there are integers a and b such that have

$$a, a+2b, \ldots, a+(k-1)b \in S_i.$$

Suppose \mathbb{N} is partitioned into two sets S_1 and S_2 . Then either S_1 or S_2 has arbitrarily long arithmetic progressions — i.e. $\exists S_i$ such that for every $k \ge 2$, there are integers a and b such that have

$$a, a+2b, \ldots, a+(k-1)b \in S_i.$$

Proof due to Ron Graham, that within 325, you can find an arithmetic progression of length 3:

Suppose \mathbb{N} is partitioned into two sets S_1 and S_2 . Then either S_1 or S_2 has arbitrarily long arithmetic progressions — i.e. $\exists S_i$ such that for every $k \ge 2$, there are integers a and b such that have

$$a, a+2b, \ldots, a+(k-1)b \in S_i.$$

Proof due to Ron Graham, that within 325, you can find an arithmetic progression of length 3:

Divide 325 into 65 blocks, [1-5], [6-10], ..., [321-325]. Each number is colored either red or blue (say).

Suppose \mathbb{N} is partitioned into two sets S_1 and S_2 . Then either S_1 or S_2 has arbitrarily long arithmetic progressions — i.e. $\exists S_i$ such that for every $k \ge 2$, there are integers a and b such that have

$$a, a+2b, \ldots, a+(k-1)b \in S_i.$$

Proof due to Ron Graham, that within 325, you can find an arithmetic progression of length 3:

Divide 325 into 65 blocks, [1-5], [6-10], ..., [321-325]. Each number is colored either red or blue (say).

There are 32 possible block colorings. Pigeonhole \implies 2 blocks in the first 33 are colored the same.

Proof of vdW

Erdős' Conjecture

Definition

A set $S \subseteq \mathbb{Z}$ has positive upper Banach density if

$$\limsup_{N \to \infty} \frac{|S \cap [-N, N]|}{2N + 1} > 0.$$

Erdős' Conjecture

Definition

A set $S \subseteq \mathbb{Z}$ has positive upper Banach density if $\limsup_{N \to \infty} \frac{|S \cap [-N, N]|}{2N + 1} > 0.$

Erdős conjectured that if a set S of positive upper Banach density is partitioned into two, one of the partitions has arbitrarily long arithmetic progressions.

Erdős' Conjecture

Definition

A set $S \subseteq \mathbb{Z}$ has positive upper Banach density if $\limsup_{N \to \infty} \frac{|S \cap [-N, N]|}{2N + 1} > 0.$

Erdős conjectured that if a set S of positive upper Banach density is partitioned into two, one of the partitions has arbitrarily long arithmetic progressions.

Theorem: (Szemerédi 1975)

Erdős conjecture holds.

Proof uses his "regularity lemma".

Some highlights

- 1. Roth 1956 Erdős Conjecture holds for length 3 A.P.
- 2. Szemerédi's Theorem 1975
- 3. Furstenberg's ergodic theory proof 1978
- 4. Gowers' Fourier Analytic proof, 1996
- 5. Green-Tao A.P. in primes

Topological Dynamics

Connections between topological dynamics and integer sets.

Definition

If X is a compact space and $T: X \to X$ is a continuous map, then (X,T) is said to be a *dynamical system*.

Topological Dynamics

Connections between topological dynamics and integer sets.

Definition

If X is a compact space and $T: X \to X$ is a continuous map, then (X,T) is said to be a *dynamical system*.

We are typically interested in the behavior of the orbit of a point or a set — e.g. $\{T^n x \mid x \in X, n \in \mathbb{Z}\}$ or

Topological Dynamics

Connections between topological dynamics and integer sets.

Definition

If X is a compact space and $T: X \to X$ is a continuous map, then (X,T) is said to be a *dynamical system*.

We are typically interested in the behavior of the orbit of a point or a set — e.g. $\{T^n x \mid x \in X, n \in \mathbb{Z}\}$ or $\{T^n U \mid U \subset X, n \in \mathbb{Z}\}$. Pigeonhole principle and Recurrence in Open Covers

Theorem: The infinite pigeonhole principle

If $\mathbb Z$ is colored using finitely many colours, then at least one color appears i.o.

Theorem: The infinite pigeonhole principle

If $\mathbb Z$ is colored using finitely many colours, then at least one color appears i.o.

Theorem: Recurrence in Open Covers

Let (X,T) be a toplogical dynamical system, and $(U_{\alpha})_{\alpha\in\Omega}$ be an open cover of X. Then there is a U_{α} in the cover for which for infinitely many n, $U_{\alpha} \cap T^n U_{\alpha} \neq \emptyset$. X is compact. Hence some finite subcover U_1, \ldots, U_n covers X.

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_1, \ldots, U_n covers X.

Pick $x \in X$. Consider its orbit

 $\ldots, T^{-1}x, x, Tx, \ldots$

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_1, \ldots, U_n covers X.

Pick $x \in X$. Consider its orbit

 $\ldots, T^{-1}x, x, Tx, \ldots$

Pigeonhole Principle \Rightarrow there is some U_i , $1 \le i \le n$ such that for infinitely many n, $T^n x \in U_i$.

Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U_1, \ldots, U_n covers X.

Pick $x \in X$. Consider its orbit

 $\ldots, T^{-1}x, x, Tx, \ldots$

Pigeonhole Principle \Rightarrow there is some U_i , $1 \le i \le n$ such that for infinitely many n, $T^n x \in U_i$.

Consider $O = \{n \in \mathbb{Z} \mid T^n x \in U_i\}$. Pick some $n_0 \in O$.

X is compact. Hence some finite subcover U_1, \ldots, U_n covers X.

Pick $x \in X$. Consider its orbit

 $\ldots, T^{-1}x, x, Tx, \ldots$

Pigeonhole Principle \Rightarrow there is some U_i , $1 \le i \le n$ such that for infinitely many n, $T^n x \in U_i$.

Consider $O = \{n \in \mathbb{Z} \mid T^n x \in U_i\}$. Pick some $n_0 \in O$.

 $\forall n \in O, \quad T^{n_0}x = T^{n_0-n}T^nx.$ Hence $T^{n_0}x \in U_i \cap T^{n_0-n}U_i.$

X is compact. Hence some finite subcover U_1, \ldots, U_n covers X.

Pick $x \in X$. Consider its orbit

 $\ldots, T^{-1}x, x, Tx, \ldots$

Pigeonhole Principle \Rightarrow there is some U_i , $1 \le i \le n$ such that for infinitely many n, $T^n x \in U_i$.

Consider $O = \{n \in \mathbb{Z} \mid T^n x \in U_i\}$. Pick some $n_0 \in O$.

 $\forall n \in O$, $T^{n_0}x = T^{n_0-n}T^nx$. Hence $T^{n_0}x \in U_i \cap T^{n_0-n}U_i$.

Hence for infinitely many n, $U_i \cap T^{n_0-n}U_i \neq \emptyset$.

Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z} . Consider the tds $(\Omega^{\mathbb{Z}}, T)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$.

Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z} . Consider the tds $(\Omega^{\mathbb{Z}}, T)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$. Define

$$X_a = \overline{\{T^n a \mid n \in Z\}}.$$

Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z} . Consider the tds $(\Omega^{\mathbb{Z}}, T)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$. Define

$$X_a = \overline{\{T^n a \mid n \in Z\}}.$$

Consider the cover $(U_c)_{c\in\Omega}$ where U_c are the points in X_a with 0 colored c.

Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z} . Consider the tds $(\Omega^{\mathbb{Z}}, T)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$. Define

$$X_a = \overline{\{T^n a \mid n \in Z\}}.$$

(1)

Consider the cover $(U_c)_{c\in\Omega}$ where U_c are the points in X_a with 0 colored c.

By recurrence in open covers,

 $\exists c \in \Omega \ \exists^{\infty} n \ U_c \cap T^n U_c \neq \emptyset.$

Let Ω be the finite set of colors. Let A be a coloring of \mathbb{Z} . Consider the tds $(\Omega^{\mathbb{Z}}, T)$, where T is the right-shift. Represent A by $a \in \Omega^{\mathbb{Z}}$. Define

$$X_a = \overline{\{T^n a \mid n \in Z\}}.$$

Consider the cover $(U_c)_{c\in\Omega}$ where U_c are the points in X_a with 0 colored c.

By recurrence in open covers,

 $\exists c \in \Omega \ \exists^{\infty} n \ U_c \cap T^n U_c \neq \emptyset.$ ⁽¹⁾

Since X_a is the orbit closure of a, there is a $k \in \mathbb{Z}$ such that $T^k a \in U_c \cap T^n U_c$. That is, $a_{-k} = c$ and $a_{-k+n} = c$. This is true for all n in (1).

van der Waerden's Theorem and Multiple Recurrence in Open Covers The version of recurrence in tds which is equivalent to Van der Waerden's theorem is the following.

Theorem: Multiple Recurrence in Open Covers

Let (X,T) be a topological dynamical system and $(U_{\alpha})_{\alpha\in\Omega}$ be an open cover of X. Then there is a U_{α} in the cover such that

 $\forall k \ge 2 \ \exists n > 0 \qquad U_{\alpha} \cap T^{n} U_{\alpha} \cap \dots \cap T^{(k-1)n} U_{\alpha} \neq \emptyset.$

Szemerédi's Theorem and Furstenberg Multiple Recurrence Theorem

Dynamical Systems view of Szemerédi's Theorem

For Szemerédi's theorem, we now have to consider *measure* as well. **Definition**

A measure-preserving topological dynamical system is a quadruple (X, \mathcal{X}, μ, T) is a space where

- X is a compact topological space,
- \mathcal{X} is a σ -algebra on X,
- μ a probability measure on $\mathcal X$ and
- $T: X \to X$ is a measure-preserving homeomorphism.

Theorem: Multiple Recurrence Theorem

Let (X, \mathcal{X}, μ, T) be a mtds. Then for any $E \in \mathcal{X}$ with $\mu(E) > 0$, we have

 $\mu(E \cap T^n E \cap \dots \cap T^{(k-1)n} E) > 0.$

Furstenberg Correspondence Principle

Lemma

Let (X, \mathcal{X}, μ, T) be as in the FMRT, and E have positive measure. Then there is an F, $\mu(F) > 0$ such that for every x in F,

$$\{n \in \mathbb{Z} \mid T^n x \in E\}$$

has positive upper density.

Proof.

- Define $\delta_N(x)$ to be the frequency with which $T^{-N}x$, ..., $T^N x$ visits *E*. Then the expected value of δ_N is $\mu(E)$.
- The probability of

$$A_N = \left\{ x \in X \mid \delta_N(x) \ge \frac{1}{2}\mu(E) \right\}$$

is at least $1/2\mu(E)$.

• Then F is the set $\bigcap_N \bigcup_{m>N} A_m$.

Effective Versions

Theorem: (Pointwise)

Let (X, \mathcal{B}, μ) be a probability space. Let T be a measurepreserving operator. Let $A \in \mathcal{B}$ with $\mu(A) > 0$. Then $\forall k$, for μ -a.e. $x \in A$,

 $\exists n \ x \in T^{-n}(A) \land x \in T^{-2n}A \land \dots \land x \in T^{-kn}A.$

We say that a point X in Cantor Space is *k*-recurrent in $P \in \mathcal{B}$ if $\exists n \ge 1$ such that $X \in \bigcap_{i=1}^{k} X \in T^{-in}(P)$.

We say that a point X in Cantor Space is *k*-recurrent in $P \in \mathcal{B}$ if $\exists n \ge 1$ such that $X \in \bigcap_{i=1}^{k} X \in T^{-in}(P)$.

Location (P)	Randomness Notion (X)
clopen	Kurtz Randomness
Π^0_1 with eff. positive measure	Schnorr Randomness
non-null Π^0_1	Martin-Löf randomness

X is Kurtz-random if it is in no null Π_1^0 class.

X is Kurtz-random if it is in no null Π_1^0 class.

Theorem

If P is a non-empty clopen set, then every Kurtz random X is multiply recurrent in P.

Proof. (Sketch) Suppose every string in P is shorter than N bits. Let $n_0 = N$, $n_1 = (k+1)n_0$, $n_2 = (k+1)n_1$, Test:

$$Q = \bigcap_{t \in \mathbb{N}} \{ Y \mid \exists i \in [1, k] \ Y_{in_t} \notin P \}.$$

Theorem

Let $P \in 2^{\mathbb{N}}$ be a Π_1^0 class with a computable positive measure $\lambda(P)$. Then each Schnorr random is multiply recurrent in P.

(Proof)

- Let $B = 2^N P = \bigcup_s B_s$, an effectively open set.
- At any finite stage s, we check X is multiply recurrent in $2^{\mathbb{N}} B_s$.
 - Let $n_t \ge n_{t-1}(k+1)$ be so large that

$$\lambda(B - B_{n_t}) \le 2^{-(t+v+k)}$$

- Q_v is the set of all sequences Z with at least one of $2^{n_t}Z$, $2^{2n_t}Z$, ..., $2^{kn_t}Z$ in B_{n_t} . (hence non-k-recurrent in P).
- This set Q_v is Π_1^0 and null. Hence if $Z \in Q_v$, then Z is Kurtz-non-random, hence Schnorr-non-random.

• The error class for v at stage t is

$$G_v^t = \{ Y \mid \exists i \in [1, k] \mid Y_{in_t} \in (B - B_{n_t}) \}$$

- Then $\lambda(G_v^t) \leq k2^{-(t+v+k)}$, by the union bound and computable.
- Then $G_v = \cup_t G_v^t$ has probability less than 2^{-v} .
- Hence if Z is Schnorr-random, then there is a G_v excluding Z. Hence Z is multiply recurrent in P.

Theorem

Let $P \in 2^{\mathbb{N}}$ be a Π_1^0 class with measure $\lambda(P) > 0$. Then each Martin-Löf random is multiply recurrent in P.

Let G be a compact group, and for some $a \in G$, define $T_a : G \to G$ by $T_a(x) = a \cdot x$. Then (G, T_a) is called a *Kronecker* System.

Let G be a compact group, and for some $a \in G$, define $T_a : G \to G$ by $T_a(x) = a \cdot x$. Then (G, T_a) is called a *Kronecker* System.

e.g. Irrational Rotations on the unit circle.

Let G be a compact group, and for some $a \in G$, define $T_a : G \to G$ by $T_a(x) = a \cdot x$. Then (G, T_a) is called a *Kronecker System*.

e.g. Irrational Rotations on the unit circle.

Since G is a group, if there is any recurrent point in it, then every point in it must be recurrent.

Theorem

Every point in a Kronecker System is multiply recurrent.

Thank You!