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December 8, 2016



van der Waerden’s Theorem



van der Waerden’s theorem

Theorem: van der Waerden 1927

Suppose N is partitioned into two sets S1 and S2. Then either
S1 or S2 has arbitrarily long arithmetic progressions — i.e. ∃Si

such that for every k ≥ 2, there are integers a and b such that
have

a, a+ 2b, . . . , a+ (k − 1)b ∈ Si.



van der Waerden’s theorem

Theorem: van der Waerden 1927

Suppose N is partitioned into two sets S1 and S2. Then either
S1 or S2 has arbitrarily long arithmetic progressions — i.e. ∃Si

such that for every k ≥ 2, there are integers a and b such that
have

a, a+ 2b, . . . , a+ (k − 1)b ∈ Si.

Proof due to Ron Graham, that within 325, you can find an
arithmetic progression of length 3:



van der Waerden’s theorem

Theorem: van der Waerden 1927

Suppose N is partitioned into two sets S1 and S2. Then either
S1 or S2 has arbitrarily long arithmetic progressions — i.e. ∃Si

such that for every k ≥ 2, there are integers a and b such that
have

a, a+ 2b, . . . , a+ (k − 1)b ∈ Si.

Proof due to Ron Graham, that within 325, you can find an
arithmetic progression of length 3:

Divide 325 into 65 blocks, [1-5], [6-10], . . . , [321-325]. Each number
is colored either red or blue (say).



van der Waerden’s theorem

Theorem: van der Waerden 1927

Suppose N is partitioned into two sets S1 and S2. Then either
S1 or S2 has arbitrarily long arithmetic progressions — i.e. ∃Si

such that for every k ≥ 2, there are integers a and b such that
have

a, a+ 2b, . . . , a+ (k − 1)b ∈ Si.

Proof due to Ron Graham, that within 325, you can find an
arithmetic progression of length 3:

Divide 325 into 65 blocks, [1-5], [6-10], . . . , [321-325]. Each number
is colored either red or blue (say).

There are 32 possible block colorings. Pigeonhole =⇒ 2 blocks in
the first 33 are colored the same.



Proof of vdW
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Erdős’ Conjecture

Definition

A set S ⊆ Z has positive upper Banach density if

lim sup
N→∞

|S ∩ [−N,N ]|

2N + 1
> 0.

Erdős conjectured that if a set S of positive upper Banach density is
partitioned into two, one of the partitions has arbitrarily long
arithmetic progressions.

Theorem: (Szemer édi 1975)

Erdős conjecture holds.

Proof uses his “regularity lemma”.



Some highlights

1. Roth 1956 Erdős Conjecture holds for length 3 A.P.
2. Szemerédi’s Theorem 1975
3. Furstenberg’s ergodic theory proof 1978
4. Gowers’ Fourier Analytic proof, 1996
5. Green-Tao A.P. in primes
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Topological Dynamics

Connections between topological dynamics and integer sets.
Definition

If X is a compact space and T : X → X is a continuous map,
then (X,T ) is said to be a dynamical system.

We are typically interested in the behavior of the orbit of a point or
a set — e.g. {Tnx | x ∈ X,n ∈ Z} or {TnU | U ⊂ X,n ∈ Z}.
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Theorem: The infinite pigeonhole principle

If Z is colored using finitely many colours, then at least one
color appears i.o.

Theorem: Recurrence in Open Covers

Let (X,T ) be a toplogical dynamical system, and (Uα)α∈Ω be
an open cover of X. Then there is a Uα in the cover for which
for infinitely many n, Uα ∩ TnUα 6= ∅.
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Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U1, . . . , Un covers X.

Pick x ∈ X. Consider its orbit

. . . , T−1x, x, Tx, . . .

Pigeonhole Principle ⇒ there is some Ui, 1 ≤ i ≤ n such that for
infinitely many n, Tnx ∈ Ui.

Consider O = {n ∈ Z | Tnx ∈ Ui}. Pick some n0 ∈ O.

∀n ∈ O, Tn0x = Tn0−nTnx. Hence Tn0x ∈ Ui ∩ Tn0−nUi.

Hence for infinitely many n, Ui ∩ Tn0−nUi 6= ∅.
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BROC =⇒ PhP

This uses the idea of subsystems.

Let Ω be the finite set of colors. Let A be a coloring of Z. Consider
the tds (ΩZ, T ), where T is the right-shift. Represent A by a ∈ ΩZ.
Define

Xa = {Tna | n ∈ Z}.

Consider the cover (Uc)c∈Ω where Uc are the points in Xa with 0
colored c.

By recurrence in open covers,

∃c ∈ Ω ∃∞n Uc ∩ TnUc 6= ∅. (1)

Since Xa is the orbit closure of a, there is a k ∈ Z such that
T ka ∈ Uc ∩ TnUc. That is, a−k = c and a−k+n = c. This is true for all
n in (1).



van der Waerden’s Theorem and Multiple
Recurrence in Open Covers



The version of recurrence in tds which is equivalent to Van der
Waerden’s theorem is the following.

Theorem: Multiple Recurrence in Open Covers

Let (X,T ) be a topological dynamical system and (Uα)α∈Ω be
an open cover of X. Then there is a Uα in the cover such that

∀k ≥ 2 ∃n > 0 Uα ∩ TnUα ∩ · · · ∩ T (k−1)nUα 6= ∅.



Szemerédi’s Theorem and Furstenberg
Multiple Recurrence Theorem



Dynamical Systems view of Szemer édi’s Theorem

For Szemerédi’s theorem, we now have to consider measure as well.
Definition

A measure-preserving topological dynamical system is a quadru-
ple (X,X , µ, T ) is a space where

• X is a compact topological space,
• X is a σ-algebra on X,
• µ a probability measure on X and
• T : X → X is a measure-preserving homeomorphism.



Multiple Recurrence

Theorem: Multiple Recurrence Theorem

Let (X,X , µ, T ) be a mtds. Then for any E ∈ X with µ(E) > 0,
we have

µ(E ∩ TnE ∩ · · · ∩ T (k−1)nE) > 0.



Furstenberg Correspondence Principle



Lemma

Let (X,X , µ, T ) be as in the FMRT, and E have positive mea-
sure. Then there is an F , µ(F ) > 0 such that for every x in
F ,

{n ∈ Z | Tnx ∈ E}

has positive upper density.



Proof of Lemma

Proof.

• Define δN (x) to be the frequency with which T−Nx, . . . ,
TNx visits E. Then the expected value of δN is µ(E).

• The probability of

AN =

{

x ∈ X | δN (x) ≥
1

2
µ(E)

}

is at least 1/2µ(E).
• Then F is the set

⋂

N

⋃

m>N
Am.



Effective Versions



Furstenberg Multiple Recurrence Theorem - Pointwise

Theorem: (Pointwise)

Let (X,B, µ) be a probability space. Let T be a measure-
preserving operator. Let A ∈ B with µ(A) > 0.
Then ∀k, for µ-a.e. x ∈ A,

∃n x ∈ T−n(A) ∧ x ∈ T−2nA ∧ · · · ∧ x ∈ T−knA.



Effective Versions - Cantor Space, Left Shift

Definition

We say that a point X in Cantor Space is k-recurrent in P ∈ B
if ∃n ≥ 1 such that X ∈ ∩k

i=1X ∈ T−in(P ).



Effective Versions - Cantor Space, Left Shift

Definition

We say that a point X in Cantor Space is k-recurrent in P ∈ B
if ∃n ≥ 1 such that X ∈ ∩k

i=1X ∈ T−in(P ).

Location (P) Randomness Notion (X)
clopen Kurtz Randomness

Π0
1 with eff. positive measure Schnorr Randomness

non-null Π0
1 Martin-Löf randomness



Kurtz Randomness and Clopen Sets

Definition

X is Kurtz-random if it is in no null Π0
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Kurtz Randomness and Clopen Sets

Definition

X is Kurtz-random if it is in no null Π0
1 class.

Theorem

If P is a non-empty clopen set, then every Kurtz random X is
multiply recurrent in P .

Proof. (Sketch) Suppose every string in P is shorter than N bits.
Let n0 = N , n1 = (k + 1)n0, n2 = (k + 1)n1, . . . .
Test:

Q =
⋂

t∈N

{Y | ∃i ∈ [1, k] Yint
/∈ P}.



Effectively Positive Π0
1 sets and Schnorr randoms

Theorem

Let P ∈ 2N be a Π0
1 class with a computable positive measure

λ(P ) . Then each Schnorr random is multiply recurrent in P .

(Proof)

• Let B = 2N − P = ∪sBs, an effectively open set.
• At any finite stage s, we check X is multiply recurrent in 2N −Bs.

• Let nt ≥ nt−1(k + 1) be so large that

λ(B −Bnt
) ≤ 2−(t+v+k).

• Qv is the set of all sequences Z with at least one of 2ntZ,
22ntZ, . . . , 2kntZ in Bnt

. (hence non-k-recurrent in P ).
• This set Qv is Π0

1 and null. Hence if Z ∈ Qv, then Z is
Kurtz-non-random, hence Schnorr-non-random.

• . . .



Proof (continued)

• . . .

• The error class for v at stage t is

Gt
v = {Y | ∃i ∈ [1, k] Yint

∈ (B −Bnt
)}

• Then λ(Gt
v) ≤ k2−(t+v+k), by the union bound and computable.

• Then Gv = ∪tG
t
v has probability less than 2−v.

• Hence if Z is Schnorr-random, then there is a Gv excluding
Z. Hence Z is multiply recurrent in P .



Positive Π0
1 sets and Martin-L öf randoms

Theorem

Let P ∈ 2N be a Π0
1 class with measure λ(P ) > 0. Then each

Martin-Löf random is multiply recurrent in P .



Effective Versions - Kronecker Systems
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Let G be a compact group, and for some a ∈ G, define Ta :
G → G by Ta(x) = a · x. Then (G, Ta) is called a Kronecker
System.
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Effective Versions - Kronecker Systems

Definition

Let G be a compact group, and for some a ∈ G, define Ta :
G → G by Ta(x) = a · x. Then (G, Ta) is called a Kronecker
System.

e.g. Irrational Rotations on the unit circle.

Since G is a group, if there is any recurrent point in it, then every
point in it must be recurrent.

Theorem

Every point in a Kronecker System is multiply recurrent.



Thank You!
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