On the computability of Mandelbrot-like sets

Cristóbal Rojas

Universidad Andrés Bello Santiago, Chile. BIRS – CASA MATEMATICA OAXACA, 2016

Joint with D. Coronel and M. Yampolsky.

December 8, 2016

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Open Question

Is the Mandelbrot set computable ?

Can we trust this ?

 $\mathcal{M} = \{ c \in \mathbb{C} : \sup_{n} |f^{n}(0)| \le 2 \}$, where $f(z) = z^{2} + c$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A remainder

Definition

 $K \subset \mathbb{C}$ is computable if there is a Turing Machine M which, on input n, outputs a finite set $M(n) = K_n$ of *rational* points such that

 $d_H(K,K_n) \leq 2^{-n}$

(日)、(型)、(E)、(E)、(E)、(O)()

where d_H is the Hausdorff distance.

A remainder

Definition

 $K \subset \mathbb{C}$ is computable if there is a Turing Machine M which, on input n, outputs a finite set $M(n) = K_n$ of *rational* points such that

 $d_H(K,K_n) \leq 2^{-n}$

where d_H is the Hausdorff distance.

As it is well known, this is equivalent to have the following two properties:

A remainder

Definition

 $K \subset \mathbb{C}$ is computable if there is a Turing Machine M which, on input n, outputs a finite set $M(n) = K_n$ of *rational* points such that

 $d_H(K, K_n) \leq 2^{-n}$

where d_H is the Hausdorff distance.

As it is well known, this is equivalent to have the following two properties:

 K has a recursively enumerable complement (we say it is upper-computable)

A remainder

Definition

 $K \subset \mathbb{C}$ is computable if there is a Turing Machine M which, on input n, outputs a finite set $M(n) = K_n$ of *rational* points such that

 $d_H(K, K_n) \leq 2^{-n}$

where d_H is the Hausdorff distance.

As it is well known, this is equivalent to have the following two properties:

- K has a recursively enumerable complement (we say it is upper-computable)
- 2 there is a uniformly computable sequence of points $\{z_n\}_n \subset K$, which is dense in K (we say it is **lower-computable**).

Theorem (Hertling, 2005) The following holds for the Mandelbrot set M:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Hertling, 2005) The following holds for the Mandelbrot set *M*:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• it is upper-computable

Theorem (Hertling, 2005)

The following holds for the Mandelbrot set \mathcal{M} :

• it is upper-computable (easy: given c, just search for n such that $|f_c^n(0)| > 2$),

Theorem (Hertling, 2005)

The following holds for the Mandelbrot set \mathcal{M} :

• it is upper-computable (easy: given c, just search for n such that $|f_c^n(0)| > 2$),

(日)、(型)、(E)、(E)、(E)、(O)()

• its boundary is lower-computable

Theorem (Hertling, 2005)

The following holds for the Mandelbrot set \mathcal{M} :

- it is upper-computable (easy: given c, just search for n such that $|f_c^n(0)| > 2$),
- its boundary is lower-computable
- a certain subset H of its interior (the hyperbolic parameters of M) is a r.e. open set.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Theorem (Hertling, 2005)

The following holds for the Mandelbrot set \mathcal{M} :

- it is upper-computable (easy: given c, just search for n such that $|f_c^n(0)| > 2$),
- its boundary is lower-computable
- a certain subset H of its interior (the hyperbolic parameters of M) is a r.e. open set.

Remarks:

• It is **not known** if the interior of \mathcal{M} is r.e.

Theorem (Hertling, 2005)

The following holds for the Mandelbrot set \mathcal{M} :

- it is upper-computable (easy: given c, just search for n such that $|f_c^n(0)| > 2$),
- its boundary is lower-computable
- a certain subset H of its interior (the hyperbolic parameters of M) is a r.e. open set.

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Remarks:

- It is **not known** if the interior of \mathcal{M} is r.e.
- It is conjectured that H is the interior of \mathcal{M} .

Theorem (Hertling, 2005)

The following holds for the Mandelbrot set \mathcal{M} :

- it is upper-computable (easy: given c, just search for n such that $|f_c^n(0)| > 2$),
- its boundary is lower-computable
- a certain subset H of its interior (the hyperbolic parameters of M) is a r.e. open set.

Remarks:

- It is **not known** if the interior of \mathcal{M} is r.e.
- It is conjectured that H is the interior of \mathcal{M} .
- this would imply that both \mathcal{M} and $\partial \mathcal{M}$ are computable sets.

Theorem (Hertling, 2005)

The following holds for the Mandelbrot set \mathcal{M} :

- it is upper-computable (easy: given c, just search for n such that $|f_c^n(0)| > 2$),
- its boundary is lower-computable
- a certain subset H of its interior (the hyperbolic parameters of M) is a r.e. open set.

(日)、(型)、(E)、(E)、(E)、(O)()

Remarks:

- It is **not known** if the interior of \mathcal{M} is r.e.
- It is conjectured that H is the interior of \mathcal{M} .
- this would imply that both \mathcal{M} and $\partial \mathcal{M}$ are computable sets.
- this conjecture is probably the most important in Complex Dynamics.

Observation:

Observation:

• If \mathcal{M} has a computable area, then it is computable (Jason's remark).

Observation:

- If \mathcal{M} has a computable area, then it is computable (Jason's remark).
- Indeed, if B is a ball, then $\mu(B \cap \mathcal{M}) = \mu(B \cup (\mathbb{C} \setminus \mathcal{M})) \mu(\mathbb{C} \setminus \mathcal{M})$ would be lower-computable.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Observation:

- If *M* has a computable area, then it is computable (Jason's remark).
- Indeed, if B is a ball, then $\mu(B \cap \mathcal{M}) = \mu(B \cup (\mathbb{C} \setminus \mathcal{M})) \mu(\mathbb{C} \setminus \mathcal{M})$ would be lower-computable.

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

• However, the boundary $\partial \mathcal{M}$ may still be non computable !

The quadratic family consist of maps of the form

 $f_c = z^2 + c.$

The quadratic family consist of maps of the form

 $f_c = z^2 + c.$

Let $z_0 \in \mathbb{C}$ be an "initial condition", and let

 $z_{n+1}=f_c(z_n).$

The quadratic family consist of maps of the form

 $f_c = z^2 + c.$

Let $z_0 \in \mathbb{C}$ be an "initial condition", and let

 $z_{n+1}=f_c(z_n).$

(日)、(型)、(E)、(E)、(E)、(O)()

Goal: to understand what kind of behaviours may the sequence z_n exhibit, depending on the parameter c.

• if $|z_0|$ is large enough, then it is clear that

 $z_n \to \infty$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• if $|z_0|$ is large enough, then it is clear that

 $z_n \to \infty$

- that is, ∞ is "an attracting fixed point", and one can define its basin of attraction

$$B_c(\infty) = \{z_0 \in \mathbb{C} : z_n \to \infty\}.$$

• if $|z_0|$ is large enough, then it is clear that

 $z_n \rightarrow \infty$

- that is, ∞ is "an attracting fixed point", and one can define its basin of attraction

 $B_c(\infty) = \{z_0 \in \mathbb{C} : z_n \to \infty\}.$

Thus, the interesting dynamics happens on the complement of B_c(∞). This is the so called **filled Julia set**, denoted by K_c.

• K_c is compact.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- K_c is compact.
- $K_c = \{z_0 \in \mathbb{C} : |z_n| \le 2\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- K_c is compact.
- $K_c = \{z_0 \in \mathbb{C} : |z_n| \le 2\}.$

Remark: this implies that K_c is upper-computable – just let $z_0 = 0$ and search for *n* such that $|z_n| > 2$.

- K_c is compact.
- $K_c = \{z_0 \in \mathbb{C} : |z_n| \le 2\}.$

Remark: this implies that K_c is upper-computable – just let $z_0 = 0$ and search for *n* such that $|z_n| > 2$.

(日)、(型)、(E)、(E)、(E)、(O)()

Moreover,

- K_c is compact.
- $K_c = \{z_0 \in \mathbb{C} : |z_n| \le 2\}.$

Remark: this implies that K_c is upper-computable – just let $z_0 = 0$ and search for *n* such that $|z_n| > 2$.

(日)、(型)、(E)、(E)、(E)、(O)()

Moreover,

• K_c is either connected, or totally disconnected (a cantor set).

- K_c is compact.
- $K_c = \{z_0 \in \mathbb{C} : |z_n| \le 2\}.$

Remark: this implies that K_c is upper-computable – just let $z_0 = 0$ and search for *n* such that $|z_n| > 2$.

(日)、(型)、(E)、(E)、(E)、(O)()

Moreover,

- K_c is either connected, or totally disconnected (a cantor set).
- K_c is connected if and only if $0 \in K_c$.

- K_c is compact.
- $K_c = \{z_0 \in \mathbb{C} : |z_n| \le 2\}.$

Remark: this implies that K_c is upper-computable – just let $z_0 = 0$ and search for *n* such that $|z_n| > 2$.

Moreover,

- K_c is either connected, or totally disconnected (a cantor set).
- K_c is connected if and only if $0 \in K_c$.

Therefore, the Mandelbrot set *really* is the **conectedness locus** of the family f_c :

 $\mathcal{M} = \{ c \in \mathbb{C} : K_c \text{ is connected } \},\$

(日)、(型)、(E)、(E)、(E)、(O)()

and its boundary $\partial \mathcal{M}$ is the **bifurcation locus**.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Julia sets

• The interesting dynamics actually happens in the **Julia set**, defined by

 $J_c = \partial K_c.$

<ロ> <0</p>

• The interesting dynamics actually happens in the **Julia set**, defined by

 $J_c = \partial K_c$.

• Its complement supports the "trivial" dynamics, and is called the **Fatou set**: $F_c = \mathbb{C} \setminus J_c$.

• The interesting dynamics actually happens in the **Julia set**, defined by

 $J_c = \partial K_c.$

- Its complement supports the "trivial" dynamics, and is called the Fatou set: $F_c = \mathbb{C} \setminus J_c$.
- F_c is made by an unbounded connected component $(B_c(\infty))$, and the interior of K_c .

• The interesting dynamics actually happens in the **Julia set**, defined by

 $J_c = \partial K_c.$

- Its complement supports the "trivial" dynamics, and is called the **Fatou set**: $F_c = \mathbb{C} \setminus J_c$.
- F_c is made by an unbounded connected component $(B_c(\infty))$, and the interior of K_c .

• How is the dynamics in the interior of K_c ?

A point z is periodic if $f^{p}(z) = z$ for some p. Its **period** is the minimal such p, and its **multiplier** is

 $\lambda(z)=Df^{p}(z).$

A point z is periodic if $f^{p}(z) = z$ for some p. Its **period** is the minimal such p, and its **multiplier** is

 $\lambda(z)=Df^p(z).$

(日)、(型)、(E)、(E)、(E)、(O)()

Periodic cycles are classified into:

A point z is periodic if $f^{p}(z) = z$ for some p. Its **period** is the minimal such p, and its **multiplier** is

 $\lambda(z)=Df^{p}(z).$

Periodic cycles are classified into:

• attracting if $|\lambda| < 1$,

A point z is periodic if $f^{p}(z) = z$ for some p. Its **period** is the minimal such p, and its **multiplier** is

 $\lambda(z)=Df^{p}(z).$

Periodic cycles are classified into:

- attracting if $|\lambda| < 1$,
- repelling if $|\lambda| > 1$ and

A point z is periodic if $f^{p}(z) = z$ for some p. Its **period** is the minimal such p, and its **multiplier** is

 $\lambda(z)=Df^p(z).$

Periodic cycles are classified into:

- attracting if $|\lambda| < 1$,
- repelling if $|\lambda| > 1$ and
- indiferent if $|\lambda| = 1$.

A parameter $c \in \mathcal{M}$ is **hyperbolic** if f_c has an attracting cycle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A parameter $c \in \mathcal{M}$ is **hyperbolic** if f_c has an attracting cycle.

Hertling showed that $H = \{c \in M : c \text{ is hyperbolic }\}$ is recursively enumerable.

A parameter $c \in \mathcal{M}$ is **hyperbolic** if f_c has an attracting cycle.

Hertling showed that $H = \{c \in M : c \text{ is hyperbolic }\}$ is recursively enumerable.

Sketch: given c, compute all periodic points z of f_c together with their multipliers, and output only those satisfying $|\lambda(z)| < 1$. This gives a procedure to semi-decide whether $c \in H$.

A parameter $c \in \mathcal{M}$ is **hyperbolic** if f_c has an attracting cycle.

Hertling showed that $H = \{c \in M : c \text{ is hyperbolic }\}$ is recursively enumerable.

Sketch: given c, compute all periodic points z of f_c together with their multipliers, and output only those satisfying $|\lambda(z)| < 1$. This gives a procedure to semi-decide whether $c \in H$.

In particular, the closure of *H* is lower-computable. Note that $\overline{\mathbb{C} \setminus M}$ is also lower computable.

A parameter $c \in \mathcal{M}$ is **hyperbolic** if f_c has an attracting cycle.

Hertling showed that $H = \{c \in M : c \text{ is hyperbolic }\}$ is recursively enumerable.

Sketch: given c, compute all periodic points z of f_c together with their multipliers, and output only those satisfying $|\lambda(z)| < 1$. This gives a procedure to semi-decide whether $c \in H$.

In particular, the closure of *H* is lower-computable. Note that $\overline{\mathbb{C} \setminus M}$ is also lower computable.

Using the fact that $\overline{\mathbb{C} \setminus \mathcal{M}} \cap \overline{H} = \partial \mathcal{M}$, Hertling showed that $\partial \mathcal{M}$ is lower-computable.

・ロト・西ト・ヨト・ヨー シック

Our contribution

Let $\lambda\in\mathbb{C}$ be fixed and such that $|\lambda|=1.$ Consider the one-parameter cubic family

 $f_c(z) = \lambda z + c z^2 + z^3.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Our contribution

Let $\lambda\in\mathbb{C}$ be fixed and such that $|\lambda|=1.$ Consider the one-parameter cubic family

$$f_c(z) = \lambda z + c z^2 + z^3.$$

Define the filled Julia set K_c and the connectedness locus \mathcal{M}_{λ} by

 $\mathcal{K}_c = \{ z : \sup_n | f^n(z) | < \infty \}, \qquad \mathcal{M}_\lambda = \{ c : \mathcal{K}_c \text{ is connected } \}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Our contribution

Let $\lambda\in\mathbb{C}$ be fixed and such that $|\lambda|=1.$ Consider the one-parameter cubic family

$$f_c(z) = \lambda z + c z^2 + z^3.$$

Define the filled Julia set K_c and the connectedness locus \mathcal{M}_{λ} by

 $\mathcal{K}_c = \{ z : \sup_n |f^n(z)| < \infty \}, \qquad \mathcal{M}_\lambda = \{ c : \mathcal{K}_c \text{ is connected } \}.$

Theorem (Coronel, R., Yampolsky)

There exists a computable λ such that the interior of \mathcal{M}_{λ} is **not r.e.** In particular, the bifurcation locus $\partial \mathcal{M}_{\lambda}$ is **not computable**.

Known results

Summary of what is known: from work by Zhong, Rettinger, Weihrauch, Braverman and Yampolsky – in a series of papers

(日)、(型)、(E)、(E)、(E)、(O)()

Theorem

Let c be a computable parameter. Then:

Known results

Summary of what is known: from work by Zhong, Rettinger, Weihrauch, Braverman and Yampolsky – in a series of papers

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Theorem

Let c be a computable parameter. Then:

a) the filled Julia set K_c is computable,

Known results

Summary of what is known: from work by Zhong, Rettinger, Weihrauch, Braverman and Yampolsky – in a series of papers

Theorem

Let c be a computable parameter. Then:

- a) the filled Julia set K_c is computable,
- b) If the parameter c is not Siegel, then the Julia set J_c is computable.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Known results

Summary of what is known: from work by Zhong, Rettinger, Weihrauch, Braverman and Yampolsky – in a series of papers

Theorem

Let c be a computable parameter. Then:

- a) the filled Julia set K_c is computable,
- b) If the parameter c is not Siegel, then the Julia set J_c is computable.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

c) there are Siegel parameters c for which the Julia set J_c is not computable.

Known results

Summary of what is known: from work by Zhong, Rettinger, Weihrauch, Braverman and Yampolsky – in a series of papers

Theorem

Let c be a computable parameter. Then:

- a) the filled Julia set K_c is computable,
- b) If the parameter c is not Siegel, then the Julia set J_c is computable.
- c) there are Siegel parameters c for which the Julia set J_c is not computable.

Remark: note that, in particular, there is c such that K_c is computable but its interior is not r.e.

(日)、(型)、(E)、(E)、(E)、(O)(()

Proposition *J_c* is always lower-computable. Proof:

Proposition

 J_c is always lower-computable.

Proof:

• It follows from the following fact proved by Fatou:

 $J(f_c) = \overline{\{\text{repelling periodic orbits}\}}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• compute all periodic points and output only those for which $\lambda > 1$.

It remains to show that J_c is also upper-computable:

It remains to show that J_c is also upper-computable:

• but since J_c has no interior, we have $J_c = K_c$,

It remains to show that J_c is also upper-computable:

- but since J_c has no interior, we have $J_c = K_c$,
- and as we saw, K_c is *always* upper-computable,

(日)、(型)、(E)、(E)、(E)、(O)()

• which finishes the proof.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

• Recall that Julia sets with a Siegel disk may be non computable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Recall that Julia sets with a Siegel disk may be non computable
- By choosing an appropriate λ , the Julia set of $\lambda z + cz^2 + z^3$, always has Siegel disk

- Recall that Julia sets with a Siegel disk may be non computable
- By choosing an appropriate λ , the Julia set of $\lambda z + cz^2 + z^3$, always has Siegel disk

(日)、(型)、(E)、(E)、(E)、(O)()

• Note that \mathcal{M}_{λ} has little copies of these Julia sets

- Recall that Julia sets with a Siegel disk may be non computable
- By choosing an appropriate λ , the Julia set of $\lambda z + cz^2 + z^3$, always has Siegel disk

- Note that \mathcal{M}_{λ} has little copies of these Julia sets
- Show that one can make them non computable

- Recall that Julia sets with a Siegel disk may be non computable
- By choosing an appropriate λ , the Julia set of $\lambda z + cz^2 + z^3$, always has Siegel disk
- Note that \mathcal{M}_{λ} has little copies of these Julia sets
- Show that one can make them non computable
- The rest \mathcal{M}_{λ} can be "trimmed", so it can't have a computable interior.

On the computability of Mandelbrot-like sets

THANKS !

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 の�?