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On the computability of Mandelbrot-like sets

Open Question
Is the Mandelbrot set computable ?

Can we trust this ?

M = {c ∈ C : supn |f n(0)| ≤ 2}, where f (z) = z2 + c .



On the computability of Mandelbrot-like sets

Computability of Closed Sets
A remainder

Definition
K ⊂ C is computable if there is a Turing Machine M which, on input n,
outputs a finite set M(n) = Kn of rational points such that

dH(K ,Kn) ≤ 2−n

where dH is the Hausdorff distance.

As it is well known, this is equivalent to have the following two properties:

1 K has a recursively enumerable complement (we say it is
upper-computable)

2 there is a uniformly computable sequence of points {zn}n ⊂ K ,
which is dense in K (we say it is lower-computable).
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On the computability of Mandelbrot-like sets

What is known about it ?

Theorem (Hertling, 2005)
The following holds for the Mandelbrot set M:

• it is upper-computable (easy: given c , just search for n such that
|f nc (0)| > 2),

• its boundary is lower-computable

• a certain subset H of its interior (the hyperbolic parameters of M)
is a r.e. open set.

Remarks:

• It is not known if the interior of M is r.e.

• It is conjectured that H is the interior of M.

• this would imply that both M and ∂M are computable sets.

• this conjecture is probably the most important in Complex
Dynamics.
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A weaker conditional implication

Observation:

• If M has a computable area, then it is computable (Jason’s remark).

• Indeed, if B is a ball, then µ(B ∩M) = µ(B ∪ (C \M))−µ(C \M)
would be lower-computable.

• However, the boundary ∂M may still be non computable !
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Dynamics of the quadratic family
The big picture

The quadratic family consist of maps of the form

fc = z2 + c .

Let z0 ∈ C be an “initial condition”, and let

zn+1 = fc(zn).

Goal: to understand what kind of behaviours may the sequence zn
exhibit, depending on the parameter c .
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Dynamics of the quadratic family
The big picture

• if |z0| is large enough, then it is clear that

zn →∞

• that is, ∞ is “an attracting fixed point”, and one can define its
basin of attraction

Bc(∞) = {z0 ∈ C : zn →∞}.

• Thus, the interesting dynamics happens on the complement of
Bc(∞). This is the so called filled Julia set, denoted by Kc .
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On the computability of Mandelbrot-like sets

Simple facts about Kc

• Kc is compact.

• Kc = {z0 ∈ C : |zn| ≤ 2}.

Remark: this implies that Kc is upper-computable – just let z0 = 0 and
search for n such that |zn| > 2.

Moreover,

• Kc is either connected, or totally disconnected (a cantor set).

• Kc is connected if and only if 0 ∈ Kc .

Therefore, the Mandelbrot set really is the conectedness locus of the
family fc :

M = {c ∈ C : Kc is connected },

and its boundary ∂M is the bifurcation locus.
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Julia sets

• The interesting dynamics actually happens in the Julia set, defined
by

Jc = ∂Kc .

• Its complement supports the “trivial” dynamics, and is called the
Fatou set: Fc = C \ Jc .

• Fc is made by an unbounded connected component (Bc(∞)), and
the interior of Kc .

• How is the dynamics in the interior of Kc?
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Local dynamics around periodic cycles

A point z is periodic if f p(z) = z for some p. Its period is the minimal
such p, and its multiplier is

λ(z) = Df p(z).

Periodic cycles are classified into:

• attracting if |λ| < 1,

• repelling if |λ| > 1 and

• indiferent if |λ| = 1.
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Back to Hertling’s result

A parameter c ∈M is hyperbolic if fc has an attracting cycle.

Hertling showed that H = {c ∈M : c is hyperbolic } is recursively
enumerable.

Sketch: given c , compute all periodic points z of fc together with their
multipliers, and output only those satisfying |λ(z)| < 1. This gives a
procedure to semi-decide whether c ∈ H.

In particular, the closure of H is lower-computable. Note that C \M is
also lower computable.

Using the fact that C \M∩ H = ∂M, Hertling showed that ∂M is
lower-computable.
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Our contribution

Let λ ∈ C be fixed and such that |λ| = 1. Consider the one-parameter
cubic family

fc(z) = λz + cz2 + z3.

Define the filled Julia set Kc and the connectedness locus Mλ by

Kc = {z : sup
n
|f n(z)| <∞}, Mλ = {c : Kc is connected }.

Theorem (Coronel, R., Yampolsky)
There exists a computable λ such that the interior of Mλ is not r.e.
In particular, the bifurcation locus ∂Mλ is not computable.
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Computability of Julia sets
Known results

Summary of what is known: from work by Zhong, Rettinger, Weihrauch,
Braverman and Yampolsky – in a series of papers

Theorem
Let c be a computable parameter. Then:

a) the filled Julia set Kc is computable,

b) If the parameter c is not Siegel, then the Julia set Jc is computable.

c) there are Siegel parameters c for which the Julia set Jc is not
computable.

Remark: note that, in particular, there is c such that Kc is computable
but its interior is not r.e.
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Braverman and Yampolsky – in a series of papers

Theorem
Let c be a computable parameter. Then:

a) the filled Julia set Kc is computable,

b) If the parameter c is not Siegel, then the Julia set Jc is computable.

c) there are Siegel parameters c for which the Julia set Jc is not
computable.

Remark: note that, in particular, there is c such that Kc is computable
but its interior is not r.e.
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Proof for part b): the empty interior case

Proposition
Jc is always lower-computable.

Proof:

• It follows from the following fact proved by Fatou:

J(fc) = {repelling periodic orbits}

• compute all periodic points and output only those for which λ > 1.
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Proof for part b): the empty interior case

It remains to show that Jc is also upper-computable:

• but since Jc has no interior, we have Jc = Kc ,

• and as we saw, Kc is always upper-computable,

• which finishes the proof.
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Proof idea of our Main Result

• Recall that Julia sets with a Siegel disk may be non computable

• By choosing an appropriate λ, the Julia set of λz + cz2 + z3, always
has Siegel disk

• Note that Mλ has little copies of these Julia sets

• Show that one can make them non computable

• The rest Mλ can be “trimmed”, so it can’t have a computable
interior.
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THANKS !
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