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Randomness: A revisionist history

Computable/constructive analysis by example

Classical analysis

If p> 1, then the series
∑

n−p converges.

Computable analysis (computable version)

If p> 1 and p is computable, then the series
∑

n−p converges with a
computable rate of convergence.

Computable analysis (relativized version)

If p> 1, then the series
∑

n−p converges with a rate of convergence
uniformly computable from (a name for) p.

Constructive analysis

If p> 1, then the series
∑

n−p converges.
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Randomness: A revisionist history

Computable/constructive analysis

Computable/constructive definitions

Computable real numbers
Computable Polish spaces
Computable continuous functions
Computable lower semicontinuous functions
Computable integrable functions
Computable probability measures
Etc.
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Randomness: A revisionist history

“Constructive null sets”

Martin-Löf 1966 (Emphasis mine)

In this paper it is shown that the random elements as defined by Kolmogorov possess all
conceivable statistical properties of randomness. They can equivalently be considered as the
elements which withstand a certain universal stochasticity test. The definition is extended to
infinite binary sequences and it is shown that the non random sequences form a maximal
constructive null set.

Schnorr 1969 (Emphasis mine)

Martin-Löf has defined random sequences to be those sequences which withstand a certain
universal stochasticity test. On the other hand one can define a sequence to be random if it is
not contained in any [set] of measure zero in the sense of Brouwer. Both definitions imply
that these random sequences possess all statistical properties which can be checked by
algorithms. We draw a comparison between the two concepts of constructive null sets and
prove that they induce concepts of randomness which are not equivalent. The union of all [sets]
of measure zero in the sense of Brouwer is a proper subset of the universal constructive
null set defined by Martin-Löf.
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Randomness: A revisionist history

Martin-Löf and Schnorr randomness
Let µ be a computable measure on 2N.

Definition
A Martin-Löf sequential µ-test is a sequence (Un)n∈N where

Un ⊆ 2N is Σ0
1 in n, and

µ(Un)6 2−n.
A sequence x ∈ 2N is Martin-Löf µ-random if x <

⋂
n Un for all Martin-Löf

sequential µ-tests (Un)n∈N.

Definition
A Schnorr sequential µ-test is a sequence (Un)n∈N where

Un ⊆ 2N is Σ0
1 in n,

µ(Un)6 2−n, and
n 7→ µ(Un) is computable.

A sequence x ∈ 2N is Schnorr µ-random if x <
⋂

n Un for all Schnorr sequential
µ-tests (Un)n∈N.
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Randomness: A revisionist history

A.E. theorems and Schnorr randomness

Lebesgue Differentiation Theorem (Pathak–Rojas–Simpson; R.)

Assume f : [0,1]→R is a computably integrable function and x is Schnorr
random, then 1

2ε

∫x+ε
x−ε f (x)dx converges to f (x).

Carleson’s Theorem (Franklin–McNicholl–R.)

Assume f : [0,2π]→ C is a computably square integrable function and x is
Schnorr random, then the Fourier series of f at x converges to f (x).

Ergodic theorem for ergodic measures (Gács–Hoyrup–Rojas)

Assume (X,µ,T) is a computable ergodic measure-preserving system and x is
Schnorr µ-random, then 1

n
∑n−1

k=0 f (Tk(x)) converges to
∫

f dµ.

Constructive a.e. theorems
If an a.e. theorem is constructively provable1 then there is a computable
version of the theorem holding for Schnorr randomness.

1In, say, the frameworks of Brouwer, Bishop, or Demuth.
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Randomness: A revisionist history

Randomness for noncomputable measures

One of the most import developments in Martin-Löf randomness was a
theory of randomness for noncomputable measures.
Martin-Löf randomness for noncomputable measures

Martin-Löf (1966); Levin (1976); Gács (2005); Takahashi (2005);
Takahashi (2008); Reimann (2008); Hoyrup–Rojas (2009);
Kjos-Hanssen (2009); Bienvenu–Gacs–Hoyrup–Rojas–Shen (2011);
Hoyrup (2012); Kjos-Hanssen (2012); Diamondstone–Kjos-Hanssen
(2012); Bienvenu–Monin (2012); Day–Miller (2013); Day–Reimann
(2014); Reimann–Slaman (2015); Miller–R. (201x); and many more

Schnorr randomness for noncomputable measures
Schnorr’s Book (1971);
Schnorr–Fuchs (1977); and ...
Jason Rute. Schnorr randomness for noncomputable measures.
Submitted. Available on arXiv.
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Randomness: A revisionist history

The goals of this talk

Give the right definition of Schnorr randomness for noncomputable
measures
Develop the theory of Schnorr randomness for noncomputable measures
Apply this to solve open questions about Schnorr randomness for
computable measures
Apply this to deep questions about randomness as a general concept

Jason Rute (Penn State) Schnorr randomness for noncomp. measures Randomness Workshop, CMO 2016 9 / 41



Schnorr randomness for noncomputable measures

Schnorr randomness for noncomputable measures
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Schnorr randomness for noncomputable measures

Build your own definition...

Definition (for a computable measure µ)

A Schnorr sequential µ-test is a sequence (Un)n∈N where
Un ⊆ 2N is Σ0

1 in n,
µ(Un)6 2−n, and
n 7→ µ(Un) is computable.

A sequence x ∈ 2N is Schnorr µ-random if x <
⋂

n Un for all Schnorr sequential
µ-tests (Un)n∈N.

What would you do?

What is your definition of Schnorr randomness for noncomputable measures?
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Schnorr randomness for noncomputable measures My definition

Schnorr randomness for noncomputable measures

My definition
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Schnorr randomness for noncomputable measures My definition

Integral tests for computable measures

Let µ be a computable measure.

Definition (Levin)

A ML integral µ-test is a lower semicomputable function t : 2N→ [0,∞] such
that
∫

tdµ6 1.

Theorem (Levin?)

x is Martin-Löf µ-random iff t(x)<∞ for all Martin-Löf integral µ-tests t.

Definition (Miyabe)

A Schnorr integral µ-test is a lower semicomputable function t : 2N→ [0,∞]
such that

∫
tdµ6 1 and

∫
tdµ is computable.

Theorem (Miyabe)

x is Schnorr µ-random iff t(x)<∞ for all Schnorr integral µ-tests t.
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Schnorr randomness for noncomputable measures My definition

Randomness for noncomputable measures

Definition (Gács, following Levin)

A uniform ML integral test is a function t such that

t : Prob(2N)×2N→ [0,∞] is lower semicomputable, and∫
t(µ,x)dµ(x)6 1 for all µ

x0 ∈MLµ0 iff t(µ0,x0)<∞ for all uniform ML integral tests t.

Definition (R.)

A uniform Schnorr integral test is a function t such that

t : Prob(2N)×2N→ [0,∞] is lower semicomputable∫
t(µ,x)dµ(x)6 1 for all µ, and
µ 7→

∫
t(µ,x)dµ is computable.

x0 ∈ SRµ0 iff t(µ0,x0)<∞ for all unif. Schnorr integral tests t.
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Schnorr randomness for noncomputable measures My definition

Randomness for noncomputable oracles and measures

Let X andA be computable metric spaces (e.g. R, C(2N), L1(X,µ), Prob(2N)).

Definition (R.)

A uniform Schnorr integral test is a function t such that

t : A×Prob(X)×X→ [0,∞] is lower semicomputable∫
t(a,µ,x)dµ(x)6 1 for all a ∈A and µ ∈ Prob(X), and

a,µ 7→
∫

t(a,µ,x)dµ is computable.

x0 ∈ SRa0
µ0 iff t(a0,µ0,x0)<∞ for all unif. Schnorr integral tests t.

Notation: SRa
µ

The oracle a is in the superscript.
Measure µ is in the subscript.
The relativization is always uniform unless stated otherwise.
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Schnorr randomness for noncomputable measures Justification

Schnorr randomness for noncomputable measures

Justification
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Schnorr randomness for noncomputable measures Justification

New definition agrees on computable measures

Theorem
If µ0 is a computable measure, the following are equivalent:

x0 is Schnorr µ0-random (original definition)
x0 ∈ SRµ0 (extended definition in this talk)

Proof Sketch.

(⇒) If x < SRµ0 , there is a Sch. uniform integral test t such that t(µ0,x0) =∞.
Then t(x0) := t(µ0,x0) is a Schnorr integral test and x0 is not Schnorr
µ0-random.

(⇐) If x0 is not µ0-Schnorr rand., there is a Sch. integral µ0-test t s.t. t(x0) =∞.
We must extend t to a uniform integral test t(µ,x).
Find computable f : N×X→ [0,∞) such that t(x) =

∑
n f (n,x).

Let t(µ,x) :=
∑

n
f (n,x) ·

∫
f (n,x)dµ0(x)∫

f (n,x)dµ
. This works. �
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Schnorr randomness for noncomputable measures Justification

Van Lambalgen for noncomputable measures

Let µ and ν be (noncomputable) measures (on X and Y).
Recall, µ⊗ν is the measure given by

(µ⊗ν)(A×B) = µ(A) ·ν(B) (A⊆X,B⊆ Y).

Theorem (Folklore, following Van Lambalgen [computable case])

(x,y) ∈MLµ⊗ν ⇔ x ∈MLνµ ∧ y ∈MLx,µ
ν .

Theorem (R., following Miyabe–R. [computable case])

(x,y) ∈ SRµ⊗ν ⇔ x ∈ SRνµ ∧ y ∈ SRx,µ
ν .
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Schnorr randomness for noncomputable measures Alternate definitions (not equivalent to mine)
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Schnorr randomness for noncomputable measures Alternate definitions (not equivalent to mine)

Schnorr–Fuchs definition

Definition (Schnorr–Fuchs (1977))

x ∈ 2N is Schnorr–Fuchs µ-random if there is no test of this form:

a computable measure ν on 2N and
a computable order function f such that

∃∞n
ν(x � n)
µ(x � n)

> f (n).

Observation
This is a “blind randomness” notion which doesn’t use the computability of
the measure µ. In blind randomness, measures which are “locally similar”,
but not necessarily “computably similar,” still have the same randoms.

Theorem (R.)

The Schnorr–Fuchs definition is different from the one in this talk. (Although,
it likely agrees for nice measures—e.g. Bernoulli measures.)
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Schnorr randomness for noncomputable measures Alternate definitions (not equivalent to mine)

Nonuniform definition

Definition
A nonuniform Schnorr sequential µ-test is a sequence (Un)n∈N where

Un ⊆ 2N is Σ0
1 in µ and n,

µ(Un)6 2−n, and
n 7→ µ(Un) is µ-computable.

A point x is nonuniformly Schnorr µ-random if x <
⋂

n Un for all nonuniform
Schnorr sequential µ-tests (Un)n∈N.

Theorem (R.)

The nonuniform definition is strictly stronger than the uniform definition.
The two definitions differ even on Bernoulli measures [unpublished].
The nonuniform definition does not satisfy Van Lambalgen’s theorem.
(It does not matter if we use non-uniform integral tests.)
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Schnorr randomness for noncomputable measures Alternate definitions (not equivalent to mine)

Uniform Schnorr sequential tests

Definition
A uniform Schnorr sequential test is a family {Un

µ}n∈N,µ∈Prob(X) where

Un
µ ⊆ 2N is Σ0

1 in µ and n,
µ(Un

µ)6 2−n for all µ, and
µ,n 7→ µ(Un

µ) is computable.

A point x is “Schnorr µ0-random” if x <
⋂

n Un
µ0

for all uniform Schnorr
sequential tests {Un

µ}.

Theorem (Hoyrup [personal communication])

For any space, the only uniform Schnorr sequential test is the trivial one:

Un
µ = ∅ (for all n and µ)!

With this definition, all points would be “Schnorr µ-random.”
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Schnorr randomness for noncomputable measures Other equivalent definitions
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Schnorr randomness for noncomputable measures Other equivalent definitions

Uniform sequential tests for “nice” classes of measures

(Re)definition

A uniform Schnorr sequential test is a family {Un
µ | n ∈N,µ ∈ K} for some Π0

1
set K ⊆ Prob(X) such that

Un
µ ⊆ 2N is Σ0

1 in µ and n,
µ(Un

µ)6 2−n for all µ ∈ K, and
µ,n 7→ µ(Un

µ) is computable (for µ ∈ K).

Proposition (R. [unpublished])

Let Ber be the class of Bernoulli measures. TFAE for β0 ∈ Ber.
x ∈ SRβ0

x <
⋂

n Un
β0

for all uniform Schnorr sequential tests {Un
β | n ∈N,β ∈ Ber}.

Schnorr’s 1971 books gives a uniform sequential test definition of Schnorr
randomness for noncomputable Bernoulli measures.
His definition is equivalent to the one in this talk [unpublished].
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Schnorr randomness for noncomputable measures Other equivalent definitions

Randomness with respect to a name

Theorem (R.)

The following are equivalent:
x ∈ SRµ
x ∈ SRr

µ for some Cauchy name r ∈NN for µ

Theorem (R.)

For a measure µ0 ∈ Prob(X) with a Cauchy name r0 ∈NN, TFAE:
x ∈ SRr0

µ0

x <
⋂

n Un;r0
µ0 for all uniform Schnorr sequential tests{

Un;r
µ | n ∈N, (r,µ) ∈NN×Prob(X), r is a Cauchy name for µ

}
.

These results allow us to relativize most (if not all) results concerning
Schnorr randomness and computable analysis.
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Disintegration theorems

Disintegration theorems
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Disintegration theorems

Exchangeable measures

Exchangeable measures

A measure µ on 2N is exchangeable if it is preserved under rearrangement of
bits. For example, if µ is exchangeable, then

µ
{

x(1)x(0)x(3)x(2) . . .
∣∣ x ∈ A

}
= µ(A)

for all measurable sets A.

de Finetti’s Theorem
A measure is exchangeable iff it is a mixture of Bernoulli measures, i.e. there
is a measure ξ on the set of Bernoulli measures, such that

µ(E) =
∫
β(E)dξ(β).
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Disintegration theorems

Schnorr randomness and exchangeable measures

µ(E) =
∫
β(E)dξ(β)

Theorem (Freer–Roy)

An exchangeable measure µ is computable iff the corresponding
disintegration measure ξ is computable.

Theorem (R. [unpublished])

If µ is a computable exchangeable measure then the following are equivalent:
x ∈ SRµ
x ∈ SRβ for some Bernoulli measure β ∈ SRξ.

Remark [unpublished]

This holds for other disintegration theorems, e.g. the ergodic decomposition.
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Disintegration theorems

Van Lambalgen for Kernels

Let µ be a (noncomputable) measure on X.
Let κ :X→ Prob(Y) be a (noncomputable) kernel.
The measure κx represents the measure on {x}×Y.
Define

(µ∗κ)(A×B) =
∫

A
κx(B)dµ(x) (A⊆X, B⊆ Y).

Theorem (Takahashi)

(x,y) ∈MLκµ∗κ ⇔ x ∈MLκµ ∧ y ∈MLx,µ,κ
κ(x) .

Theorem (R. [half published])

(x,y) ∈ SRκµ∗κ ⇔ x ∈ SRκµ ∧ y ∈ SRx,µ,κ
κ(x) .
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Disintegration theorems

Van Lambalgen for maps

Let µ be a measure on X and let ν be a measure on Y.
Let T : (X,µ)→ (Y,ν) be a measurable-preserving map.
Let y 7→ µ(· | T = y) be the conditional probability of T.
If µ({x | T(x) = y})> 0, then

µ(A | T = y) =
µ(A∩ {x | T(x) = y})
µ{x | T(x) = y}

(A⊆X).

More generally, y 7→ µ(· | T = y) is a map Y→ Prob(X) defined via

µ(A∩T−1(B)) =
∫

B
µ(A | T = y)dν(y) (A⊆X,B⊆ Y).

Theorem (R.)

If µ, ν, T, and y 7→ µ(· | T = y) are computable,(
x ∈ SRµ ∧ y = T(x)

)
⇔

(
y ∈ SRν ∧ x ∈ SRy

µ(·|T=y)

)
Also holds for ML randomness.
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Disintegration theorems

Randomness conservation results

Theorem (R.)

If µ, ν, T, and y 7→ µ(· | T = y) are computable,(
x ∈ SRµ ∧ y = T(x)

)
⇔

(
y ∈ SRν ∧ x ∈ SRy

µ(·|T=y)

)

Corollary (R.)

If µ, ν, T, and y 7→ µ(· | T = y) are computable:
1 If x ∈ SRµ, then T(x) ∈ SRν. (Randomness conservation)
2 If y ∈ SRν, then T(x) = y for some x ∈ SRµ. (No randomness from nothing)
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Disintegration theorems

Solving a question about SR Brownian motion

Question (Bienvenu; and others)

1 If B is a Schnorr random Brownian motion, is B(1) also Schnorr random
(for the Lebesgue measure)?

2 If x is Schnorr random (for the Lebesgue measure), does B(1) = x for some
Schnorr random Brownian motion B?

Theorem (R.)

Yes!
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Disintegration theorems

Schnorr random Brownian motion
Being Schnorr random for the Gaussian measure (normal distribution) and
the Lebesgue measure are known to be equivalent.

Theorem (R.)

1 If B is a SR Brownian motion, then B(1) is Gaussian SR.
2 If x is Gaussian SR, then B(1) = x for some SR Brownian motion.

Proof.
The map B 7→ B(1) is

a computable map of type C([0,1])→R.
is a measure preserving map between the Wiener measure P (the measure
of Brownian motion) and the Gaussian measure N.
has a computable conditional probability map, namely P(· | B(1) = y) is
the probability distribution of a Brownian bridge landing at y.

(1) follows from randomness preservation.
(2) follows from no-randomness from nothing. �

Theorem (R.)

Yes!
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Future Projects

Future Projects
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Future Projects

A new reducibility

Theorem (Based on personal communication with Miller; attributed to Nies)

The following are equivalent for oracles a ∈X and b ∈ Y.

1 MLa
µ ⊆MLb

µ for all (non-computable) measures µ
2 a computes b (e.g. a >T b)

Question

The following are equivalent for oracles a ∈X and b ∈ Y.

1 SRa
µ ⊆ SRb

µ for all (non-computable) measures µ
2 ???

Partial Answer / Conjecture

The following reducibility is sufficient and conjectured to be equivalent:
a > b (a ∈X and b ∈ Y) if there is a Π0

1 set a ∈ K⊆X and a computable map
f : K→ Y such that f (a) = b. (For X= Y= 2N, this is tt-reducibility.)
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Future Projects

The more-random-than relation

Goal
Come up with a natural “more-random-than” relation which tells us that one
random (x,µ) is more random than another (y,ν).

Candidate reducibilities
6LR, 6Sch, 6K, and 6vL and many more. (See Chapter 10 of Downey and
Hirschfeldt.)

A new approach (informally)

View of randoms as “infinitesimally small point-masses” and compare their
masses.

Tools
This approach uses conditional probabilities, Schnorr randomness for
noncomputable measures, and Van Lambalgen’s theorem for maps.
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Future Projects

Comparing amount of randomness

A new approach (the rough idea)

Assume y = T(x) for a computable measure preserving map T : (X,µ)→ (Y,ν)
with a computable conditional probability. Then

µ(x) = µ({x} | T = y) ·ν(y)

Define
µ(dx)
ν(dy)

= µ({x} | T = y).

I can show µ(dx)/ν(dy) is consistent for x ∈ SRµ and y ∈ SRν.
I can also show the following:

Theorem (R. [unpublished])

If f : R→R is computable in C1(R), x ∈R is Schnorr random for the Lebesgue
measure λ, and f ′(x) , 0 , then f (x) is λ-Schnorr random and

λ(df (x))
λ(dx)

= |f ′(x)|.
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Future Projects

Lots of work to do

Papers on ML randomness for non-computable measures

Martin-Löf (1966); Levin (1976); Gács (2005); Takahashi (2005); Takahashi
(2008); Reimann (2008); Hoyrup–Rojas (2009); Kjos-Hanssen (2009);
Bienvenu–Gacs–Hoyrup–Rojas–Shen (2011); Hoyrup (2012); Kjos-Hanssen
(2012); Diamondstone–Kjos-Hanssen (2012); Bienvenu–Monin (2012);
Day–Miller (2013); Day–Reimann (2014); Reimann–Slaman (2015); Miller–R.
(201x); and many more

Goal
Transfer these results to Schnorr randomness
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Conclusion

Conclusion
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Conclusion

In summary

In this talk we ...

We gave a novel definition of Schnorr randomness for noncomputable
measures.
We argued for its correctness and compared it to other possible
definitions.
We showed applications to disintegration theorems.
We showed applications to Schnorr randomness for Brownian motion.
We outlined how these results fit into a larger research program.
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Conclusion

Thank You!

For more details, see my paper:
Jason Rute. Schnorr randomness for noncomputable measures.
Submitted. arXiv:1607.04679

These slides will be available on my webpage:

http://www.personal.psu.edu/jmr71/

Or just Google™me, “Jason Rute”.

P.S. I am on the job market.
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