Higher randomness

Algorithmic Randomness Interacts with Analysis and Ergodic Theory

Benoit Monin - LACL - Université Paris-Est Créteil

9 Décembre 2016

Introduction

Section 1

Introduction

Randomness

Paradigm

An element $X \in 2^{\omega}$ is random if it belongs to no set of measure 0 among a given countable class of sets/.

Which countable class of sets should we pick ?

Class of sets	Randomness notion
Π_1^0 sets of measure 0	weak-randomness
Π_2^0 sets effectively of measure 0	Martin-Löf randomness
Π_2^0 sets of measure 0	weak-2-randomness

Effective Hyperarithmetical complexity of sets

We define the effective Borel set by induction over the ordinals:

(Notation : The set of index n is denoted by $\{n\}$)

Name	Definition	Indices
Σ_1^0 sets are	of the form $[W_e]$	with index $\langle 0, e angle$
Π^0_{α} sets are	of the form $\{e\}^c$ where e is an index for a Σ^0_{α} set	with index $\langle 1, e angle$
Σ^0_{lpha} sets are	of the form $\bigcup_{n\in W_e}\{n\}$ where n is an index for a Π_β^0 set with $\beta<\alpha$	with index $\langle 2, e angle$

Question : What is the level α at which no new set is added in the hierarchy?

Computable ordinals

Definition

An ordinal α is **computable** if there is a c.e. well-order $R \subseteq \omega \times \omega$ so that |R|, the order-type of R, is equal to α .

Definition (Church, Kleene)

The smallest non-computable ordinal is denoted by $\omega_1^{\rm ck}$, where the ck stands for 'Church-Kleene'.

Proposition

Every effective Borel set is Σ^0_{α} for $\alpha < \omega_1^{\rm ck}$. The hierarchy is strict before $\omega_1^{\rm ck}$.

Computable ordinals

Definition (Hyperarithmetical sets)

The effective Borel sets are called hyperarithmetical sets.

Every Σ_n^0 set for *n* finite is definable by a first-order formula of arithmetic. It is not the case anymore with Σ_{ω}^0 and beyond. We can however define them with second order formulas of arithmetic.

Analytic and co-analytical sets

Definition (Σ_1^1 sets)

A subset $\mathcal{A} \subseteq 2^{\omega}$ (or of ω) is Σ_1^1 if it can be defined by a formula of arithmetic whose second order quantifiers are only existential.

Definition $(\Pi_1^1 \text{ sets})$

A subset $\mathcal{A} \subseteq 2^{\omega}$ (or of ω) is Π_1^1 if it can be defined by a formula of arithmetic whose second order quantifiers are only universal.

Definition $(\Delta_1^1 \text{ sets})$

A subset
$$\mathcal{A} \subseteq 2^{\omega}$$
 (or of ω) is Δ_1^1 if it is both Σ_1^1 and Π_1^1 .

Theorem (Suslin 1917, Kleene 1955)

A set is hyperarithmetic iff it is Δ_1^1 .

An important example of Π_1^1 set of sequences

Definition

For a sequence $X \in 2^{\omega}$, the smallest non-X-computable ordinal is denoted by ω_1^X .

The set $C = \{X : \omega_1^X > \omega_1^{ck}\}$ is a Π_1^1 set with the following properties:

- C is of measure 0 (Sacks).
- C is a meager set (Feferman).
- \mathcal{C} contains no Σ_1^1 subset (Gandy).

•
$$C$$
 is a $\Sigma^{0}_{\omega_{1}^{ck}+2}$ set which is not $\Pi^{0}_{\omega_{1}^{ck}+2}$ (Steel).

A universal Π_1^1 set of integers

Notation

We denote by \mathcal{O} the set of codes for computable ordinals, and \mathcal{O}^X the set of X-codes for X-computable ordinals. We denote by \mathcal{O}_{α} the set of codes for computable ordinals, coding

for ordinals strictly smaller than α .

Example : we have
$$\mathcal{O}=\mathcal{O}_{\omega_1^{\mathsf{ck}}}$$
 and $\mathcal{O}^{X}=\mathcal{O}_{\omega_1^{X}}^{X}$

The set \mathcal{O} , plays the same role as \emptyset' , but for Π_1^1 predicates:

Theorem (Complete Π_1^1 set)

A set of integers A is Π_1^1 iff there is a computable function $f : \omega \mapsto \omega$ so that $n \in A$ iff $f(n) \in \mathcal{O}$.

Π^1_1 sets with Kleene's ${\cal O}$

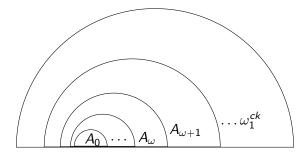
${\cal A}$ is	a set of integers	a set of sequences
Π^1_1	$n \in \mathcal{A} \leftrightarrow f(n) \in \mathcal{O}$	$X \in \mathcal{A} \leftrightarrow e \in \mathcal{O}^X$
	$n \in \mathcal{A} \leftrightarrow f(n) \in \mathcal{O}$ for some computable function f	for some <i>e</i>
Δ^1_1	$n \in \mathcal{A} \leftrightarrow f(n) \in \mathcal{O}_{\alpha}$	$X \in \mathcal{A} \leftrightarrow e \in \mathcal{O}^X_{lpha}$
	for some computable function f and some computable ordinal α	for some e and some ordinal $lpha$

Π_1^1 sets of integers

Suppose $A \subseteq \omega$ is Π^1_1 of index *e* and let us denote

$$A_{\alpha} = \{ n : \varphi_e(n) \in \mathcal{O}_{\alpha} \}$$

Then A is an increasing union of Δ_1^1 sets:



Π_1^1 is the higher analogue of c.e.

The higher analog of c.e. sets of integers is Π_1^1 sets of integers.

This has been sketched in previous slides : one can think of a Π_1^1 set of integers as being given by an enumeration with stages $\{s \mid s < \omega_1^{ck}\}$.

Bottom setting	Higher analogue
c.e.	Π^1_1
finite c.e.	Δ_1^1
computable	$\Delta_1^{\overline{1}}$
\varnothing'	\mathcal{O}

Other higher randomness notions

Π_1^1 -randomness

Section 2

Higher randomness

We can now define higher randomness notions

Definition (Martin-Löf 1970) A sequence is Δ_1^1 -random if it belongs to no Δ_1^1 set of measure 0.

Definition (Sacks)

A sequence is Π_1^1 -random if it belongs to no Π_1^1 set of measure 0.

What about Σ_1^1 -randomness?

Theorem (Sacks)

A sequence is Σ_1^1 -random iff it is Δ_1^1 -random.

Π_1^1 randomness

The following theorems make $\Pi^1_1\text{-}\mathsf{randomness}$ an interesting notion of randomness:

Theorem (Kechris 1975, Hjorth, Nies 2007)

There is a universal Π_1^1 set of measure 0, that is, one containing all the others.

The set of $\{X : \omega_1^X > \omega_1^{ck}\}$ is a Π_1^1 set of measure 0. Therefore if X is Π_1^1 -random, then $\omega_1^X = \omega_1^{ck}$. We also have some converse:

Theorem (Chong, Nies, Yu 2008)

A sequence X is Π_1^1 -random iff it is Δ_1^1 -random and $\omega_1^X = \omega_1^{ck}$.

Borel complexity of Π_1^1 randoms

Due to its universal nature, the set of Π_1^1 randoms is expected to have a higher Borel rank. But surprisingly we have:

Theorem (M.)

The set of Π_1^1 randoms is a Π_3^0 set of the form:

$$\bigcap_{n}\bigcup_{m}\mathcal{F}_{n,m}$$

For each $\mathcal{F}_{n,m}$ a Σ^1_1 closed set.

where

Definition

A Π_1^1 -open set is an open set \mathcal{U} so that for a Π_1^1 set of strings A we have $\mathcal{U} = \bigcup \{ [\sigma] : \sigma \in A \}$. A Σ_1^1 -closed set is the complement of a Π_1^1 -open set.

Sketch of the proof : Π_1^1 randoms is Π_3^0

We define:

Definition (M.)

A sequence X is Σ_1^1 -Solovay-generic if for every uniform union of Σ_1^1 closed sets $\bigcup_n \mathcal{F}_n$, either X is in $\bigcup_n \mathcal{F}_n$ or X belongs to a Σ_1^1 closed set of positive measure, included in the complement of $\bigcup_n \mathcal{F}_n$.

And we have:

Theorem (M.)

A sequence is Σ_1^1 -Solovay-generic iff it is Π_1^1 -random.

Lowness for Π_1^1 -randomness

Definition

We say that A is low for Π_1^1 -randomness if every $\Pi_1^1(A)$ -random is also Π_1^1 -random.

It is clear that any Δ_1^1 binary sequence is low for Π_1^1 -randomness. Are there other sequences which are low for Π_1^1 -randomness?

Theorem (Greenberg, M.)

The Δ_1^1 sequences are the only sequences that are low for Π_1^1 -randomness.

The proof uses the equivalence between $\Pi^1_1\text{-}\mathsf{randomness}$ and $\Sigma^1_1\text{-}\mathsf{Solovay}\text{-}\mathsf{genericity}.$

Other characterization of Π_1^1 -randomness

Theorem (Downey, Nies, Weber and Yu 2006)

A Martin-Löf random binary sequence is weakly-2-random iff it computes no non-computable c.e. binary sequence.

There is an analogue characterization of Π_1^1 -randomness, using the notion of higher Turing reduction.

Theorem (Greenberg, M.)

For a Π_1^1 -Martin-Löf random sequence X, the following are equivalent:

- X is Π_1^1 -random.
- X higher Turing computes no (non Δ_1^1) Π_1^1 sequence.

Other characterization of Π_1^1 -randomness

Theorem (Yu 2012, Franklin, Ng 2010)

For a sequence X, the following are equivalent:

- X is Π¹₁-Martin-Löf random and does not higher Turing compute Kleene's O.
- X is in no set $\mathcal{F} \cap \bigcap_n \mathcal{U}_n$ with $\lambda(\mathcal{F} \cap \mathcal{U}_n) \leq 2^{-n}$ where \mathcal{F} a Σ_1^1 -closed set and each \mathcal{U}_n a Π_1^1 open set uniformly in n.

Theorem (Greenberg, M.)

For a sequence X, the following are equivalent:

- X is Π_1^1 -random.
- X is in no set $\mathcal{F} \cap \bigcap_n \mathcal{U}_n$ with $\lambda(\mathcal{F} \cap \bigcap_n \mathcal{U}_n) = 0$ where \mathcal{F} a Σ_1^1 -closed set and each \mathcal{U}_n a Π_1^1 open set uniformly in n.

Section 3

Σ_1^1 -genericity

Definition (Greenberg, M.)

A sequence is Δ_1^1 -generic if it is in every dense Δ_1^1 -open set.

Definition (Greenberg, M.)

A sequence is **weakly**- Π_1^1 -**generic** if it is in every dense Π_1^1 -open set. A sequence is Π_1^1 -**generic** if for every Π_1^1 -open set \mathcal{U} , either X is in \mathcal{U} or X is in the interior of the complement of \mathcal{U} .

Definition (Greenberg, M.)

A sequence is **weakly**- Σ_1^1 -**generic** if it is in every dense Σ_1^1 -open set. A sequence is Σ_1^1 -**generic** if for every Σ_1^1 -open set \mathcal{U} , either X is in \mathcal{U} or X is in the interior of the complement of \mathcal{U} .

Σ_1^1 -genericity

Proposition (Greenberg, M.)

For a sequence X the following are equivalent:

- X is Δ_1^1 -generic.
- X is weakly- Π_1^1 -generic.

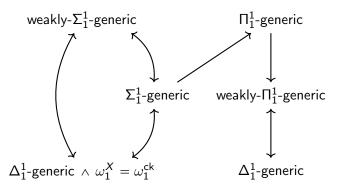
There is a Π_1^1 -generic which is not weakly- Π_1^1 -generic.

Theorem (Greenberg, M.)

For a sequence X the following are equivalent:

- X is Σ_1^1 -generic.
- X is weakly-Σ₁¹-generic.
- X is Δ_1^1 -generic and $\omega_1^X = \omega_1^{\mathsf{ck}}$.

 Σ_1^1 -genericity (3)



Open questions

Question

What is lowness for Σ_1^1 -genericty ?

Definition

An approximation $\{f_s\}_{s < \omega_1^{ck}}$ of a function f is finite-change if each $f_s(n)$ changes only finitely often over time.

Question

Does there exists a sequence X such that if X computes a finitechange approximation of a function f, then there is a finite-change approximation of a function g such that f < g.

Other higher randomness notions

Other higher randomness notions

Other higher randomness notions

Π_1^1 -Martin-Löf randomness

Definition

A Π_1^1 -open set is an open set \mathcal{U} so that for a Π_1^1 set of strings A we have $\mathcal{U} = \bigcup \{ [\sigma] : \sigma \in A \}.$

Definition

A Σ_1^1 -closed set is the complement of a Π_1^1 -open set.

Definition (Hjorth, Nies 2007)

A sequence is Π_1^1 -Martin-Löf random if it belongs to no set of the form $\bigcap_n \mathcal{U}_n$ where each \mathcal{U}_n is a Π_1^1 -open set, uniformly in *n*, with $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Higher weak-2-randomness

We now transfer to the higher setting the difference between weak-2-randomness and Martin-Löf randomness.

Definition (Nies 2009)

A set is weakly- Π_1^1 -random if it is in no set $\bigcap_n \mathcal{U}_n$ with $\lambda(\bigcap_n \mathcal{U}_n) = 0$ where each \mathcal{U}_n is a Π_1^1 -open set uniformly in n.

The following justifies the terminology weak- Π_1^1 -randomness:

Definition (M.)

A set is weakly- Σ_1^1 -Solovay-generic if it is in every uniform union of Σ_1^1 -closed sets which intersects with positive measure every Σ_1^1 -closed sets of positive measure.

Theorem (M.)

A sequence is weakly- Σ_1^1 -Solovay-generic iff it is weakly Π_1^1 -random.

Separation of weak- Π_1^1 -randomness from Π_1^1 -randomness

Theorem (Chong, Yu 2012)

There are sequences which are Π_1^1 -Martin-Löf random but not weakly- Π_1^1 -random.

To prove this theorem, Chong and Yu proved that no sequence with a left-c.e. approximation is weakly- Π_1^1 -random. Also it is well known that some sequence with a higher left-c.e. approximation is Π_1^1 -Martin-Löf random.

Theorem (Greenberg, Bienvenu, M.)

There are sequences which are weakly- Π_1^1 -random but not Π_1^1 -random.

To prove this theorem, we define other restrictions of higher Δ_2^0 approximations.

Higher approximations

Definition (Greenberg, Bienvenu, M.)

An approximation $\{X_s\}_{s < \omega_1^{ck}}$ of X is **closed** if the set $\{X_s\}_{s < \omega_1^{ck}} \cup \{X\}$ is a closed set.

Theorem (Greenberg, Bienvenu, M.)

No sequence with a closed approximation is weakly- Π_1^1 -random.

Definition (Greenberg, Bienvenu, M.)

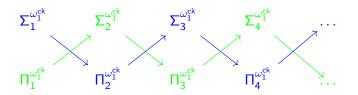
An approximation $\{X_s\}_{s < \omega_1^{ck}}$ of X is **collapsing** if for every $s < \omega_1^{ck}$, the sequence X is not in the closure of $\{X_t\}_{t < s}$.

Theorem (Greenberg, Bienvenu, M.)

No sequence with a collapsing approximation is Π_1^1 -random. But such sequences can be weakly- Π_1^1 -random.

Another hierarchy

We can now define another hierarchy, starting with $\Pi^1_1\text{-open sets}$ and $\Sigma^1_1\text{-closed sets.}$



The blue sets are Π_1^1 sets

The green sets are Σ_1^1 sets

Randomness notions along the hierarchy

Fact

A sequence is weakly- $\Pi_1^1\text{-}random$ if it belongs to no $\Pi_2^{\omega_1^{ck}}$ set of measure 0.

Proposition

For a sequence X, the following are equivalent:

- X is in no $\Pi_3^{\omega_1^{ck}}$ set of measure 0.
- X is Δ_1^1 -random.

Randomness notions along the hierarchy

Theorem (Greenberg, M.)

For a sequence X, the following are equivalent:

- X is in no $\Pi_4^{\omega_1^{ck}}$ set of measure 0.
- X is in no $\Pi_n^{\omega_1^{ck}}$ set of measure 0 for any n.
- X is in no Π_1^1 set of measure 0.

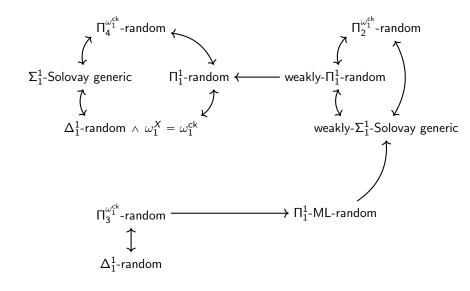
Theorem (Greenberg, M.)

The set of Π_1^1 -randoms is $\Pi_5^{\omega_1^{ck}}$.

Question

Is there some X which is in no $\Sigma_3^{\omega_1^{ck}}$ set of measure 0 and not Π_1^1 -random?

Summary



Open questions

Question

Can the set of
$$\Pi_1^1$$
-random be $\Sigma_4^{\omega_1^{ck}}$ set ?

Equivalent characterization for Π_1^1 -randomness

The following are equivalent:

- X is Π_1^1 -random.
- X is in no $\Pi_4^{\omega_1^{ck}}$ -null set.
- X is not in the largest $\Sigma_5^{\omega_1^{\rm ck}}$ nullset.
- X is Σ₁¹-Solovay generic.
- X is Δ_1^1 -random and $\omega_1^X = \omega_1^{\mathsf{ck}}$.
- X is Π¹₁-Martin-Löf random and higher Turing computes no non trivial Π¹₁ sequence.
- X is in no set $\mathcal{F} \cap \bigcap_n \mathcal{U}_n$ with $\lambda(\mathcal{F} \cap \bigcap_n \mathcal{U}_n) = 0$ where \mathcal{F} a Σ_1^1 -closed set and $\bigcap_n \mathcal{U}_n$ a $\Pi_2^{\omega_1^{ck}}$ set.

