Computability and the Denjoy Hierarchy

Linda Brown Westrick University of Connecticut

December 9, 2016 BIRS/CMO Oaxaca

Linda Brown Westrick University of ConComputability and the Denjoy Hierarchy

Lebesgue integration

A function $F : [0,1] \to \mathbb{R}$ is called **absolutely continuous** if for every ε there is a δ such that whenever $(a_0, b_0), \ldots, (a_k, b_k) \subset [0,1]$ are disjoint intervals satisfying

$$\sum_{i \le k} b_i - a_i < \delta,$$

then

$$\sum_{i \le k} |F(b_i) - F(a_i)| < \varepsilon.$$

Theorem (Lebesgue)

The following are equivalent.

- $\bullet F is absolutely continuous.$
- **2** There is a Lebesgue integrable function f such that $F(x) = F(0) + \int_0^x f$.
- F is a.e. differentiable and f = F' is as above.

Limitation: a function can be everywhere differentiable without being absolutely continuous. For example, $x^2 \sin\left(\frac{1}{x^2}\right)$.

Really, this function's derivative should be integrable.

The problem of "recovering the primitive" of an everywhere differentiable function was solved by Denjoy in 1912, via the transfinite process of (narrow) **Denjoy integration**.

Denjoy integration

Theme: Lebesgue integrate and sum up...and if you don't succeed, try again.

Goal: Given f, identify F with F' = f by finding all F(y) - F(x).

Denjoy integration process

- If f is Lebesgue integrable on an open set U containing x, y, set $F(y) F(x) = \int_x^y f$.
- Let $P^1 = [0,1] \setminus \bigcup \{U : f \upharpoonright U \text{ is Lebesgue integrable} \}.$
- Given closed $P^{\alpha} \neq \emptyset$:
 - For (c, d) contiguous to P^{α} , set F(d) F(c) and similar by taking limits, if possible. (Impossible $\implies f$ not Denjoy integrable).
 - If $f \upharpoonright P^{\alpha} \cap U$ is Lebesgue integrable and F is summable on $U \setminus P^{\alpha}$, for U an open set containing x, y, set

$$F(y) - F(x) = \int_{P^{\alpha} \cap [x,y]} f + \sum_{(c,d) \in U \setminus P^{\alpha}} F(d) - F(c).$$

• $P^{\alpha+1} = P^{\alpha} \setminus \bigcup \{U : f \upharpoonright P^{\alpha} \cap U \text{ is Lebesgue integrable}$ and F summable on $U \setminus P^{\alpha} \}.$

• At limit stages, intersect all previous P^{α} .

If U is open and P is closed, F is **summable** on $U \setminus P$ if

$$\sum_{(c,d)\in U\setminus P}\omega(F,[c,d])<\infty$$

where $\omega(F, [c, d])$ is the oscillation of F on [c, d], and (c, d) ranges over the connected components of $U \setminus P$.

(

Descriptive Definition of the Denjoy Integral

Theorem (Denjoy and others)

The following are equivalent.

- F is ACG_* .
- **2** There is a **Denjoy** integrable function f such that $F(x) = F(0) + \int_0^{\mathbf{x}} f$.
- **③** F is a.e. differentiable and f = F' is as above.

Absolutely continuous functions are those obtainable by Lebesgue integration. ACG_* is the set of functions obtainable by Denjoy integration.

Question

What is the descriptive complexity of ACG_* and its subclasses D_{α} ?

 $D_{\alpha} := \{F : F \text{ is obtainable by at most } \alpha \text{ steps of Denjoy integration}\}$

Being absolutely continuous is Π_3^0 -complete

Proposition (W.) The set of absolutely continuous functions is Π_3^0 -complete.

 $D_1 = \{F : F \text{ is obtainable by at most 1 step of Denjoy integration}\}$ $D_1 = \text{is exactly the absolutely continuous functions.}$

F is absolutely continuous if for every ε there is a δ such that whenever $(a_0, b_0), \ldots, (a_k, b_k) \subset [0, 1]$ are disjoint intervals satisfying $\sum_{i \leq k} b_i - a_i < \delta$, then $\sum_{i < k} |F(b_i) - F(a_i)| < \varepsilon$.

Examples of not absolutely continuous functions:

- Anything with unbounded variation (Π_2^0 failure)
- Cantor's staircase (Π_3^0 failure)

Naively, being absolutely continuous is Π_3^0 . Π_3^0 -hardness result produces Cantor staircase-like functions.

The sets D_{α} for $\alpha > 1$ are $\Sigma_{2\alpha}$

Proposition (W.) The sets D_{α} for $\alpha > 1$ are $\Sigma_{2\alpha}$.

If $F \in D_{\alpha}$, the integration process producing F can be recovered in α steps.

Last step: $F \upharpoonright P^{\alpha-1}$ is Lebesgue integrable and F is summable on $[0,1] \setminus P^{\alpha-1}$.

Equivalently: the continuous function $F_{\alpha-1}$ is absolutely continuous.

$$F_{\alpha-1}(x) = \begin{cases} F(x) & \text{if } x \in P^{\alpha-1} \\ \text{interpolate}(x, c, d) & \text{if } x \in (c, d) \text{ contiguous to } P^{\alpha-1}. \end{cases}$$

where interpolate(x, c, d) is a three piece linear function whose maximum and minimum on (c, d) agree with $\max_{x \in [c, d]} F(x)$ and $\min_{x \in [c, d]} F(x)$.

Naively, it could take three jumps to tell if $F_{\alpha-1}$ is absoutely continuous. But the subtle Cantor's staircase problem, if it ever happens, will happen at F_1 , with the integration simulation failing at that level. So we have only a two-jump problem: detecting unbounded variation.

Limsup rank

Definition

The **limsup rank** of a well-founded tree T is 0 if $T = \emptyset$ and

Analysis of the Limsup Rank

Let $L_{\alpha} = \{e : e \text{ codes } T \text{ with } |T|_{ls} \leq \alpha \}.$ The L_{α} are naively $\Sigma_{2\alpha}$ for $\alpha > 0$.

Theorem (W.)

For each constructive $\alpha > 0$,

$$(\Sigma_{2\alpha}, \Pi_{2\alpha}) \leq_1 (L_{\alpha}, L_{\alpha+1} \setminus L_{\alpha}).$$

In other words, if A is Σ_{2α}-complete, there is recursive f such that for all x,
x ∈ A → f(x) ∈ L_α
x ∉ A → f(x) ∈ L_{α+1} \ L_α

Corollary: For each constructive $\alpha > 1$, $\{e : e \text{ codes } F \in D_{\alpha}\}$ is $\Sigma_{2\alpha}$ -complete.

Proof: Computably transform trees of limsup rank α into functions $F \in D_{\alpha}$, by piling on bounded variation.

Proposition (W.) ACG_* is Π_1^1 -complete.

Definition direction: $F \in ACG_*$ if and only if for every perfect $E \subseteq [0, 1]$, there is an interval J such that F is AC_* on the nonempty set $E \cap J$.

F is AC_* on E: like absolute continuity, but the endpoints of the intervals (a_i, b_i) must be in E, and $|F(b_i) - F(a_i)|$ is replaced with $\omega(F, [a_i, b_i])$.

Completeness direction: observe that if T is not WF, then the transformation which takes trees of limsup rank α to $F \in D_{\alpha}$, now achieves

 $(\Pi_1^1, \Sigma_1^1) \leq_1 (ACG_*, \overline{ACG_*})$