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Classical Interval Arithmetic
Definition

I Operations are defined over the set of closed and
bounded intervals x = [x , x ].

I The result of the operation is defined logically for
� ∈ {+,−,×,÷} as x � y = {x � y | x ∈ x and y ∈ y}.

I The logical definition leads to operational definitions:
x + y = [x + y , x + y ],

x − y = [x − y , x − y ],

x × y = [min{xy , xy , xy , xy},max{xy , xy , xy , xy}]
1
x

= [
1
x
,

1
x
] if x > 0 or x < 0

x ÷ y = x × 1
y

(There are alternatives for × and ÷ more efficient for certain
architectures.)
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Classical Interval Arithmetic
What does this definition do?

I In exact arithmetic, the operational definitions give the
exact ranges of the elementary operations.

I Evaluating an expression in interval arithmetic does not
give an exact range of the expression, but does give
bounds on the range of the expression.

I Example (interval dependence)
If f (x) = (x + 1)(x − 1), then

f ([−2,2]) =
(
[−2,2] + 1

)(
[−2,2]− 1

)
= [−1,3][−3,1] = [−9,3],

whereas the exact range is [−1,3].
I The interval [−9,3] represents the exact range of

f̃ (x , y) = (x + 1)(y − 1) over the rectangle x ∈ [−2,2],
y ∈ [−2,2] (when x and y vary independently).
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Classical Interval Arithmetic
Why can this be mathematically rigorous with approximate arithmetic?

I The operational definitions give approximate end points.

I Modern computational environments (such as IEEE
754-compliant ones) allow rounding down to the nearest
machine number less than the exact result and rounding
up to the nearest machine number greater than the
exact result.

I If we use downward rounding to compute the lower end
point and upward rounding to compute the upper end
point, the result of each elementary operation contains
the exact range of that operation.

I Hence, an interval evaluation of an expression on a
machine mathematically rigorously contains the range of
the expression.
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Algebraic Properties
(or lack thereof)

I Interval arithmetic is commutative and associative.

I There are no additive and multiplicative inverses.

I For example:
[1,2] − [1,2] = [−1,1]
[1,2] / [1,2] =

[1
2 ,2
]

I Interval arithmetic is only subdistributive:
a(b + c) ⊆ ab + bc.

I For example,
[−1,1]

(
[−3,−2] + [2,3]

)
= [−1,1][−1,1] = [−1,1], while

[−1,1][−3,−2]+[−1,1][2,3] = [−3,3]+[−3,3] = [−6,6].

I Theorem (Single Use Expressions — SUE)
In an algebraic expression evaluated in exact interval
arithmetic, the result is the exact range if each variable
occurs only once in the expression.
• Note: The converse is not true.

6 / 31
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Alternative “Interval” Systems
(Different representations or different semantics)

Midpoint-radius arithmetic: Intervals represented in terms of
midpoint and error; addition gives exact range
but multiplication just gives an enclosure for the
range.

Circular arithmetic: Representation as midpoint-radius, but
with the midpoint in the complex plane.
Elementary operations are not exact, but are
mere enclosures.

Rectangular arithmetic: An alternative complex interval
arithmetic. Addition is exact, but multiplication
just gives an enclosure.

Kaucher arithmetic, modal arithmetic etc.: Algebraically
completes interval arithmetic with additive
inverses. It has uses, but interpretation of the
results is more complicated, sometimes
depending on monotonicity properties.
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Extensions
What do we do with this?

Consider
x
y

= [1,2]/[−3,4].

I In our operational definition,
1
y

=

[
1
4
,−1

3

]
???

I The arguments contain undefined quantities
a
0

for

a ∈ [1,2], but . . .
I The range of the operation over defined quantities is(
−∞,−1

3

]⋃ [1
4 ,∞

)
.

I Different definitions for the operation’s result and
different interpretations are appropriate in different
contexts. (More to be said later.)

I This has been carefully considered and defined in an
exception-tracking framework in the IEEE 1788-2015
standard for interval arithmetic.

8 / 31
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Reasons for Interval Arithmetic
(general uses)

Rigorously bounding roundoff error in floating point
computations.

I Interval widths start out small, on the order of the
machine precision, but . . .

I overestimation can make results meaningless, and
obtaining meaningful results is often tricky.

Bounding function ranges over large domains
I provides a polynomial-time computation that often gives

helpful bounds, for . . .

• proving the hypotheses of fixed point theorems,
• bounding the objective function and proving or disproving

feasibility in global optimization algorithms,
• proving collision avoidance in robotics, navigation

systems, celestial mechanics,
• etc.
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Proof of Important Conjectures
Proof of the Kepler Conjecture

(Thomas Hales)

I The Kepler Conjecture (made by Johannes Kepler in
1611) states that the densest packing of spheres in
3-dimensional space does not exceed that of the
face-centered cubic packing.

I Thomas Hales used a blueprint proposed by Toth in
1957, for exhaustive enumeration.

I He computed lower bounds on over 5000 cases using
linear programming (1998).

I The bounds were verified with interval arithmetic.
I A formal proof is proceeding with the Isabelle and HOL

proof systems.
I See https://arxiv.org/abs/1501.02155v1 and
https:
//en.wikipedia.org/wiki/Kepler_conjecture.
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Proof of Important Conjectures
Chaos and attractors for the Lorenz equations

(various researchers – 1994 to 2001)

(The Lorenz equations are a simplified model of weather
prediction.)

1994 Hassard, Zhang, Hastings, and Troy use a
mathematically rigorous interval-arithmetic-based ODE
integrator to prove existence of chaotic solutions in the
Lorenz equations.

1998 (and earlier) Mischaikov and Mrozek use Conley index
theory and interval arithmetic to prove chaotic solutions
in the Lorenz equations for an explicit parameter value.

2001 Warwick Tucker (in dissertation work) used normal form
theory and interval arithmetic to solve Stephen Smale’s
14-th problem, namely, that the Lorenz equations have a
strange attractor that persists under perturbations of the
coefficients in the differential equations.

11 / 31



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

History
Early

Moore

Karlsruhe

Russian

Logical Pitfalls
Constraints

Simplex representations

Existence Verification

The IEEE
Standard

11/31

Proof of Important Conjectures
Chaos and attractors for the Lorenz equations

(various researchers – 1994 to 2001)

(The Lorenz equations are a simplified model of weather
prediction.)

1994 Hassard, Zhang, Hastings, and Troy use a
mathematically rigorous interval-arithmetic-based ODE
integrator to prove existence of chaotic solutions in the
Lorenz equations.

1998 (and earlier) Mischaikov and Mrozek use Conley index
theory and interval arithmetic to prove chaotic solutions
in the Lorenz equations for an explicit parameter value.

2001 Warwick Tucker (in dissertation work) used normal form
theory and interval arithmetic to solve Stephen Smale’s
14-th problem, namely, that the Lorenz equations have a
strange attractor that persists under perturbations of the
coefficients in the differential equations.

11 / 31



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

History
Early

Moore

Karlsruhe

Russian

Logical Pitfalls
Constraints

Simplex representations

Existence Verification

The IEEE
Standard

11/31

Proof of Important Conjectures
Chaos and attractors for the Lorenz equations

(various researchers – 1994 to 2001)

(The Lorenz equations are a simplified model of weather
prediction.)

1994 Hassard, Zhang, Hastings, and Troy use a
mathematically rigorous interval-arithmetic-based ODE
integrator to prove existence of chaotic solutions in the
Lorenz equations.

1998 (and earlier) Mischaikov and Mrozek use Conley index
theory and interval arithmetic to prove chaotic solutions
in the Lorenz equations for an explicit parameter value.

2001 Warwick Tucker (in dissertation work) used normal form
theory and interval arithmetic to solve Stephen Smale’s
14-th problem, namely, that the Lorenz equations have a
strange attractor that persists under perturbations of the
coefficients in the differential equations.

11 / 31



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

History
Early

Moore

Karlsruhe

Russian

Logical Pitfalls
Constraints

Simplex representations

Existence Verification

The IEEE
Standard

11/31

Proof of Important Conjectures
Chaos and attractors for the Lorenz equations

(various researchers – 1994 to 2001)

(The Lorenz equations are a simplified model of weather
prediction.)

1994 Hassard, Zhang, Hastings, and Troy use a
mathematically rigorous interval-arithmetic-based ODE
integrator to prove existence of chaotic solutions in the
Lorenz equations.

1998 (and earlier) Mischaikov and Mrozek use Conley index
theory and interval arithmetic to prove chaotic solutions
in the Lorenz equations for an explicit parameter value.

2001 Warwick Tucker (in dissertation work) used normal form
theory and interval arithmetic to solve Stephen Smale’s
14-th problem, namely, that the Lorenz equations have a
strange attractor that persists under perturbations of the
coefficients in the differential equations.

11 / 31



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

History
Early

Moore

Karlsruhe

Russian

Logical Pitfalls
Constraints

Simplex representations

Existence Verification

The IEEE
Standard

12/31

Proof of Important Conjectures
Additional work

The R. E. Moore Prize for application of interval arithmetic
has been awarded to various researchers for proving certain
mathematical conjectures. See http:
//www.cs.utep.edu/interval-comp/honors.html.
Among these are:

2014 Kenta Kobayashi for Computer-Assisted Uniqueness
Proof for Stokes’ Wave of Extreme Form, and

2016 Banhelyi, Csendes, Krisztin, and Neumaier for Global
attractivity of the zero solution for Wright’s equation (a
model in population genetics)
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Engineering Questions Rigorously Resolved
Physics and chemical engineering

These include:

1. Simple use of range bounds;
2. Incorporation of range bounds in exhaustive domain

searches (branch and bound algorithms) to enclose a
global optimum of a minimization problem;

3. Incorporation of range bounds to rigorously enclose
solution sets to differential equations in sophisticated
mathematically rigorous ODE integrators.

2. Stadtherr et al Correction of major errors in widely used
tables of vapor-liquid equilibria.

3. Berz et al Proof of stability of the beam, given assumed
tolerances on the geometry and magnets, of the
once-proposed superconducting supercollider (and the
software continues to be used for other cyclotrons).
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Engineering Questions Rigorously Resolved
Robotics

I Luc Jaulin et al have used interval constraint
propagation to increase both reliability and efficiency of
underwater robot control and data analysis in generating
maps. (Luc is the 2012 Moore Prize recipient.)

I (Earlier work continuing to the present) The forward
manipulator problem (computation of joint angles for a
particular robot hand location) is easily solved with
exhaustive search (branch and bound) to the
corresponding systems of nonlinear equations.

I Interval arithmetic can be used in collision avoidance.
In early work (1988) yours truly used Fortran-77-based
software to show the set of published solutions to a
manipulator problem posed by Alexander Morgan at
General Motors was incorrect. This led to discovery of
an incorrectly-given coefficient in the paper and to
improvement in the software in use at General Motors.
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History
Early work

The same basic interval operations described in all of the
early work, although it was apparently done independently.

Rosaline Cecily Young (Mathematische Annalen, 1931,)
prior to digital computers) “The Algebra of Many-Valued
Quantities.” The focus is on an arithmetic on limits,
where lim infx→x0 f (x) and lim supx→x0

f (x) are distinct
(such as in in generalized gradients of nonsmooth
functions). Ranges and roundoff error do not seem to
have been the primary motivation.

Paul S. Dwyer (Chapter in Linear Computations, 1951)
“Computation with Approximate Numbers.” Interval
computations are introduced as an integral part of
roundoff error analysis.

Mieczyslaw Warmus (Calculus of Approximations, 1956)
The motivation is apparently to provide a sound
theoretical backing to numerical computation.
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Really Early Work
(from a talk on the Origin of Intervals by Siegfried Rump)

Rump mentions

I Archimedes’ 2-sided approximation of the circumference
of a circle;

I a 1900 book Lectures on Numerical Computing (in
German) with error bounds for +, −, ·, / and innacurate
input data;

I an 1896 article “On computing with inexact numbers” (in
German) in the Journal for Junior Highschool Studies,
giving the impression interval computations were
standard fare in middle schools;

I 1887, 1879, and 1854 French work where explicit
formulas for the elementary operations and rigorous
error bounds were given;

I An 1809 work by Gauß in Latin where explicit
computation of error bounds, including rounding errors,
appears.
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History of Interval Arithmetic
It takes off.

Teruro Sunaga (RAAG Memoirs, 1958)
“Theory of an Interval Algebra and its Application to
Numerical Analysis.” The emphasis is on mathematical
theory, but the motivation appears to be automatically
accounting for uncertainty and error in measurement
and computation.

Ray Moore (Lockheed Technical Report, 1959)
“Automatic Error Analysis in Digital Computation.” The
basic operations are given in this monograph.
• Numerical solution of ODEs, numerical integration, etc.

based on intervals appear in Moore’s 1962 dissertation.
• It is made clear that interval computations promise

rigorous bounds on the exact result, even when finite
(rounded) computer arithmetic is used.
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History of Interval Arithmetic
(other Americans)

Eldon Hansen worked on interval global optimization, with
• early collaboration with Ray Moore.
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History of Interval Arithmetic
Karlsruhe

Rudolf Krawczyk published his famous Krawczyk method for
existence / uniqueness proofs
(“Newton-Algorithmen zur Bestimming von
Nullstellen mit Fehlerschranken,” 1969)

Ulrich Kulisch at Karlsruhe mentored many students.
• He is perhaps the most influential figure in the strong

German interval analysis school.
• (1980’s to the present): His group produced the “SC”

languages, with an interval data type.
• He pointed out the importance of an accurate dot

product, although . . .

- Some of his students have recently proposed alternative
algorithms to implement it, and his original proposed
implementation is controversial.
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History
More Karlsruhe, and the Institute for Reliable Computing

Götz Alefeld, also at Karlsruhe,
• Wrote EInführung in die Intervallrechnung with Jürgen

Herzberger in 1974, appearing in English in 1983 as
Introduction to Interval Computations.

• Did much editorial work, and presided over GAMM (the
German society for applied mathematics)

Siegfried Rump, a student of Kulisch,
• Developed Fortran-SC in the 1980’s, a Matlab-like

language with an interval data type, accessing the
ACRITH interval package.
• Developed INTLAB, a Matlab toolbox for IA,

- perhaps the most widely used and cited IA package
today.

• Founded the Institute for Reliable Computing at
Hamburg, educating students and developing software.
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History
(Zürich, Freiburg, Vienna)

Peter Henrici at ETH Zürich,
• Developed circular complex arithmetic (1972).

Karl Nickel at Universität Freiburg,
• Advocated IA from the mid-1960’s.
• Published the Freiburger Intervallberichte preprint series

from 1978 to 1987. (Jürgen Garloff has a complete set; they
will be scanned.)

• Mentored many successful students and researchers.
Arnold Neumaier at Universität Vienna, published
• Interval Methods for Systems of Equations (1990).
• Leads an exceptional research group at Vienna.
• A leader in Global optimization, maintains a global

optimization website at
http://www.mat.univie.ac.at/~neum/glopt.html
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History
The Russian school

I There are extensive publications in all aspects of IA,
from 1972, with Yuri Shokin; see
http://interval.louisiana.edu/

reliable-computing-journal/Supplementum-1/ for
a list of over 400 such publications.

I Vyacheslav Nesterov, Alexander Yakovlev, Eldar
Musaev, and others founded the Reliable Computing
Journal in 1991,

now published by the University of Louisiana at
Lafayette; see:
http://interval.louisiana.edu/
reliable-computing-journal/RC.html

I A many other salient Russian IA researchers and
teachers are Boris Dobronets, Sergey Shary, Irina
Dugarova, Nikolaj Glazunov, Grigory Menshikov, . . . .

22 / 31
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History
Others, among many

Luc Jaulin, at ENSTA-Bretagne, France,

• has been active in conferences and educating students,
from 1999;

• has successfully applied IA to robotics applications;
• has authored several books, including Applied Interval

Analysis (2000).
Jiri Rohn, at the Czech Academy of Sciences, Prague

(Charles University),
• has advanced the state of the art in interval linear

systems and interval linear programming, from 1975.
• has made available the VERSOFT Matlab package for

interval linear algebra (see
http://uivtx.cs.cas.cz/~rohn/matlab/);

• has mentored Milan Hladik, active in IA in optimization,
and others.
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Logical Pitfalls
Constraint propagation: Interpretation in equality constraints

Consider minimization of some objective subject to the
equality constraint x2

1 + x2
2 = 1.

I If we are searching in the box ([1,2], [−0.1,1]),
I We may solve for, say, x2 in x2

1 + x2
2 = 1 to obtain

x2 = ±
√

1− [1,2]2 = ±
√

1− [1,4] = ±
√

[−3,0].

I
√
· is only defined over part of the argument [−3,0].

However:

• in this context, one may interpret ±
√
[−3,0] as

evaluation over the portion of the domain where
√
· is

defined (partial or loose evaluation).
• We obtain x2 ∈ [0,0], showing that (1,0) is the only

feasible point within the search box.
• Note that ±

√
[−3,0] represents the set of all x2 with

x1 ∈ [1,2] satisfying the constraint; no problem here.
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Logical Pitfalls
Constraint propagation: Interpretation in inequality constraints

Which bounds to use and the sense can be confusing.

I Consider an inequality constraint x2
1 − x2

2 ≤ 1 within the
box ([−3,3], [−0.1,1]).

• If we solve for x1, we obtain

x1 ≤ [1,
√

2] or x1 ≤ [−
√

2,−1].

• Here, our conclusion is that x1 ∈ [−
√

2,−1] ∪ [1,
√

2],
and the computation and logic are straightforward.

I If the equality instead had been reversed, x2
1 − x2

2 ≥ 1,

• solving for x1, we obtain x1 ∈ (−∞,−1] ∪ [1,∞).
• [1,

√
2] must be replaced by [1,∞); this depends on ≥

and monotonicity of
√
·.

• The interpretation of the interval arithmetic result is
different for ≥ than for ≤.
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Logical Pitfalls
A contrasting context with inequalities:

Vertex and half-plane representation of a simplex

I Suppose we have a simplex S = 〈P0,P1, . . . ,Pn〉
represented in terms of its vertices
Pi = (x1,i , . . . xn,i) ∈ Rn,
• Pi is only known to lie within a small box P i , and
• we wish to find a set of inequalities, that is, coefficients of

A ∈ Rn+1×n and b ∈ Rn+1 such that the set with Ax ≥ b
encloses the actual simplex S as sharply as possible.

I For each row Ai,:x ≥ bi , suppose we have an enclosure
Ai,: for the normal vector Ai,:, and we adjust bi , so

• Ai,:P j ≥ bi for 1 ≤ i ≤ n + 1 and 0 ≤ j ≤ n. Then,
I the feasible set of Ax ≥ b encloses S for any A ∈ A.
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Simplex Representations
Illustration

(box sizes were exaggerated for clarity)

Left: An n-simplex S enclosed in the polyhedron
{Ax ≥ b} =

⋂n
i=0 H i .

Right: A verified floating-point enclosure Sfl of S. Pj .
• (Thank you, Sam Karhbet.)
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• (Thank you, Sam Karhbet.)
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Logical Pitfalls
Use in existence-uniqueness theory:

Care must be taken with partial evaluation and the continuity hypothesis.

Theorem (Brouwer fixed point theorem)
If g is a continuous mapping from a compact convex set x
into itself, there is a fixed-point x ∈ x of g, i.e. g(x) = x.

I If we evaluate g : x ⊂ Rn → Rn over an interval vector x
and the interval value g(x) ⊆ x , this proves existence of
a fixed point of g in x .

I Example (thank you, John Pryce)
Consider g(x) =

√
x − 1 + 0.9, with a fixed point at

x ≈ 1.0127 and x ≈ 1.7873.
• On x ∈ [1.5,2], an interval evaluation gives

g(x) ⊆ [1.6071,1.9001] ⊂ [1.5,2], and we correctly
conclude g has a fixed point in [1.6071,1.9001].
However, · · ·
• if x = [0,1],

√
x − 1 =

√
[−1,0] evaluates to [0,0], so

g(x) = [0.9,0.9] ⊂ x , for an incorrect conclusion.
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Logical Pitfalls
Summary

I Bounds obtained from interval arithmetic have different
interpretations in constraint propagation, depending on
the sense of the inequality.

I There are situations where a condition must hold for
every element of a computed interval, and other
situations where a any element of a computed interval
(or interval vector) may be chosen.

I Simple partial evaluation ignores continuity conditions
that are necessary for rigorous existence / uniqueness
proofs.

29 / 31



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

History
Early

Moore

Karlsruhe

Russian

Logical Pitfalls
Constraints

Simplex representations

Existence Verification

The IEEE
Standard

29/31

Logical Pitfalls
Summary

I Bounds obtained from interval arithmetic have different
interpretations in constraint propagation, depending on
the sense of the inequality.

I There are situations where a condition must hold for
every element of a computed interval, and other
situations where a any element of a computed interval
(or interval vector) may be chosen.

I Simple partial evaluation ignores continuity conditions
that are necessary for rigorous existence / uniqueness
proofs.

29 / 31



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

History
Early

Moore

Karlsruhe

Russian

Logical Pitfalls
Constraints

Simplex representations

Existence Verification

The IEEE
Standard

29/31

Logical Pitfalls
Summary

I Bounds obtained from interval arithmetic have different
interpretations in constraint propagation, depending on
the sense of the inequality.

I There are situations where a condition must hold for
every element of a computed interval, and other
situations where a any element of a computed interval
(or interval vector) may be chosen.

I Simple partial evaluation ignores continuity conditions
that are necessary for rigorous existence / uniqueness
proofs.

29 / 31



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

History
Early

Moore

Karlsruhe

Russian

Logical Pitfalls
Constraints

Simplex representations

Existence Verification

The IEEE
Standard

30/31

IEEE 1788-2015
Standard for Interval Arithmetic

I Defines basic interval arithmetic, specifying accuracy,
required elementary functions, etc.

I Defines an optional binding to the IEEE 754-2008
standard for floating point arithmetic.

I Specifies how extended interval arithmetic is handled,
from various special cases.

Example (The underlying set is R, not R.)[
1
2
,∞
)
← [2,3]

[0,4]
.

I Contains a decoration system for tracking continuity of
an expression, if extended interval arithmetic has been
used, etc. This can be viewed as a generalization of
IEEE 754 exception handling.

I Thank you, John Pryce, IEEE 1788 technical editor and
a leader in development of the decoration system.
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IEEE 1788-2015 Standard
Implementations

Conforming

Gnu Octave (Matlab-like) by Oliver Heimlich.
See http://octave.sourceforge.net/interval/

JInterval (Java) by Dmitry Nadezhin and Sergei Zhilin.
See https://java.net/projects/jinterval

C++ by Marco Nehmeier (J. Wolff v. Gudenberg).
See https://github.com/nehmeier/libieeep1788

Conformance in Progress

ValidatedNumerics.jl (Julia) by David P. Sanders and
Luis Benet (UNAM)

See https:

//github.com/dpsanders/ValidatedNumerics.jl
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