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Comfort 1968

Comfort used the notion of maximal ideal to define classical topological compactness.

He wanted to avoid the use of the axiom choice in the construction of the Stone-Čech
compactification and the proof of the Tychonoff theorem.

It is my feeling, however, that the definition of compactness relative to which
the theorems of Stone-Čech and Tychonoff are unprovable without the axiom
of choice is, from the point of view of topological analysis and the theory of
rings of continuous functions, unnatural and unsuitable.
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What Comfort did

1. He defined a topological space to be compact, if it is a completely regular
Hausdorff space for which each maximal ideal in C∗(X ) is fixed.

2. Using classical logic, but avoiding the axiom of choice, he showed many expected
properties for his notion of compactness.

3. Based on a theorem of Stone-Čech type he proved the corresponding Tychonoff
theorem.

For this proof of Tychonoff theorem he writes:

My own attempts to prove this result “directly” have been unsuccessful, and
this lends some interest to the proof of (the Tychonoff) Theorem ... and the
theorem of Stone-Čech type upon which it depends.

Iosif Petrakis Constructive Comfort-compactness



Bishop spaces

A Bishop space (function space) is a function-theoretic constructive alternative to the
notion of topological space.

Bishop 1967, Bridges 2012, Ishihara 2013, P. 2015

It is a theory within BISH∗.

Formal counterpart to BISH∗: Myhill’s CST∗, or CZF + REA + DC.
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Continuity as a primitive notion

A Bishop space is a pair F = (X ,F ), where X is an inhabited set and F ⊆ F(X ), a
Bishop topology, or simply a topology, satisfies the following conditions:

(BS1) a ∈ R→ a ∈ F .
(BS2) f ∈ F → g ∈ F → f + g ∈ F .
(BS3) f ∈ F → φ ∈ B(R)→ φ ◦ f ∈ F ,
(BS4) f ∈ F(X )→ U(F , f )→ f ∈ F ,

If f , g ∈ F(X ), ε > 0, and Φ ⊆ F(X ), we define U(g , f , ε) and U(Φ, f ) by

U(g , f , ε) := ∀x∈X (|g(x)− f (x)| ≤ ε),

U(Φ, f ) := ∀ε>0∃g∈Φ(U(g , f , ε)).

fg , λf ,−f , f ∨ g , f ∧ g , |f | ∈ F

Const(X ) ⊆ F ⊆ F(X )

A morphism from F = (X ,F ) to G = (Y ,G) is a function h : X → Y such that

∀g∈G (g ◦ h ∈ F ).

It captures uniform continuity!
We denote Mor(F ,G) the set of the morphisms from F to G.
F = Mor(F ,R), where R = (R,B(R)) is the Bishop space of reals.
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The least topology
∨
F0 generated by a given subbase F0 ⊆ F(X )

f0 ∈ F0

f0 ∈
∨

F0

a ∈ R
a ∈

∨
F0

f , g ∈
∨

f + g ∈
∨

F0
,

f ∈
∨

F0, φ ∈ B(R)

φ ◦ f ∈
∨

F0

(g ∈
∨

F0, U(g , f , ε))ε>0

f ∈
∨

F0
,

g1 ∈
∨

F0 ∧ U(g1, f ,
1
2

), g2 ∈
∨

F0 ∧ U(g2, f ,
1

22 ), g3 ∈
∨

F0 ∧ U(g3, f ,
1

23 ), . . .

f ∈
∨

F0

∀f0∈F0
(P(f0))→

∀a∈R(P(a))→
∀f ,g∈

∨
F0

(P(f )→ P(g)→ P(f + g))→

∀f∈
∨

F0
∀φ∈B(R)(P(f )→ P(φ ◦ f ))→

∀f∈
∨

F0
(∀ε>0∃g∈

∨
F0

(P(g) ∧ U(g , f , ε))→ P(f ))→

∀f∈
∨

F0
(P(f )).

Lifting of morphisms: If G = (Y ,F(G0)), then h : X → Y ∈ Mor(F ,G) if and only if
∀g0∈G0

(g0 ◦ h ∈ F ).

A base Φ0 of a topology F on X is an inhabited subset of F such that
U(Φ0) = {f ∈ F(X ) | U(Φ0, f )} = F .
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New Bishop spaces from old

Definition

Let F = (X ,F ),G = (Y ,G) be Bishop spaces, A ⊆ X is inhabited, and φ : X → Y
is onto Y . The product Bishop space F × G = (X × Y ,F × G) of F and G, relative
Bishop space F|A = (A,F|A) on A, and the quotient topology Gφ on Y are defined,
respectively, by

F × G :=
∨

[{f ◦ π1, | f ∈ F} ∪ {g ◦ π2 | g ∈ G}] =:

g∈G∨
f∈F

f ◦ π1, g ◦ π2,

F|A =
∨
{f|A | f ∈ F} =:

∨
f∈F

f|A.

Fφ := {g ∈ F(Y ) | g ◦ φ ∈ F}.
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F is separating, if ∀x ,y∈X (∀f ∈F (f (x) = f (y))→ x = y).

Theorem (Stone-Čech theorem for Bishop spaces)

If F = (X ,F ) is a Bishop space, there exists a Bishop space ρF = (ρX , ρF ) and a
mapping τX : X → ρX ∈ Mor(F , ρF) such that:
(i) The topology ρF is separating.
(ii) The induced mapping TX : ρF → F of τX is an algebra and lattice isomorphism.
(iii) For every f ∈ F there exists a unique ρf ∈ ρF such that the following diagram
commutes

X ρX

R

τX

f ρf

Theorem (Tychonoff embedding theorem for Bishop spaces)

If F = (X ,F ) is a Bishop space, F is separating if and only if F is topologically
embedded into the Euclidean Bishop space RF .
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Theorem (The first base theorem)

If F0 ⊆ F∗(X ), then then
∨

0 F0 is a base of
∨

F0.

If Φ : On→ V is defined by

Φ0 = F0,

Φα+1 =
∨

0

Φα,

Φλ =
⋃
α<λ

Φα, λ is a limit ordinal.

then, classically, ∨
F0 = Φω1 ,

where ω1 is the first uncountable limit ordinal.

Iosif Petrakis Constructive Comfort-compactness



Theorem (The second base theorem)

If F = (X ,
∨

F0) is a Bishop space such that every element of F0 is bounded and Φ ⊆ F
such that

(i) F0 ⊆ Φ,
(ii) Const(X ) ⊆ Φ,
(iii) Φ is closed under addition and multiplication,

then Φ is a base for
∨

F0.

Proof.

By the first base theorem one shows Φ =
∨

0 F0 = F (use of the Weierstrass approxi-
mation theorem).
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F ⊕ G := {
n∑

i=1

(fi ◦ πX )(gi ◦ πY ) | n ∈ N, fi ∈ F , gi ∈ G , 1 ≤ i ≤ n}.

⊕
n∈N

Fn = {
m∑

j=1

φj | m ∈ N, φj ∈ Σ0, 1 ≤ j ≤ m},

Σ0 := {
n∏

k=1

(fk ◦ πk ) | n ∈ N, fk ∈ Fk , 1 ≤ k ≤ n}.

Corollary

If (X ,F ) and (Y ,G) are pseudo-compact Bishop spaces, F ⊕ G is a base for F × G.

Corollary

If Fn = (Xn,Fn) is a sequence of pseudo-compact Bishop spaces and F = (X ,F ),
where X =

∏
n∈N Xn and F =

∏
n∈N Fn, then

⊕
n∈N Fn is a base for F .
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M(f ) := {|f (x)| | x ∈ X},

N(f ) := {a ≥ 0 | |f | ≤ a}.

Definition

If F is a topology on X and f ∈ F∗, we call f normable, if sup M(f ) exists and its norm
is defined by

||f || = sup M(f ).

We call f weakly normable, if lubM(f ) exists and its weak norm is defined by

||f ||w = lubM(f ).

If f is normable, then f is weakly normable and ||f ||w = ||f ||. Moreover,
||f ||w = inf N(f ).
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Definition

If F = (X ,F ) and G = (Y ,G) are Bishop spaces, a function T : F → G is called a
ring homomorphism, or simply a homomorphism, if

T (f1 + f2) = T (f1) + T (f2),

T (f1f2) = T (f1)T (f2),

for every f1, f2 ∈ F . We denote the set of homomorphisms between F and G by
Hom(F ,G). A homomorphism T is called non-zero, if T (1)(y) > 0, for some y ∈ Y .
We denote the set of non-zero homomorphisms between F and G by Hom∗(F ,G). If
τ : Y → X is in Mor(G,F), the induced homomorphism T : F → G from τ is defined
by T (f ) := f ◦ τ, for every f ∈ F .
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T (0) = 0 and T (−f ) = −T (f ).
If f ≥ 0, then T (f ) ≥ 0.
T (|f |) = |T (f )|.
T (f1 ∨ f2) = T (f1) ∨ T (f2) and T (f1 ∧ f2) = T (f1) ∧ T (f2).
T (1)(y) ∈ 2.
T (n) ≤ n, for every n ∈ N.
T (F∗) ⊆ G∗.
T (af ) = aT (f ) (non-trivial).
|T (a) ≤ |a|.
If T is non-zero, then T (a) is normable and ||T (a)|| = |a|.
If a ≥ 0, then T (a) ≤ a.
If T (f ) ≤ a, then T (f ) ≤ T (a).
If T (f ) ≥ a, then T (f ) ≥ T (a).
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Definition

If G = Const({x}) ∼= R, a homomorphism between F and R is called a character of
F . We denote their set by Char(F ) and the set of the non-zero characters of F by
Char∗(F ).

A non-zero character π of F is called fixed, if there exists x ∈ X such that π = πx ,
where

πx (f ) = f (x),

for every f ∈ F . In this case x is a fixing point for π, or x fixes π. We denote the set
of fixed characters of F by Char∗∗(F ).
The kernel ker(π) of a non-zero character π of F is defined by

ker(π) := {f ∈ F | π(f ) = 0}.

Clearly, if F separates the points of X , there is a unique fixing point for a fixed
character of F .
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Corollary

Let F = (X ,F ),G = (Y ,G) be Bishop spaces.
(i) If G is 2-connected, and T ∈ Hom∗(F ,G), then T (1) = 1.
(ii) If π ∈ Char∗(F ), then π is onto R; in fact π(a) = a, for every a ∈ R.
(iii) If π : R→ R is a non-zero ring homomorphism i.e., π(1) > 0, then π is the identity.

Proof.

(i) One shows that if G is 2-connected, T (1) is constant, and since T (1)(y) = 1 for
some y ∈ Y , T (1) = 1.
(ii) Since R is isomorphic to Const({y}), which is a 2-connected topology, by (i) we
get that π(1) = 1 and π(a) = aπ(1) = a1 = a, which corresponds to a.
(iii) We consider F = Const({x}) and we use (ii).

Proposition

If X is an inhabited set, x ∈ X , F0 ⊆ F∗(X ), and π ∈ Char∗(
∨

F0) such that π(f0) =
f0(x), for every f0 ∈ F0, then π = πx .
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Proposition

Let T ∈ Hom(F ,G) be an injection, π ∈ Char∗(F∗), and f ∈ F∗.

(i) If f ,T (f ) are weakly normable, then ||T (f )||w = ||f ||w .

(ii) If f ,T (f ) are normable, then ||T (f )|| = ||f ||.
(iii) If f is normable, then sup{|π(f )| | π ∈ Char∗(F∗)} exists and

||f || = sup{|π(f )| | π ∈ Char∗(F∗)}.

Iosif Petrakis Constructive Comfort-compactness



Theorem (The character extension-theorem (CET))

Let (X ,F ), (Y ,G) be Bishop spaces, F = F∗, and Φ a base for F which includes
Const(X ) and it is closed under addition and multiplication. If π : Φ → G is a ring
homomorphism, there exists a unique homomorphism Π : F → G which extends π.

Corollary

Let (X ,F ) be a Bishop space such that F = F∗, and Φ a base for F which includes
Const(X ) and it is closed under addition and multiplication. If π : Φ → R is a ring
homomorphism, there exists a unique character Π : F → R of F which extends π.
Moreover, if there exists some x ∈ X such that π(θ) = θ(x), for every θ ∈ Φ, then
Π = πx .

Proof.

If Y is an inhabited set, then Const(X ) is ring-isomorphic to R, and we use the CET.
Since πx also extends π, by the uniqueness of the character extension we get that
Π = πx .

Corollary

Let (X ,
∨

F0) be a Bishop space such that F0 ⊆ F∗(X ), and Φ ⊆
∨

F0 such that Φ
includes the sets Const(X ) and F0, and it is closed under addition and multiplication.
If (Y ,G) is a Bishop space and π : Φ → G is a ring homomorphism, there exists a
unique homomorphism Π :

∨
F0 → G which extends π.

Proof.

By the second base theorem Φ is a base for
∨

F0 and we use the CET.
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F ⊕ G := {
n∑

i=1

(fi ◦ πX )(gi ◦ πY ) | n ∈ N, fi ∈ F , gi ∈ G , 1 ≤ i ≤ n}.

Proposition

Let F = (X ,F ),G = (Y ,G) be Bishop spaces, π ∈ Char∗(F ), and $ ∈ Char∗(G).
The function π ⊕$ : F ⊕ G → R defined by

(π ⊕$)(
n∑

i=1

(fi ◦ πX )(gi ◦ πY )) :=
n∑

i=1

π(fi )$(gi ),

is a non-zero ring homomorphism.
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Corollary

(i) There exists a unique element of Char∗(F × G) which extends π ⊕$.
(ii) If π = πx , for some x ∈ X , and $ = $y , for some y ∈ Y , their unique character
extension on F × G is fixed and (x , y) is a fixing point for it.

Proof.

(i) Since F⊕G is a base for F×G , and since π⊕$ : F⊕G → R is a ring homomorphism,
there is a unique character extension of π ⊕$ on F × G .
(ii) If Π(x,y) is the fixed character on F × G fixed by (x , y), then

(πx ⊕$y )(
n∑

i=1

(fi ◦ πX )(gi ◦ πY )) =
n∑

i=1

πx (fi )$y (gi )

=
n∑

i=1

fi (x)gi (y)

=
n∑

i=1

(fi ◦ πX )(x , y)(gi ◦ πY )(x , y)

= [
n∑

i=1

(fi ◦ πX )(gi ◦ πY )](x , y)

= Π(x,y)(
n∑

i=1

(fi ◦ πX )(gi ◦ πY )).

What we want to show follows now from Corollary 0.4.
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Proposition

Suppose that (X ,F ), (Y ,G) are Bishop spaces, Π ∈ Char(F×G), and that πΠ : F → R
and $Π : G → R are defined, for every f ∈ F and g ∈ G, respectively, by

πΠ(f ) = Π(f ◦ πX ), $Π(g) = Π(g ◦ πY ).

(i) πΠ ∈ Char(F ) and $Π ∈ Char(G).

(ii) If Π ∈ Char∗(F × G), then πΠ ∈ Char∗(F ) and $Π ∈ Char∗(G).

(iii) If Π ∈ Char∗∗(F × G) and (x , y) ∈ X × Y fixes Π, then πΠ ∈ Char∗∗(F ),
$Π ∈ Char∗∗(G ) such that x fixes πΠ and y fixes $Π.

(iv) If F , G are pseudo-compact and Π ∈ Char∗(F × G), then Π = πΠ ⊕$Π, and if
π ∈ Char∗(F ), $ ∈ Char∗(G) such that Π = π ⊕$, then π = πΠ and $ = $Π.

All results on the characters of the finite product of Bishop topologies extend to the
case of the countable product of pseudo-compact Bishop topologies.
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D ⊆ X is F -dense in X , if for all f , g ∈ F , such that f|D = g|D , then f = g .

A ⊆ X is inhabited, we ⊆ X inhabited is embedded in X , if ∀g∈F|A∃f∈F (g = f|A) i.e.,

if F|A = {f|A | f ∈ F}.

Proposition

If F = (X ,F ) is a pseudo-compact space and A ⊆ X is inhabited, the following are
equivalent.
(i) A is F -dense and embedded in X .
(ii) For every π ∈ Char∗(F ), the mapping π|A : F|A → R, defined by π|A(f|A) = π(f ),
for every f ∈ F , is in Char∗(F|A).

Proposition

Let F = (X ,F ) be a pseudo-compact space and A ⊆ X inhabited. If $ ∈ Char∗(F|A),
the map $∗ : F → R, where $∗(f ) = $(f|A), for every f ∈ F , is in Char∗(F ).
Moreover, if a ∈ A fixes $, then a fixes $∗.

Proposition

Let F = (X ,F ) be a pseudo-compact space and A ⊆ X inhabited. If $1, $2 ∈
Char∗(F|A) such that $1(f|A) = $2(f|A), for every f ∈ F , then $1 = $2.
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U(f ) := {x ∈ X | f (x) > 0}

A is F -closed ↔ ∀x∈X (∀f∈F (f (x) > 0→ ∃a∈A(f (a) > 0)→ x ∈ A),

A := {x ∈ X | ∀f∈F (f (x) > 0→ ∃a∈A(f (a) > 0)}.

Definition

Let F be a pseudo-compact topology on some X that separates the points of X , and
A ⊆ X inhabited. The notions A is c-closed and the c-closure of A are defined
respectively by

A is c-closed ↔ ∀x∈X ($x |A ∈ Char∗0 (F|A)→ x ∈ A),

c(A) := {x ∈ X | $x |A ∈ Char∗0 (F|A)},

where
Char∗0 (F|A) := {$|F0(A) | $ ∈ Char∗(F|A)},

F0(A) := {f|A | f ∈ F},

and $x |A : F0(A)→ R is defined by

$x |A(f|A) = $x (f ) = f (x),

for every f ∈ F .
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Proposition

Let F be a pseudo-compact topology on X that separates its points and A,B ⊆ X
inhabited.
(i) A ⊆ c(A).
(ii) A is c-closed if and only if c(A) = A.
(iii) If A,B ⊆ X are c-closed and A ∩ B is inhabited, then A ∩ B is c-closed.
(iv) A ⊆ B → c(A) ⊆ c(B).

Theorem

If F is a pseudo-compact topology on X that separates its points and A ⊆ X is inhabited,
then A is embedded in c(A) and A is F|c(A)-dense in c(A).

Corollary

If F is a pseudo-compact topology on X that separates its points and A ⊆ X is inhabited,
then c(A) is the least c-closed set including A.
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Corollary (CLASS)

Let F be a pseudo-compact topology on X that separates its points and A ⊆ X inhab-
ited.
(i) c(A) ⊆ A.
(ii) If A is F -closed, then A is c-closed.

Corollary

c(0, 1) = [0, 1].

Proof.

It is immediate that (0, 1) is Cu([0, 1])-dense in [0, 1] and embedded in [0, 1], hence
π1|(0,1) ∈ Char∗(B(0, 1)). Hence π1|(0,1)(f|(0,1)) = π1(f ) = f (1), for every f ∈
Cu([0, 1]) i.e., 1 ∈ c(0, 1). Similarly we show that 0 ∈ c(0, 1).
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A deficiency of Comfort-compactness is that one needs the axiom of choice to show
that such a Comfort-compact space is pseudo-compact (Feferman 1965: it is
consistent with ZFC that every ultrafilter on N is fixed, and N is not pseudo-compact.).

There is a bijection between maximal ideals of C∗(X ) and its characters.

We suppose that our space is already pseudo-compact.

Definition

If F is a Bishop topology on some inhabited set X that separates the points of X , we
call F c-compact, or Comfort-compact, if it pseudo-compact and

∀π∈Char∗(F )∃x∈X (π = πx ).
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Proposition

If F = (X ,F ) is a c-compact Bishop space and A ⊆ X is inhabited, then F|A is
c-compact if and only if A is c-closed.

Proof.

Suppose that A is c-compact, x ∈ X and $ ∈ Char∗(F|A) such that ∀f∈F ($(f|A) =
f (x)). If a ∈ A is a fixing point for $, then ∀f∈F ($(f|A) = f|A(a) = f (a)), therefore
∀f∈F (f (a) = f (x)). Since F separates the points of X , we have that a = x , hence
x ∈ A. If A is c-closed, then if $ ∈ Char∗(F|A), the map π : F → R, where
π(f ) = $(f|A), for every f ∈ F , is in Char∗(F ). Since F is c-compact, there exists
some x ∈ X that fixes π, therefore ∀f∈F (π(f ) = $(f|A) = f (x)). Since A is c-closed,
x ∈ A, hence ∀f∈F ($(f|A) = f|A(x)). Since x ∈ A fixes $ on every element of the
subbase of F|A, x fixes $.
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Theorem (countable Tychonoff theorem for c-compact Bishop spaces)

If Fn = (Xn,Fn) is a c-compact Bishop space, for every n ∈ N, the product
∏

n∈N Fn =
(
∏

n∈N Xn,
∏

n∈N Fn) is c-compact.

Proof.

The countable product of pseudo-compact topologies that separate the points of the
corresponding spaces is pseudo-compact and separates the points of the product space.
If $n ∈ Char∗(Fn), for every n ∈ N, the function

⊕
n∈N$n :

∏
n∈N Fn → R defined by⊕

n∈N
$n

 m∑
j=1

nj∏
k=1

(fk,j ◦ πk )

 :=
m∑

j=1

nj∏
k=1

$k (fk,j ),

and then uniquely extended to the product topology according to the extension theorem,
is in Char∗(

∏
n∈N Fn). Every element of Char∗(

∏
n∈N Fn) is generated by a function

defined on the base
⊕

n∈N Fn as above. Since the space Fn is c-compact, for every
n ∈ N, we get that

∏
n∈N Fn is c-compact.
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Proposition

Let F = (X ,F ) be a c-compact Bishop space, G = (Y ,G) a Bishop space and T : F →
G a non-zero ring homomorphism. There exists a mapping τ : Y → X ∈ Mor(G,F)
such that T (f ) = f ◦ τ , for every f ∈ F .

Theorem (Banach-Stone theorem for c-compact spaces)

Let F = (X ,F ) and G = (Y ,G) be c-compact Bishop spaces. If the rings F ,G are
isomorphic, then the Bishop spaces F ,G are isomorphic.

Theorem

Suppose that F = (X ,F ) is a c-compact space and D ⊆ X is F -dense and embedded
in X . If G = (Y ,G) is c-compact and h : D → Y ∈ Mor(F|D ,G), there exists a unique

mapping h̃ : X → Y ∈ Mor(F ,G) such that h̃|D = h.
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Bishop proved in a highly technical way the c-compactness of a compact metric space,
based on the theory of normed spaces.

Proposition (Bishop)

Let K be a compact metric space, and Γ the set of all non-zero bounded multiplicative
linear functionals on Cu(K ,F), where F = R, or C. Then every element of Γ is of the
form πx for some x ∈ K.

Proposition

If (X , d) is a compact metric space, then ker(π) is a located subset of Cu(X ), for every
π ∈ Char∗(Cu(X )). Moreover, there is at most one x ∈ X such that dx ∈ ker(π), and
if there is x ∈ X such that dx ∈ ker(π), then π = πx .
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Theorem

Let a, b ∈ R such that a < b, and let id[a,b] be the identity on [a, b].
(i) Cu([a, b]) =

∨
id[a,b].

(ii) Cu([a, b]) is c-compact.

Proof.

(i) Let φ : [a, b]→ R ∈ Cu([a, b]). Since φ([a, b]) ⊆ I , where I is some compact interval
of R, by Bishop’s version of the Tietze extension theorem there is some φ̃ ∈ B(R) which
extends φ. Hence φ = φ̃ ◦ id[a,b] ∈

∨
id[a,b].

(ii) If π ∈ Char∗(Cu([a, b])), let π(id[a,b]) = w . Since a ≤ id[a,b] ≤ b, we have that

a = π(a) ≤ w ≤ π(b) = b, therefore

π(id[a,b]) = w = id[a,b](w).

By (i) we get that π = πw .
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Definition

The Hilbert cube I∞ is the Bishop space

I∞ := (I∞, (B(R))N|I∞ ),

I∞ := {(xn)∞n=1 ∈ l2(N) | ∀n∈N(|xn| ≤
1

n
)},

l2(N) := {(xn)∞n=1 ∈ RN |
∞∑

n=1

x2
n <∞}.

Corollary

(i) The Hilbert cube is isomorphic to IN
(−1)1

, where I(−1)1 = ([−1, 1],Cu([−1, 1]).

(ii) The Hilbert cube is a c-compact Bishop space.
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Proposition

If (X , d) is a compact metric space, then U(X ) = (X ,Cu(X )) is topologically embedded
into the Hilbert cube.

Remark

The topological embedding e of a compact metric space X into the Hilbert cube is in
Lip(X , [0, 1]N, 1).

Consequently, e is uniformly continuous. This follows also directly from Bridges’s
backward uniform continuity theorem.

Next we show that a compact space with the uniform topology is a c-compact space
i.e., c-compactness generalizes metric compactness.

Comfort didn’t show this result.
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Definition

If (X , d), (Y , ρ) are metric spaces, a mapping f : X → Y is called hyperinjective, or a
hyperinjection, if for any two compact subsets A,B of X with inf{d(a, b) | a ∈ A, b ∈
B} > 0, there exists r > 0 such that ρ(f (a), f (b)) ≥ r , for every a ∈ A and b ∈ B.

Proposition (Bishop-Bridges)

Let (X , d), (Y , ρ) be metric spaces and let f : X → Y be uniformly continuous and
hyperinjective. If X is compact, then the inverse map g : f (X ) → X is uniformly
continuous and hyperinjective on f (X ), and f (X ) is compact.

Lemma

The topological embedding e of a compact metric space X into the Hilbert cube is
hyperinjective.

Theorem

If (X , d) is a compact metric space, the Bishop space (X ,Cu(X )) is c-compact.
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Proposition

Let F = (X ,F ) be a a Bishop space such that F separates the points of X .
(i) F is pseudo-compact space if and only if it is topologically embedded in the prod-
uct space of closed intervals

∏
f∈F Mf , where Mf = ([−Mf ,Mf ],Cu([−Mf ,Mf ]) and

Mf > 0 is a fixed bound for f ∈ F .

(ii) If F =
∨

F0, then F is pseudo-compact space if and only if it is topologi-
cally embedded in the product space of closed intervals

∏
f0∈F0

Mf0 , where Mf0 =

([−Mf0 ,Mf0 ],Cu([−Mf0 ,Mf0 ])) and Mf0 > 0 is a fixed bound for f0 ∈ F0.
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Definition

Let F = (X ,F ) be a pseudo-compact Bishop space such that F separates the points
of X and let e be the topological embedding of F in

∏
f∈F Mf .

The Stone-Čech c-compactification of F is the Bishop space βF = (βX , βF ), where
βX = c(e(X )), the c-closure of e(X ), and

βF = (
∨

f∈F

prf )|c(e(X )).

If F0 = (X ,
∨

F0) is a pseudo-compact Bishop space such that
∨

F0 separates the
points of X and e0 is the topological embedding of F0 in

∏
f0∈F0

Mf0 , the Stone-Čech c-

compactification of F0 is the Bishop space βF0 = (βX , β
∨

F0), where βX = c(e0(X ))
and

β
∨

F0 = (
∨

f0∈F0

prf0
)|c(e0(X )).
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Proposition

(i) The Stone-Čech c-compactification βF = (βX , βF ) of of a pseudo-compact Bishop
space F = (X ,F ) with separating topology F is c-compact.
(ii) The Stone-Čech c-compactification βF0 = (βX , β

∨
F0) of of a pseudo-compact

Bishop space F0 = (X ,
∨

F0) with separating topology
∨

F0 is c-compact.

Proposition

Suppose that F = (X ,F ) is a pseudo-compact space and F is separating.
(i) If G = (Y ,G) is a c-compact space and h ∈ Mor(F ,G), there exists a unique
hβ : βX → Y ∈ Mor(βF ,G) such that (hβ)|X = h, where the expression (hβ)|X = h

is short for hβ ◦ e = h and e is the topological embedding of F in βF .
(ii) For every f ∈ F there exists a unique f β ∈ βF such that (f β)|X = f , where the

expression (f β)|X = f is short for f β ◦ e = f .
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Definition

Let F = (X ,F ) be a pseudo-compact Bishop space such that F separates the points of
X . A c-compactification of F is a pair (G, ε), where G = (Y ,G) is a c-compact space
and ε : X → Y is a topological embedding of F into G such that ε(X ) is G -dense in
Y .

Proposition (Uniqueness of Stone-Čech c-compactification)

Let F = (X ,F ) be a pseudo-compact Bishop space such that F separates the points
of X . If (G, ε) is a c-compactification of F such that for every c-compact Bishop
space H = (H,Z) and θ : X → Z ∈ Mor(F ,H), there exists a unique mapping
θG : Y → Z ∈ Mor(G,H) such that (θG )|X = θ i.e., θG ◦ ε = θ, then there exists
i : βX → Y an isomorphism between βF and G such that i ◦ e = ε.
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