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Gray code

» (Binary-reflected) Gray-code is a coding
of natural numbers.

» The Hamming distance between adjacent
numbers is always 1.

» We consider expansion of the unit
interval [-1, 1] based on Gray-code.

| Binary | Gray |
0 0 0
1 1 1
2 10 11
3 11 10
4 100 110
5 101 111
6 110 101
7 111 100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000
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Pure Gray-code for real number

» We use {1(= —1),1} instead of {0,1}. 1
14+ 2x —1<x<
> tent(x) = { 1 i_ 2x EO <; S_l)O)
1 (x<0)
» P(x)=¢{ L (x=0) . Y
1 (x>0 tent(x)
» The pure Gray code ¢(x) € {1,1,1}* of x is defined as the

itinerary of the tent function. That is, p(x)(n) = P(tent"(x))
(n=0,1,...)
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Gray-code (gray for 1, black for 1, green ball for L)
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the Scott topology of the domain {L,1,1}*. (equal to the
product of the topology on T = { L, 1,1} generated by

{11 {1}})
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Gray-code (gray for 1, black for 1, green ball for L)

ned —.mé.—.—.é.—.ué.—..—.;‘r—.ué.—..—.éuﬂéo——n
n=3 - L — N H N
n=2 —_—
n=1 1
B
n=0 : ‘ ; ; e
TS NS NS SRS U NS SN N
-1 -1/2 0 172 1

» The pure Gray-code ¢(x) of a dyadic rational x contains one
L and, after that, the sequence is always 11 .
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Gray-code (gray for 1, bI ck for 1, green ball for 1)
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» The pure Gray-code ¢(x) of a dyadic rational x contains one
L and, after that, the sequence is always 11 .

» We mainly consider Gray-code which is a little redundant in
that all the three codes sall¥ for a € {1,1, L} for dyadic
rationals.
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» 1 means undefinedness and it is not an ordinary character.
One cannot read or write a L.

> If one tries to read a 11-sequence from left to right, one
cannot access the subsequence after L.

» IM2-machine is a machine which has two heads on each
input/output tape to acccess 11-sequences.

» With the two heads, one can leave a cell undefined and go
ahead, and fill/read it later.

» |f there is an undefined cell, then one cannot make another
skip until the undefined cell is filled. In this way, it is
guaranteed to have at most one unfilled cell.

> If a cell is left undefined eternally, then it is L in the infinite
11 -sequence.
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Gray expansion

. 0 9 2/3 3/4 3/4 1
" I 1 " n 1l
To TIT% 117" 1 1111117 17’
UV \/ \/ \/ \/ A
TITeem 111 11T 111 111 111
11 (=[-1,-1/2)) (=[-1/2,0]) 11 (=[0,1/2]) 1T (=[1/2,1])
7T 1 1 T
[-1,1]

» Each node is denoting an interval, which is shrinking
according to the input.
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IM2-machine input/output._

states for Gray. code
111 1111 11

AR

TIT ITL1 T11 TLITT11 T1AT TIT 11

AVEN/ANZEN

TL1

E/

%\/&/\/\/\/&%\/

IT 117 1141 111 11T 171 1741 111

AR AN

111
D <

ENPEN TN

11
\

Two states G (normal state) and

» LRj, LRy : fill the next cell

v

v

v

H (auxiliary state, red in picture).

withlorl. G=G

U(undefined): skip one cell and fill the next cell with 1. G=H
D(delay): fill yet next cell with 1. H=H
Fing, Finy: fill the skipped cell with 1 or 1. H = G.
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IM2-machine input/output states for Gray code

T1T\”’/1 17" T mT”
10 11T © 0 101T? 17"

VALAVAVAVEVALA BVAVAVLAAVAL

TL1l TT1 TLITT11 TiLT TIT L1TT 11T 1141 111 11T 171 1741 111

N A A EaY,

H|/

11 111 11 11 111
> u <
T L 1

> Finite states correspond to signed digit intervals.
» Limits of this finite states corresponds to ideal completion.

> It is a domain representation of the unit interval [Blanck].
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IM2-machine = skip and fill later

» It is nondeterministic depending on
which head is used when both of the
O

<0
heads have values. %
> IM2-machine algorithms are directly %&
executable in committed choice logic Tmput/
programming languages. IM2-Machine

(two-heads I/0)

» We express such a manipulation of

11-sequence in Haskell syntax. : pu\

» Note that L is a valid data of type Int Q
in Haskell, and [Int] contain ]
11 -sequences.
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Examplel: Signed digit to Gray-code conversion

171
|
N Wh

itog(—1:xs)=1:itog xs
itog(1:xs) =1:nh (itog xs)
itog(0:xs) =c:1:nhds where c:ds = itog xs

PRI DU P PUSSES P P NI S—

omm— O — O— | — | C— | — | — G—
: 3 ‘ |

1 1/2 0 172 1
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Examplel: Signed digit to Gray-code conversion
itog(—1:xs)=1:itog xs
itog(1l:xs) =1 :nh (itog xs)
itog(0:xs) =c:1:nh ds where c:ds = itog xs
nh(s:ds) = —s:ds

[PPSR S WS NS PP W P o—s-!

n=4 : : :
n=3 — :
n=2 —_— R —
n=1 i -
n=0
-1 -1/2 0 1/2 1

> It is a correct Haskell program.

> itog([0,0,..]) does not output the first digit because it is
1.

» tail(itog([0,0,..])) outputs [1,1,1,1,...

12/36



Example2: Gray-code to signed digit conversion

gtoi(1l:xs) =1:gtoi(nh xs)
gtoi(1:xs) = —1:gtoi xs
gtoi(c:1:xs)=0:gtoi(c: nh xs)

1
1

> It is not correct as a Haskell program in that when the
argument is [1,1,1,1,...], Haskell tries to evaluate the first
digit and it starts a non-terminating computation and fails to
apply the third rule.

> It is correct as equations, and one can execute it as
term-rewriting rule.

13 /36



Example3: Average function

1:as)(I:bs) = 1:avasbs
tas) (1:bs) = 1:avasbs
tas) (1:bs) = c:1:nhecs
as)(I:bs) = c:1:nhecs
:1:as)(b:1:bs) = c:1
1:T:as)(1:1:bs) = 1:av
1:1:as)(1:1:bs) = 1:av
1:1:as)(I:b:1:bs) =
1:1:as) (1:b:1:bs) =
T:as)(b:1:1:bs) = 1:
:I:as)(b:1:1:bs) = 1
a:l:as)(b:1:1:bs) =
a:l:as)(b:1:1:bs) =

where c : cs = av as (nh bs)
where c : cs = av (nh as) bs
:nh cs where c: cs = av (a:nh as) (b:nh bs)

(a:1:as)(1:nhbs)

(not a:1:as) (1:nhbs)

:1:av (not a: nh as) (not b: nh bs)
:1:av (a:nh as) (not b : nh bs)

e

o

v(l:nhas) (b:1:bs)

av (not a : nh as) (not b : nh bs)
av (not a : nh as) (b: nh bs)

(

tav (1 :nh as) (not b:1:bs)
11
B

Correct program (equality of the both sides, covering over all
the patterns, productivity check).

How can we formally prove its correctness?

» What is the theory of computation over 11-sequences.

Our goal is to study coalgebra of 11-sequences and consider
logic to manipulate real number through Gray-code, and
extract this kind of programs from proofs.
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1. Gray code of real number

2. Algebra/coalgebra of (pre-)Gray code

3. Program extraction based on pre-Gray code
4. Pure Gray code
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Algebra and coalgebra of ordinary sequences.

» Two constructors cons, (a € {1,1}) meaning to prepend a, in
addition to nil denoting the empty sequence.

» The term cons;(cons;(consg(consy nil))) denotes 1111:

nil denotes €,

(consy nil)  denotes 1,

(consi(consy nil)) denotes 11,
(consy(consg(consy nil))) denotes 111,

(consy (consy(consi(consy nil)))) denotes 1111.

> It is a free algebra.

» For coalgebraic treatment, we read an infinite sequence of
constructors from left to right.

» Starting with 1“ on an infinite tape, cons, is an operation to
fill the leftmost L with a.
19 5119 51119 - 1111% — 11111%
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Algebra and coalgebra of 11 -sequences.

>

Finite 11-sequence: an infinite sequence with 1“ at the end
and at most one L before that.
We use two constructors ins, (a € {1,1}) meaning to insert a
as the 2nd character, in addition to cons, (a € {1,1}) and nil
(meaning L%).
The term insy (insg(consz (insy nil))) denotes 1111 1:
nil denotes 1@,
(insy nil)  denotes 111,
(consi(insy nil)) denotes 1L
(insg(consz(insy nil)))  denotes ﬂJ_lJ_“
1L

(insy (insg(consg(insy nil)))) denotes 11

(consj(consi(consz(insy nil)))) also denote the same sequence.

> ins, o cons, = consy, o cons,. It is not a free algebra.

When read from left to right, one can prove that ins, is an
operation to fill the 2nd L from the left with a.
19 5 1119 - 1111% - 1111% - 111111¥
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Algebra and coalgebra of Gray code

» We need to restrict so that only 11% appear after L.
» We consider mutually recursively defined subalgebras G and H
of the algebra of 11 -sequences

| cons, (a € {1,1}) | ins | insy | nil
G|LR,:G—G U:H—=G|nilg: G
H| Fin,: G—H D:H—H nily: H

> The carrier set of G is the set of finite Gray-codes.
> Example: (insi(ins7(consz(insy nil)))), (consi(consy(consz(insy nil)))).
U(D(Finz(U(nily)))) and LR7(LR1(LR5(U(nilw))))
both are terms of type G representing 1111.11%.
» Their meanings as left-to-right operation on 1_1-sequences are
» LR,:111% — 11al¥
»  U:I11®+—11111%
> Fin, : 110171% 5 T1a1T1%
> D:111111%+— 1111111
» We call an infinite term of type G a pre-Gray code.
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G and H as codings of [-1, 1]

> < . = > ¢
" H
’ ﬁ
< <= >
G G G G
- g

LE

-1 -1/2 0 12 1 -1 -1/2 0 172 1

We study through these mutually-recursively defined codes of [-1, 1].
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Meaning of Gray code
» For each constructor C, define fc : [-1,1] — [-1,1] as

x—1 x+1
frin,(X) = a = fir,(—x), (1)
2 2
X

fu(x) = % folx) = 5. (2)

» We define the meaning of a finite term v = [a1 ... a,]
(= a1(az2...(an nily))) of G as the interval

far (far (- fay (1) )

» We define the meaning [v]g of pre-Gray code v = [a1, a2, .. ]
as the unique real number in the intersection of the intervals
denoted by its finite truncations.

fLRa(X) = —a

I[p]]G = ﬂ fal(faz(' e fan(]I) Tt ))
n=1

» Similarly for [v]n and [v].
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1. Gray code of real number

2. Algebra/coalgebra of (pre-)Gray code

3. Program extraction based on pre-Gray code
4. Pure Gray code
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Extraction of real number algorithms

» We represent Gray-code as pre-Gray code, that is, as an
infinite sequence of constructors of G and H.

» We formalize pre-Gray code in TCF (the Theory of
Computable Functionals) by means of coinductive definitions.
In TCF, infinite structures like pre-Gray code are treated as
cototal ideals.

» We use the proof assistant system Minlog, which is an
implementation of TCF, and make a constructive proof of a
formula. Minlog system will extract from the proof a program
as a term in an extension TT of Godel's T involving higher
type recursion and corecursion operators. We do not go into
the detail.

> | show the formulas to be proved and the extracted program
as a readable stream-transforming program.
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Predicates “G(x) and “H(x)

» We define the predicate “°/(x) saying that x has a signed digit
representation as the greatest fixed point of a strictly positive
operator.

» We define the predicates “°G(x) and “°H(x) saying that x has
a G term (i.e., a pre-Gray code) and H term, respectively, as
the greatest fixed points of a mutually-defined strictly positive
operator.

» We use the following coalgebraic data type in programs
I=C{1,0,1} x1

G=LR{I,1}xG + UH,
H=Fin {I,1} xG + D H.
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Signed digit to Gray-code conversion
Theorem V2¢(°°/(x) — °G(x)).
Lemma V2°(3,%l (ax) — ©°G(x)), V2(3,%l(ax) — “°H(x)).
Extracted Program: itoPreG: |1 — G, g: {-1,1} x| = G,
h: {-1,1} x1 = H
itoPreG(v) =g(1,v)
g(b, C_1(v)) = LR—(
g(b,Ci(v)) =LRu(g(—1,v)),  h(b,Ci(v
g(b, Co(v)) = U(h(b, )), h(b, Co(v

Recall the original Gray-code program we had is
itog(—1:xs) = —1:itog xs
itog(1l:xs) =1:nh (itog xs)
itog(0:xs) =c:1:nhds where c:ds = itog xs
nh(s:ds) = —s:ds

Through some program transformation, we can show

= Finy(g(1,v)),
= D(n(b, v)).

~— ~—

)
)

preGtoG(itoPreG(v)) = itog(v)
for preGtoG a program to transform a pre-Gray code to Gray code

preGtoG(D:p) = a:0:x where a:x = preGtoG(p)

g(1,v));  h(b,C1(v)) = Fin_»(g(-1,v)),
(-1
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Gray-code to Signed digit conversion
Theorem V2°¢(“°G(x) — °°/(x)).
Lemma V2¢(3,(°°G(ax) V “°H(ax)) — “Ix).
Extracted Program: preGtol : G — |,
[f,g]: {-1,1} x G+ {—-1,1} xH — |
preGtoI(v) = £(1,v)
£(a,LRy(p)) = Cam(f(—a+b,p)),  g(a,Finy(p)) =
£(a,U(q)) = Colg(a,a)), g(a,D(q)) =
Recall the original Gray-code program we had is
gtoi(1l:xs) =1:gtoi(nh xs)
gtoi(—1:xs) = —1:gtoi xs
gtoi(c:1:xs)=0:gtoi(c:nh xs)
Through some program transformation, we can show

preGtoI(v) = gtoi(preGtoG(v))
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Average

Lemma V(G (—x) — “Gx), ¥2°(“H(—x) — “Hx).

Extracted Program: ming: G — G and minh: H -+ H

minf(LR,(p)) = LR_a(p), minh(Fin,(p)) = Fin_a(p),
minf(U(q)) = U(minh(q)), minh(D(gq)) = D(minh(q)).

Lemma V1¢(“Hx — ©Gx), V1¢(“Gx — “Hx).

Extracted Program: htog: H — G and gtoh: G — H:

htog(Fin,(p)) = LRa(ming(p)),  gtoh(LRa(p)) = Fina(ming(p)),
htog(D(q)) = U(q), gtoh(U(q)) = D(q)
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xt+y _ X'+y'+i
Lemma A VX yECOGHX/ y! GCOGEI ( 2 4 )

Extracted Program: lemA: G x G — {—2,-1,0,1,2} xG x G

lemA(LRL(p), LRy (p')) = (a+a',mult(—a,p),mult(—a’,p’)),
lemA(LRa(p), U(q)) = (a,mult(—a,p), htog(q)),
lemA(U(q), LRa(p)) = (a,htog(q), mult(—a,p)),
lemA(U(q), U(q")) = (0, htog(q), htog(q)).

. Kty +j
x+y+i +d
Lemma B V¥ ccog T rccogTj = ),

Extracted Program: lemB: {—2,—1,0,1,2} x Gx G —
{-2,-1,0,1,2} x {~1,0,1} x G X G

lemB(i,LR4(p), LR (p)) = (I(a,2’,1),K(a,a’,1i),mult(—a,p), mult(
lemB(i,LR(p), U(q)) = (J(a,0,1),K(a,0,1),mult(—a,p), htog(q
lemB(i, U(q), LRa(p)) = (J(0,a,1),K(0,a,1),htog(q), mult(—a,p
lemB(i,U(q), U(q")) = (3(0,0,1),K(0,0,1), htog(q), htog(q)).
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Lemma C V2T, | cooeTi(z = *HH) —
COG(Z)) vnc(ar yeCOGH (Z — X+A)1/+i) — COH(Z)).

Extracted Program:1lemCg: {—2,—1,0,1,2} x G x G — G,
lemCh: {—2,—1,0,1,2} x G x G — H.

lemCg(i,p,p’) = let (i1,d, p1,pi) = lemB(i,p,p’) in
case (d) of
0 — U(lemCh(i,p1,p}))
a — LRa(lemCg(—ai,mult(—a,p;),mult(—a,p}))),

lemCh(i,Pap/) = Iet (i17d7P1aP11) = 1emB(i’p7p/) in
case (d) of
0 — D(1lemCh(i, p1,p}))

a — Finy(lemCg(—a * i,mult(—a, p1),mult(—a,p}))).
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Theorem V¢ (“G(x) — ©G(y) — “G(*F¥)).

Extracted Program: average: G x G — G

average(p,p’) = lemCg(LlemA(p,p'))

Recall the orlglnal Gray-code program we had is
av (0:as) (0:bs) = O:av as bs

av (1:as) (1:bs) = 1:av as bs

av (0:as) (1:bs) = c:1:nh cs where c:cs = av as (nh bs)

av (1:as) (0:bs) = c:1:nh cs where c:cs = av (nh as) bs

av (a:1:as) (b:1:bs) = c:1:nh cs where c:cs = av (a:nh as) (b:nh bs)

av (a:1:0:as) (0:0:bs) = O:av (a:l:as) (1:nh bs)

av (a:1:0: : = 1:av (not a:1:as) (1:nh bs)

av (a:1:0: = 0:1:av (not a:nh as) (not b:nh bs)
av (a:1:0: = 1:1:av (a:nh as) (not b:nh bs)

av (0:0: :av (1:nh as) (b:1l:bs)

av (1:0: :av (1:nh as) (not b:1:bs)

av (0:a:1: 0:1:av (not a:nh as) (not b:nh bs)

av (1:a:1: :
It seems I|ke a non-equivalent program. Pre-Gray code is redundant
and there are many different ways to output the same Gray-code.

1:1:av (not a:nh as) (b:nh bs)
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1. Gray code of real number

2. Algebra/coalgebra of (pre-)Gray code

3. Program extraction based on pre-Gray code
4. Pure Gray code
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Pure-Gray code

» We studied algorithms based on (a bit redundant) Gray-code
rather than pure Gray-code. Gray-code allowed all the
increasing sequences in the domain of finite pre-Gray codes.

» However, we are interested in Gray-code because it is not
redundant.

» Can we input/output pure Gray-code?

WA

TITTTLL 101 TLIT T TIAT T

\/\%\

TL1

I

1L 111 14T 171 111 111

bR

1 1J_1 in
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Pure-Gray code

» We studied algorithms based on (a bit redundant) Gray-code
rather than pure Gray-code. Gray-code allowed all the
increasing sequences in the domain of finite pre-Gray codes.

» However, we are interested in Gray-code because it is not
redundant.

» Can we input/output pure Gray-code?
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Conversion from Gray code to pure-Gray code

» There is a conversion from Gray-code to Pure Gray-code.
T 1’ mtimt
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Conversion from Gray code to pure-Gray code

» There is a conversion from Gray-code to Pure Gray-code.
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Conversion from Gray code to pure-Gray code

» There is a conversion from Gray-code to Pure Gray-code.

TIT\W i T’
IS i) 1”1t 1"

» We extract this conversion from a constructive proof.
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Conversion from Gray code to pure-Gray code

» We define variants I", A’ of the operators I, A by

FX,Y) ={y | FexTaly = —a*F Ay #0) VI (y =3Ay #£3) },

AX,Y) = {y | FexTaly =B Ay #0)VIoy(y =5 Ay #£3) }

> We define (M, N) := vx.v)(I"(X, Y), A(X, Y)).

> Proposition For cototal ideals p in G and x € 1

(“°M)"(p, x) <> ¢(p) is a pure Gray code of x.
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Extraction of the conversion from Gray to Pure Gray
Theorem Y2°(°G (x) — ©M(x)), V2¢(“H(x) — “N(x)).

Extracted Program: g: G — G and h: H — H, defined by (with
a for LR,)

g(a(1(p))) = a(g(1(p))) h(Fina(1(1(p)))) = D(a(Fina(1(p))))
g(a(1(1(p)))) = U(n(Fina(1(p)))) h(Fina(1(1(p)))) = Fina(g(1(1(p))))
g(a(1(1(@))  =ale(i(1(p))) h(Fina(1(U(q)))) = Fina(g(1(U(a))))
g(a(1(U(@))  =ale(1(U(a)))) h(Fina(1(p))) = Fina(g(1(p)))
g(a(U(a))) = a(g(U(a))) h(Fina(U(q))) = Fina(g(U(a)))
g(U(Fina(1(p)))) = U((Fina(1(p)))) h(D(Fina(i(p)))) = D(n(Fina(i(p))))
g(U(Fina(1(p)))) = a(e(1(1(p)))) h(D(Fina(1(p)))) = Fina(g(1(1(p))))
g(U(Fina(U(q)))) = U(h(Fina(U(q)))) h(D(Fina(U(q)))) = D(a(Fina(U(q))))
g(U(D(a))) = U(a(D(q))) h(D(D(q))) = D(a(D(q)))

» When f is a program which input/output Gray-code, gof is a
program which outputs pure Gray-code to pure Gray-code.

> Therefore, every program that handles Gray-code can be
converted to a program handling pure Gray-code.
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Concluding remarks

» What kind of benefits do we have with non-redundant codes?
Though it looks difficult to make efficient programs,

subspace is easier to imagine than quotient,

a program is directly operating on real number,

it is a direct working application of domain theory,

(I hope some practical meaning...)

vV vy vy

» We used representation of Gray-code in pre-Gray code, i.e.,
ordinary sequences and applied the standard theory of
coinduction and program extraction. Is there a theory that
manipulate Gray-code and 1.1-sequences more directly?
Ulrich’s talk is in that direction.
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Extraction of real number algorithms (Signed Digit case)
» For signed digit rep., we consider the strictly positive operator

. x'+d
®(X) = {x| FvexTae-10(x = —5—) }-

> We define “/ := vx®(X) as the greatest fixed point of ®.
» 9 satisfies the (strengthened) coinduction axiom. That is,

X CO(CIUX) = X C .

» Next, we consider an operator on pairs (v, x) where v is a
signed digit stream and x is a real number.

x'+d

O'(Y) = { (v, x) | 3 ey Falx = Av=Cy(V)))}

> As its greatest fixed point, we have a relation (“°/)" called the
realizability extension of “°/ between signed digit streams
v = [a1a2...] and real numbers x.

(N = vy d"(Y).

38/36



Proposition: (“/)"(v, x) <> x = [v]sp.
In order to extract a program that computes a function, for
example the average function, we prove

x4+ x'

Vo (C1(x) — ©l(x") — COI(T)).
Then, Minlog system will (by the Soundness theorem) extract

from the proof a function term f which satisfies

x4+ x'

2)‘

(“N (v, x) = (D', X)) = D (F(v, V),

From the above proposition, this term is a program for the
average function,
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Extraction of real number algorithms (pre-Gray code case)

» For the case of pre-Gray code, G and H are mutually
recursively defined cototal ideals. Therefore, we consider the
binary strictly positive operator

. x—1 X
r(Xa Y) = {y | Elxelea(y = —a 2 )\/ E|XEY( E) }a

. x+1 X
A(Xv Y) = {y ‘ E|X€XE|a(y =a 2 )\/ 3XEY( E)}
> Define (“°G,“H) := v(x,v)(I(X,Y), A(X, Y)) as the greatest
fixed point of (I', A).
» We have the (strengthened) simultaneous coinduction axiom.
(X,Y) C(F(©°GUX,“HU Y),A(®°G U X, HU Y))
— (X, Y) C (G, “°H).

» The realizability extension ((°G)", (“°H)") is a pair of binary
predicates on cototal ideals p in G or g in H (respectively)
and real numbers x.
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» For x € I and cototal ideals p in G and g in H

(“°6)"(p, x) © x = [ple.
(“H)"(9,x) < x = [p]n

» From a proof of

Xty

),

for exmaple, we obtain a program for the average, which
transforms pre-Gray codes of the arguments to a pre-Gray
code of the result.

VI (G (x) = G y) = G

» Coalgebras appearing in the program
I=C{1,0,1} x|

G=LR{1,1} xG + UH,
H=Fin {I,1} xG + D H.
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