Data Structures of the Future:
Concurrent, Optimistic, and Relaxed

Dan Alistarh
ETH Zurich / IST Austria

Why Concurrent?

[y
= o

| -
N)

Mar-71 Dec-76 Sep-82 Jun-88 Mar-94 Dec-99 Sép—OS Jun-11

10000 160
1
/‘T\'\“"‘VV\A 140
1000 |
: - 120
w l
S 100 1 - 100
()] I 80 §
r | i o
b @)
~ I
(@]
o |
(@] |
|
1
1
|

Simple: To get speedup on newer hardware.
Scaling: more threads should imply more useful work.

The Problem with Concurrency

Throughput of Lock-Free Queue
(Packet Processing)

—6.00E+06

5.00E+06

> $10000 /
machine

4.00E+06

3.00E+06

2.00E+06 /—\ —
—

1.00E+06

Throughput (Events/Second

0.00E+00

0 < Slooo / 30 40 50 60 70
machine Number of Threads

Concurrency can be very bad value for money.

Is this problem inherent?

Inherent Sequential Bottlenecks

Data structures with strong ordering semantics
» Stacks, Queues, Priority Queues, Exact Counters

Theorem: Given n threads, any deterministic, strongly ordered
data structure has an execution in which

a processor takes linear in n time to return.
[Ellen, Hendler, Shavit, SICOMP 2013]
[Alistarh, Aspnes, Gilbert, Guerraoui, JACM 2014]

This is bad news because of Amdahl’s Law

To get performance, it is critical to speed up
shared data structures.

Today’s Talk

Theorem: Given n threads, any deterministic, strongly ordered
data structure has an execution in which

a processor takes linear in n time to return.

[Ellen, Hendler, Shavit, SICOMP 2013]
[Alistarh, Aspnes, Gilbert, Guerraoui, JACM 2014]

How can we scale such data structures?

Theory <> Software <> Hardware

New Hardware Instructions!

New Data Structure Designs!

Lock-Free Data Structures 101

* Optimistic programming patterns
* Do not uselocks, but atomicinstructions(Compare&Swap)

* Blocking of one thread shouldn’t stop the whole system

* Lots of implementations: HashTables, Lists, Trees, Queues, Stacks, etc.

Memory location R;

void fetch-and-increment () {
int val;
do {

val = Read(R);
new_val = val + 1;

} while (! Compare&Swap (&R, val, new_val));
return val;

: 7

Example: Lock-free counter.

The Lock-Free Paradox

Memory location R;

void fetch-and-increment () {
int val;
do {

val = Read(R);
new_val = val + 1;

} while (! Compare&Swap (&R, val, new_val));
return val;

—
—
}

7

Example: Lock-free counter.

Counter Value R

xCX)

val 1 val 1

In theory, threads could starve in optimistic
lock-free implementations.

Use more complex wait-free algorithms.

Practice: this doesn’t always happen. Threads rarely starve.

Why?

Analyzing Lock-Free Patterns

e Stochastic Schedule

I’ [STOC14, Transact15].

* Ateach scheduling step, the next scheduled thread picked
from a distribution p = (py, Py, ---» P,,) With p; >0 for all i

Stochastic Scheduler

== | Lock-Free Algorithm | ==

Stochastic
Contention Game

Theorem 1: Under any stochastic scheduler,
any lock-free algorithm is wait-free with probability 1.
[Alistarh, Censor-Hillel, Shavit, STOC 14 / JACM 16].

Theorem 2: Under high contention, roughly

onein © (1/ norm,(p)) ops succeeds.
[Alistarh, Sauerwald, Vojnovic, PODC 15]

The Contention Game

Distribution

(P1) P2y «s Pp)

Location
R
Value = 2

READ (R) READ (R) READ (R)

CAS (R, old, old +1) CAS(R,old, old +1) CAS(R,old, old +1)

SUuccess SUccess SUCCess

Given arbitrary p, what is the stationary behaviour
of this system?

The Contention Game, Balls&Bins view

Distribution

READ (R)

(P1) P2y «s Pp) CAS (R, old, old + 1)

s for the Counter
B SuUuccess

How many balls does
between two wins?

How many
between two wins, on average?

The Result

Theorem. Given arbitrary distribution p and
algorithm, the followinghold:

e System latencyis
* Individual latencyis

Other game types covered, e.g.
Examples: obstruction-free algorithms.

1. Uniformp=(1/n, 1/n, ..., 1/n):
» System latency is © (sqrt n) [ACHS, JACM 16]
* Individual latency is© (n sqrtn)

2. Non-uniformp=(11, \O, ..., NO)
» System latency is (close to) constant
* Individual latency is either constant, or Ny 0

Moral: Under high contention, roughly one in sqgrt (n) ops succeeds.

Why does this graph look so bad?

Throughput (Events/Second)

6.00E+06

5.00E+06

4.00E+06

3.00E+06

2.00E+06

1.00E+06

0.00E+00

Throughput of Parallel Event Processing Queue

/“\. —

0 10 20 30 40 50 60 70
Number of Threads

!

What Happens at the Hardware Level?

Directory-based cache
coherence (Intel, AMD)

Thread 0

>

Req(R, ExcLusiv)

Resp(R)

Thread 1
INV)

R,
Failure - y

—

esp(R)

__Rea(Rr excLusive YT — ,‘/
7 7
CAS (R, old, new) Resp(R)

We waste time because ownership of R circulates without useful work!
Example: At 64 threads, only one in 8 message exchanges is useful.

13

F|X| ﬂg |t LeaSe/RE|eaSe [Alistarh, Haider, Hasenplaugh, PPOPP 2016]

CoreO

LeaseReq(

R, EX, time T)

Resp(R)

Q
<+
_

CAS (R, old, new)

SUccess

Red(R,
lDeIayed

Lease Interval T

%

Re\>

IeaseResp(R)

Lease
Interval T

\
Resp(R)

CAS (R, old, new)

Each transferresultsin
at least one useful
operation!

Doublingdown
on optimism!

14

Lease/Release, More Precisely

* Programmer optimistically leases variables for bounded time
* void Reglease(void* address, int data_size, timeT);
* void RegRelease(void* address, int data_size, time T);
* Leasetimein the order of 1000 cycles

* Performance penalty if leases expire before operation completion

e Usually occurs < 5% of the time

* Prototype in the MIT Graphite Processor Simulator
* Directory-based MESI Cache Coherence Protocol
* Protocol remains provably correct
 Minimal changes to the architecture

Does it work?

15

Packet Processing Queue with Lease-Release
(Simulated in Graphite)

* Deqgueue Operation

Queue Throughput
700806 1. Top_Node=Llease&Read(Head)
=
6.00E+06 2. Next_Node = Read(Top_Node.ptr)
= 5.00E+06 3. ATOMIC
3 —e—NO_LEASE {
£ 4.00E+06
¥ 4.5X if (Read(Head) == Top_Node) then
£ so0es0e T==SINGLE_LEASE Write&Release(Head , Next_Node)
F 2.00E+06 — else
— Releaseand goto 1
1.00E+06 }
0.00E+00
0 10 20 30 40 50 60 70
Number of Threads Energy for the Queue (nJ / operation)
2.50E+04
2.00E+04 =)*=NO LEASE

1.50E+04 —#—SINGLE_LEASE
1.00E+04
5.00E+03 5
S B
0.00E+00
0 10 20 30 40 50 60 70

#Threads 16

What Else? Locks

Core O

| , Directory-based cache c 1
Q TN (Intel, AMD) ore
Req(R, EX) S <A *
- Resp(R — —
Acquire (L) sy P p(R) % Req(R, EX))
Req(R,INV) <
4—___7

Resp(R)

\
Resp(R) CAS (L)
esp
—

Rel(R) Delayed

—

Req(R, INV)
: —
Unlock (L) 4_Fissp(4_esp()
e

-

-

~

Simply Lease
the lock on

acquire!
/

> Acquire (L)

Req(R,INV) - Req(R, EX)
Resp(R) CAS (L)
Resp(R)
*» D
Lease Interval T —
—
[Can we avoid the wasted coherence messages?

17

PageRank with L/R

* Works with lock-based programs as well
* Lease the lock beforeacquiringit
* Release beforegivingit up

Parallel PageRank Running Time

(lower is better)
2.5E+10

2E+10
1.5E+10
1E+10
5E+09 \
——

0

9.5X

Completion Time (ns)

2 4 8 16 32

=8-—NO_LEASE =8==\V|TH_LEASE

Lease/Release

 Hardware Lock Queues [iQOLB: Rajwar, Kaegi, Goodman; HPCA 2000]
* Locks using Load-Linked / Store-Conditional
* Load-Linked takes a “lease” on the lock, Store-Conditional “releases”
* Applied automatically by the processor speculation mechanism

* Transient Blocking Synchronization [Shalev, Shavit; Sun Tech Report 2004]
* Propose Load&Lease/ Store&Release instructions for non-coherent DSM machines
* Different semantics, never implemented

* The paper also contains:
 Hardware implementation details (no directory modifications!)
e Blueprintfor implementing multiple concurrent leases (transactions)
* Lots of experiments

LEASE

|
TN

P

The High-Level View

* The Problem with Concurrency
* Inherent bottlenecks lead to meltdowns

« Why?
e Contention hurts optimistic patterns, quantifiably so

e Lease/Release:

* We can now scale bottlenecks, within reason
e Optimism enforced at the hardwarelevel

Can we scale beyond bottlenecks?

Let's Relax!

Concurrent Priority Queues

qhtke)

W

t/Del

leteMi

task

te(kﬂ)

()

task

J_’

Priority Queue
<key, value>

Methods:

Get Top Task

Insert a Task
Search for Task

Graph Operations (Shortest Paths)

Extremely useful:

Operating System Kernel
Time-Based Simulations

We are lookingfor a fast concurrent Priority Queue.

The Problem

Target: fast, concurrent Priority Queue.

Lots of work on the topic:

[Sanders97], [Lotan&Shavit00], [Sundell&Tsigas07],
[Linden&Jonssonl13], [Lenhart et al. 14], [Wimmer et al.14]

Current solutions are hard to scale:
DeleteMin is highly contended.
Everyone wants the same element!

Concurrent Solution

e Linked list, sorted by priority
e Each node has random “height” (geometrically distributed with parameter %)
® Elements at the same height form their own lists

Concurrent Solution: the SkipList [Pugh90]

Linked list, sorted by priority

Each node has random “height” (geometrically distributed with parameter %)
Elements at the same height form their own lists

Average time Search, Insert, Delete logarithmic, work concurrently [Pugh98, Fraser04]

head tail

> (11}
Search(5) > eoe

P> e00

The SkipList as a PQ

® DeleteMin: simply remove the smallest element from the bottom list
® All processors compete for smallest element
e Does not scale!

head tail

P 000

P e00

P> 000

I. Lotan and N. Shavit. Skiplist-Based Concurrent Priority Queues. 2000.

The Idea: Relax!

e We want to choose an item at random with ‘good’ guarantees
® Minimize loss of exactness by only choosing items near the front of the list
® Minimize contention by keeping collision probability low

P 000

P e00

P> 000

i AAREEE

DeleteMin: The Spray [Alistarh, Kopinsky, Li, Shavit, PPoPP 2015]

procedure Spray()
® At eachskiplist level, flip coin to stay or jump forward
® Repeat for each level from log n down to 1 (the bottom)

® As ifremoving a random priority element near the head

P 000

P e00

P> 000

Two examples for starting height 4 Spray and pray?

SprayList Probabilistic Guarantees

v/ Maximumvalue returned by Spray hasrank O(nlog®n)
- Spraysaren’ttoowide

p(x) = probability that a

v/ Forallx, p(x O(l/n) spray returns value at
index x

- Sprays don t clustertoo much
v If x>y isreturned by someSpray, then p(y) = 1(1/n)

Elements do notstarve in the list

P 000

P o0

P> e00

One Benchmark

 Discrete Event Simulation

* Exact algorithms have negative scaling after 8 threads

e SpraylList competitive with the random remover
(no guarantees, incorrect execution)

operations/sec

Throughput
7
2.5x10 I I
A
—>% = Spray /
2 0)(107 | | == === Lotan Shavit (
’ — ¥— - Linden Jonsson —— —
—A— Random // K
7 —
1.5x10 S — =
&—/————;\/
107 ‘/
5.0x10° ——fKﬁK -
*‘;: ----- S S —_—— —_ K —
0 T Trr—_——_———_——— e — e —
0 10 20 30 40 50 60 70 80
threads

In many practical settings (D.E.S., shortest paths),
priority inversions are not expensive.

The IVIuItiQueue [Rihani, Dementiev, Sanders, SPAA 15]

* n lock-free or lock-based queues
* Insert: pick a random queue, lock, and insertinto it
* Remove: pick two queues at random, lock and remove the better element

80/ = MultiQ c=2 al

MultiQ HT c=2 .7
- MultiQ c=4 _+
Spraylist -
Linden . -
Lotan ot -

(o))
o

(MOps/s)
"

ghpué
WY

I

1

I

*

\
.\

Throu
N
o
R

Looks good, but does it actually guarantee anything?

The Random Process

WLOG, elements are consecutive labels.
1. Insert Elements u.a.r.
2. Remove using two choices
Cost = rank of element removed
among remaining elements

Cost(2)
Cost(4)
Cost(1)

2
3
1

Q1

1

6

10

13

Q2 Q3 Q4
4 2 5
7 3 9
12 8 11
16 15 14

We are interested in the average rank removed at each step.

Intuitively, the distance from optimal.

The Result

Theorem: Given n queues, for any t >0, the cost at tis
O(n) in expectation, and O(n log n) w.h.p.

 Strategy 1: reduction to power of two-choices analysis? [Azar et al., SICOMP 99]

* Would apply if we could equate queue size with top label
(round-robin insert)

1 1 1 1
2 2 2 2
3 3 3 3

The reduction does not hold in general, and in fact
experimentally height and top priority appear to be uncorrelated.

The Result

Theorem: Forany t > 0, the cost at t is O(n) in expectation,
and O(n logn) w.h.p.

e Strategy 2: some simple sort of induction
* The initial cost distribution is nice; can we prove it always stays nice?

Hard case: over time, we'll eventually get arbitrary distributions.
We have to prove that the algorithm gets out of those reasonably fast.

The Result

Theorem 1: For any t > 0, the cost at t is O(n) in expectation,
and O(n log n) w.h.p.

* Strategy 3: some simple complicated sort of induction / potential argument
* ldea: characterize what’s going on step-by-step

1
? 7 3

{ In expectation, ? ? 11

increment is n.

?

Problem: the behavior at a step is highly correlated with
what happened in previous steps.

Proof Strategy

Theorem 1: For any t > 0, the cost at t is O(n) in expectation,
and O(n log n) w.h.p.

e Step 1: reduce to an uncorrelated exponential process

* Prove that the rank distributionis preserved

» Step 2: characterize the exponential process

* Characterize average weight on top of queues via potential argument

 Step 3: characterize rank distribution of exponential process

* Prove that average rank is O(n)

Step 1: The exponential process
Insert: pick a random queue

Insert exponentially distributed increment with mean ninto it
Remove: pick two queues at random, remove the lower label

Cost: the rank of the element removed (still)

1.8 4.7 2.2 5.1
Expected value n

5.9 7.3 3.2 9.5

10.2 12.5 8.3 11.7

13.2 16 8 152 14.2

Theorem: The distribution of removed ranks is the same in the
discrete process and in the exponential process.

Prfrank kisinqueue j]=1/n. Holds since the exponential is memoryless.

Step 2: Analyzing the exponential process

Fix a removal step t. Let w;(t) be the label (real value) on top of bin .

Let x,(t) = X&)

n

Let @ (£) = Y1 q exp(x;(t) — u(t)) and P(£) = L1y exp(—(x,(8) — p(8))).

(normalized weights), and u(t) = YiL1 x;(t)/n

Theorem: For any t> 0, E[@(t)+¥(t)] = 0(n).

Uses tools from [Peres, Talwar, Wieder, R.S.A. 14]

No more correlations: since weight increments are independent of previous steps,
we can boundthe expected increase in potential at each step.

Bad configurations: ®(t) and W(t) cannot both be large at the same time.
If their sum breaks the O(n) barrier, then the large potential will decrease very fast.

@ (t)+W¥(t) is then a super-martingale, which implies the bound.

Step 3: What does all this have to do with ranks?

* Let Bo4(t) be the number of bins with weight > p + s at time t.
* Let B._4(t) be the number of bins with weight < u — s at time t.

Theorem: Forany t>0, E[B, ()] = 0 (ns) and E|B__(®)] =0 (ns).
expg eXp;

Weights become “rarefied” at ranks
s-higher and s-lower than the mean value.

* But on average, we’ll choose something close to the mean value! So, we conclude:

Theorem: Forany t > 0, the rank cost at t is O(n) in expectation.

Worst-case bound follows in a similar way.

Applications

We can use this for approximate queues, stacks, counters, timestamps.

What if we do two choices only % of the time?
(one choice otherwise)

Theorem: Forany t >0, the cost at tis O(n / £7) in expectation,
and O(nlogn/ ") w.h.p.

Works well in practice.

What if the input distribution is biased?

Still works (within reason).

Concurrent Data Structures

“The data structures of our childhood are changing.”
Nir Shavit

Data structures such as the Spraylist and the
MultiQueue merge both relaxed semantics and
optimistic progress to achieve scalability.

A relaxation renaissance
[KarpZhang93], [DeoP92], [Sanders98],
[HenzingerKPSS13], [NguyenlLP13], [WimmerCVTT14],
[LenhartNP15], [RihaniSD15], [JeffreySYES16]

The Last Slide

Theorem: Strongly ordered data structures won’t scale.

[Ellen, Hendler, Shavit, SICOMP 2013]
[Alistarh, Aspnes, Gilbert, Guerraoui, JACM 2014]

How can we scale them?

Theory — Software «— Hardware

How do we specify and prove relaxed data structures correct?

How do these data structures interact with existing applications?

What new data structures are out there?

Can we prove stronger lower bounds?

Workshop Announcement

* Theory & Practice in Concurrent Data Structures

e Co-located with DISC 2017 (Vienna)

* Overall goals

* Fostering collaboration between practically-minded (PPoPP, SOSP etc)
conferences, and the PODC/DISC community

* New challenges in concurrent data structure design

* Precise goals
* Better benchmarks for concurrent data structures
* Real applicationsand practical issues (e.g. memory management)
e Usefulness of relaxed designs

