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i) The LOCAL Model
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* Synchronous message passing on a graph G = (V,E)

— message size / internal computations per round are unbounded
— each node has a unique O(logn)-bit ID
— time complexity = number of rounds

 Model was first studied by Nati Linial [FOCS’87; SICOMP ‘92]
— Upper and lower bounds for distributed graph coloring
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¢ Distributed Graph Problems
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Distributed Graph Problemon G = (V,E)

— each node v € I/ has an input x,,
— each node v € I/ needs to compute an output vy,
— problem defined by pairs of valid input / output vectors

Classic Distributed Graph Problems
* Distributed Graph Coloring

IEavAN-AY

— typical goal: A + 1 colors  (A: max. degree of ()
— sequential greedy algorithm colors with < A 4+ 1 colors
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Distributed Graph Problems

Classic Distributed Graph Problems

Maximal Independent Set (MIS)

\> 17 ?O/écl)lo/

@)

Maximal Matching
07\ /‘\/

Minimum dominating set / vertex cover approximation

Matching / independent set approximation
Many graph coloring variants
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I (A + 1)-Coloring: Current State

UNI
FREIBURG

Lower Bound
* Q(log"* n) rounds needed even on the ring [Linial ‘87]

Efficient Randomized Algorithms

* Simple randomized O (log n)-time algorithms
[Luby '86; Alon, Isreali, Itai ‘86; Linial '87]

* Best current upper bound: 0 (w/log A) 4 20(loglogn)
[Harris, Schneider, Su ’16]

Best Deterministic Algorithm

* Based on network decomposition: 20(JIogn)
[Panconesi, Srinivasan '92]
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i) Maximal Independent Set: Current State
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Lower Bound

« 0 (\/logn / loglogn) rounds needed
[Kuhn, Moscibroda, Wattenhofer ‘04]

Efficient Randomized Algorithms

 Simple randomized O (log n)-time algorithms
[Luby '86; Alon, Isreali, Itai ‘86]

0(\/10g log n)
[Ghaffari ’16]

* Best current upper bound: O(logA) + 2

Best Deterministic Algorithm

logn

* Based on network decomposition: ZO(V )
[Panconesi, Srinivasan '92]
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I Exponential Gap
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Current State for (A + 1)-coloring & MIS
* O(logn)-time randomized algorithms

e Best deterministic algorithm: 20(J1ogn)

There is an exponential separation between the
best randomized and deterministic algorithms

 The same is true for many other distributed graph problems
— Dominating set / independent set approximation
— (2A — 1)-edge coloring
— Network decomposition

* A major open problem already mentioned in [Linial "87]
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Challenges in the LOCAL Model

S& .
Locality ®
[N
4

______
%

'l‘{’ﬁ‘q lgq

7-Round Algorithm:

Each node computes its output as a function of
the initial state of its 7-neighborhood
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Challenges in the LOCAL Model
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Local Coordination / Symmetry Breaking
* Nearby (symmetric) nodes need to output different values

— Neighboring nodes need different colors
— No adjacent nodes in MIS, each node not in MIS has neighbor in MIS

* Nodes decide in parallel based on their r-neighborhoods

Main Challenge:
Locally coordinate among nearby nodes

 Randomization naturally helps

— E.g., choose random color, keep if no conflict with neighbors
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SLOCAL Model
* |ocality parameter r(n)

e sequentially go over all nodes
 compute output of a node based on the current state of its
r(n)-neighborhood
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“ SLOCAL Model
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SLOCAL model is much more powerful than LOCAL model

* (A + 1)-coloring and MIS can easily be solved with locality 1
— The sequential greedy algorithm is an SLOCAL-algorithm

— The output a node v only depends on the outputs of neighbors
which were processed before v

 SLOCAL is a generalization of sequential greedy algorithms

— if for each node, one only looks at previous nearby nodes
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i Network Decomposition

* Introduced in [Awerbuch, Goldberg, Luby, Plotkin ‘89]

Definition: (d(n), c(n))-decomposition of G = (V,E)
* Partition of V into clusters of diameter < d(n)
* Coloring of cluster graph with c(n) colors

[AGLP ‘89]: Can be computed deterministically in 20(/lognloglogn)

rounds for d(n) = c(n) = 20(‘/1°g"1°g1°g")
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' Distributed Comp. & Network Decomp.
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Claim: Given a (d(n), c(n))-decomp. of G = (V,E), one can
compute a (A + 1)-coloring or MISin c(n) - d(n) rounds.

* [terate through c(n) colors
* For each cluster, compute solution in d(n) rounds

e This works for all SLOCAL algorithms with locality 1

Lemma:
Given a (d(n), c(n))-decomp. of G"™ one can run any

SLOCAL alg. with locality < r(n) inr(n) - c(n) - d(n) rounds.

— G™™M): edge between any two nodes at dist. < r(n) in G

Fabian Kuhn CMO-BIRS Workshop

13



UNI

FREIBURG

i Network Decomposition Algorithms

Existential Result [Awerbuch, Peleg ‘90], [Linial, Saks ‘93]
e Every graph G has an (0 (logn), 0(logn))-decomposition

— clusters of diameter O (logn), clusters colored with O (logn) colors

Complexity of computing (0 (log n), 0(log ) )-decomposition

- Deterministic SLOCAL Model: locality O(log? n)
— simple adaptation of alg. by [Awerbuch, Peleg ‘90], [Linial, Saks ‘93]

o Deterministic LOCAL Model: 20(V1987) r5unds

— combination of algorithms by [Panconesi, Srinivasan ‘92] and
[Awerbuch, Berger, Cowen, Peleg ‘96]

* Randomized LOCAL Model: 0(log2 n) rounds
— randomized distributed algorithm by [Linial, Saks ‘93]
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i Complexity Classes

>% LocAL(t(n))

* graph problems that can be solved deterministically in
t(n) rounds in the LOCAL model

SLOCAL(t(n))

e graph problems that can be solved deterministically with
locality t(n) in the SLOCAL model

— MIS, (A + 1)-coloring € SLOCAL(1)

P-LOCAL :=LOCAL(polylogn)
P-SLOCAL :=SLOCAL(polylogn)

Randomized classes: RLOCAL, RSLOCAL, P-RLOCAL, P-RSLOCAL
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Exponential Separation Revisited
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Basic Facts
» LOCAL(t(n)) < SLOCAL(t(n))
+ P-LOCAL < P-SLOCAL

(0 (logn), O(log n))-decomposition of GPolylog(n)

— deterministic poly log n-round algorithm for any problem
in P-SLOCAL in the LOCAL model.

. P-SLOCAL C LOCAL(ZOW log "))

— deterministic ZO(Vlog ")-round distr. alg. for all problems in P-SLOCAL

* P-SLOCAL € P-RLOCAL
— randomized poly log n-round distr. alg. for all problems in P-SLOCAL
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i Exponential Separation Revisited
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All P-SLOCAL problems have deterministic ZO(V log n)-round and
randomized poly log n-round algorithms in the LOCAL model.

Open Problem

* |Isthere an asymptotic separation for deterministic algorithms
between P-LOCAL and P-SLOCAL in the LOCAL model?

?
P-LOCAL = P-SLOCAL

* There is no separation for rand. alg.: P-RLOCAL = P-RSLOCAL

Are there any complete problems in P-SLOCAL?

— If (0(log n), 0(log n))-decomposition is in P-LOCAL,
all problems in P-SLOCAL are in P-LOCAL.
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¥\ P-SLOCAL Completeness
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Local Reduction

* We say that a distr. graph problem P; is polylog-reducible to P, if
a deterministic poly log n-round distr. algorithm for P, implies
a deterministic poly log n-round distr. algorithm for P;.

P-SLOCAL Completeness

A problem P in P-SLOCAL is called P-SLOCAL-complete if
every problem P’ in P-SLOCAL is polylog-reducible to P

(0 (logn), 0(log n))-decom position is P-SLOCAL-complete

. (0(log n), 0(log n))-decomp. is in SLOCAL(O(log2 n))
e polylog-round decomp. alg. = polylog-round P-SLOCAL alg.
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") Local Splitting Problem

A-Local Splitting (4 € [0,1/2]):

Every v € L has > |Adeg(v)|
neighbors of each color.

Weak Local Splitting:

Every v € L has at least one
neighbor of each color

Trivial Randomized Solution:

Independently color red/blue
with probability 1/,
e works w.h.p. if all degrees in L

are ((logn) and if A is not too
closeto 1/2
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i) Local Splitting is P-SLOCAL-Complete
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Theorem: If all nodes in L have degree Q(log2 n),

a) weak local splitting is P-SLOCAL-complete and
b) A-local splitting is P-SLOCAL-complete for any A =

1

poly logn’

network decomposition

polylog-reducible

conflict-free coloring

polylog-reducible

A-local splitting

polylog-reducible

weak local splitting
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Local Splitting is P-SLOCAL-Complete

FREIBURG

UNI

Theorem: If all nodes in L have degree Q(log2 n),

a) weak local splitting is P-SLOCAL-complete and
1

poly logn’

b) A-local splitting is P-SLOCAL-complete for any A =

* Thereis a 0-round randomized algorithm for both problems

 Can be seen as a rounding fractional values to integer values

— initially, each node in R is red and blue with value %2 each

Coarsely rounding fractional values to integer values is the only
obstacle to obtaining efficient (polylog-time) deterministic
algorithms in the LOCAL model.
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') Related Work
Complexity of Local Decision Problems
[Fraigniaud, Korman, Peleg '11]
e Studies complexity classes for distributed decision problems
* QOur basic complexity classes can be seen as a generalization:

LD(t(n)) c LOCAL(t(n))

Exponential Separation [Chang, Kopelowitz, Pettie ‘16]

* If we do not ignore log-factors, there is an exponential
separation between rand. and det. alg. In the LOCAL model

* There are problems with O (loglogn)-round randomized
algorithms and an Q(logn) deterministic lower bound
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') Open Problems
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* Is (A + 1)-coloring / MIS P-SLOCAL-complete?

* Local splitting seems an important problem:
Can we solve it efficiently for special cases

— existing polylog-time maximal matching and edge coloring algorithms
use variants of local splitting (split edges of each node)

— generalizing this to 3-uniform hypergraphs would already lead to
interesting results

* Simple complete problems might help to develop lower
bounds or find better deterministic distributed algorithms

 Use SLOCAL model to develop new rand. distributed alg.

— allowed us to obtain polylog-round approximation schemes for
minimum dominating set / maximum independent set
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