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Takeaways

§  A (long-lived, non-compact) model can be 
matched by a (one-shot, compact) task

§  k-concurrency has a matching task
ü  also holds for adversaries
ü “natural” models

§  BG simulation is great!
ü Borowsky&Gafni, 1993
ü ….

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.

and IS2, has only three singleton as contending sets. All other simplices include a contention set of
two processes which consists of the vertices at the boundary.

Now Rk is defined as the set of all simplices in Chr2 s, in which the contention sets of have
cardinalities at most k:

Definition 2 (Complex Rk).

Rk = {� 2 Chr2 s, 8S 2 Cont(�), |S|  k}.

It is immediate that the set of simplices in Rk indeed constitutes a simplicial complex: every
face ⌧ of � 2 Rk is also in Rk.

Examples of R1 and R2 for a 3-process system is shown in Figure 3. Obviously, for the
unrestricted 3-set consensus case, R3 = Chr2 s. Note that R1 only contains six “total order”
simplices, while R2 consists of all simplices of Chr2 s that touch the boundary.

4 From k-set consensus to R⇤
k and back

We show that any task solvable with k-set consensus (and read-write shared memory) can be solved
in R⇤

k, and vice versa. The result is established via simulations: a run of an algorithm solving a
task in one model is simulated in the other.

4.1 From k-set consensus to R⇤
k

To simulate R⇤
k it is enough to “solve the Rk task”, i.e., to solve the simplex agreement task on Rk.

By iterating this solution m times we get a solution of the simplex agreement task on Rm
k . Thus, if

a task is solvable in R⇤
k, it is solvable in the model where Rk can be “solved”.

First we briefly recall how read-write memory and k-set-consensus objects can be used to simulate
a k-concurrent run of any given algorithm. Then we simply use the classical implementation of IS2

(two-rounds of immediate snapshots) as the k-concurrently simulated algorithm, which results in a
subset of IS2 runs that precisely matches Rk.

Simulating k processes using generalized state machine replication. The k-state-machines
simulation was introduced in [12] as a generalization of the classical state machine replication [19,28].
Processes issue k-vectors of commands that they seek to execute on the k state-machines: a
command issued at entry j is to be executed on machine sm[j]. Informally, the construction
proposed in [12] ensures that the local copies of state machine sm[i] (i = 1, . . . , k) progress in the
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Example: one-shot  
Immediate Snapshot

Processes are partitioned in batches P1,…,Pm
§  Each batch Pi:

ü Write their input
ü Get a snapshot of the memory 

§  Gives the standard chromatic subdivision χ(sn) 
ü [BG93]
ü [Koz14,Lin09]



  

Χ(s2) : one-shot IS for 3 processes

p0	 p1	

p2	

p2	sees	{p0,p2}	

p0	sees	{p0,p2}	

p1	sees	{p0,p1,p2}	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	



Iterated Immediate Snapshot (IIS)
Shared variables:

IS1, IS2, IS3,…   // a series of one-shot IS 

Each process pi with input vi: 
r := 0 
while true do 
 r := r+1  
 vi := ISr.WriteReadi(vi) // write and take a 

      snapshot 

ISk represented as χk(I): 
every run of  ISk  ó a simplex in χk(I) 



  

χ2(I) : 2-round IIS

p1	 p3	

p2	



IS as a task (sN,X(sN),X)
A process starts at its corner…

p0	 p1	

p2	



Chromatic simplex agreement on χ(I)  

IS as a task (sN,X(sN),X)
and outputs a vertex of it color (carrier-preserving) 

p0	

p1	

p2	



IS - the task for wait-freedom
Read-write model (RW) and IIS are equivalent 
[BG93,BG97,GR10]
§  a task is solvable in IIS iff it is solvable in RW

Asynchronous computability theorem[HS93]:
A task (I,O,Δ) is wait-free read-write solvable if 
and only if there is a chromatic simplicial map 
from a subdivision χr(I) to O carried by Δ



Model as a task?

§  M model, a set of (infinite) runs
ü Alternating writes and snapshots

§  T task, a one-shot distributed function (I,O,Δ):
ü Set of input vectors I (input complex)
ü Set of output vectors O (output complex)
ü Task specification Δ: I è 2O (carrier map)

§  T*, iterations of T, have the same task computability as 
M 

(Solving a task in M is equivalent to solving T)



Affine tasks

(sN,L,¢): 

§  sN – N-dimensional simplex
§  L µ X k(sN)
§  ¢(¾)=X k(¾)\ L

L=X k(sN): IS(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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Model as a task

§  IS is the matching affine task for wait-free 
runs
ü What about restrictions of wait-free?

§  k-concurrency?
ü a subset of RW runs where at most k process are 

concurrently active 



Concurrency levels [Gaf09]

n-concurrency = wait-freedom ≅ IS

A matching affine task for k-concurrency (0<k<n)?

1-concurrent: at most one process 
makes progress at a time

(global lock) 

k-concurrent: at most k processes 
make progress concurrently

(k-resource semaphore)



Defining Rk

Contention sets: all the processes that share 
a carrier (≈ see each other):

Include all simplices in X 2(sN) of contention k 
or less 

Figure 2: Contention sets (simplices in red) in a 3-process system.

processes seen by p in this run, possibly through the views of other processes: it is the smallest face
of s that contains v in its geometric realization [20] (Appendix A).

Simplex agreement. As we show in this paper, the model of k-concurrency can be captured by
an iterated simplex agreement task [4, 22].

Let L be a subcomplex of Chr2 s, in the simplex agreement task, every process starts with the
vertex of s of its color as an input and outputs a vertex of Chrm s, so that all outputs constitute a
simplex of Chrm s contained in the face of s constituted by the participating processes.

Formally, the task is defined as (s, L,�), where �(t) = L \ Chr2 t for any face t ✓ s. By
running m iterations of this task, we obtain Lm, a subcomplex of Chrm s, corresponding to a subset
of IS2m runs (each iteration includes two IS rounds).

3 The complex of k-set consensus

We define here Rk, a subcomplex of Chr2 s, that precisely captures the ability of k-set consensus
(and read-write memory) to solve tasks. The definition of Rk is expressed via a restriction on
the simplex of Chr2 s that bounds the size of contention sets. Informally, a contention set of a
simplex � 2 Chr2 s (or, equivalently, of an IS2 run) is a set of processes that “see each other”.
When a process pi starts its IS

2 execution after another process pj terminates, pi must observe pj ’s
input, but not vice versa. Thus, a set of processes that see each others’ inputs must have been
concurrently active at some point. Note that processes can be active at the same time but the
immediate snapshots outputs might not permit to detect it.

Topologically speaking, a contention set of a simplex � 2 Chr2 s is a set of processes in � sharing
the same carrier, i.e., a minimal face t ✓ s that contains their vertices. Thus, for a given simplex
� 2 Chr2 s, the set of contention sets is defined as follows:

Definition 1 (Contention sets).

Cont(�) = {S ✓ ⇧, 8p, p0 2 S, carrier(p,�) = carrier(p0,�)}.

Contention sets for simplices of Chr2 s in a 3-process system are depicted in Figure 2: for each
simplex � 2 Chr2 s, every face of � that constitutes a red simplex is a contention set of �. In an
interior simplex, every set of processes are contention sets. Every “total order” simplex (shown
in blue in Figure 3a), matching a run in which processes proceed in the same order in both IS1
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R1
Process proceed in the same total order in 
two IS rounds:

Lord: total order task for s2

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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R2
All simplices that touch 1-dimenional faces 
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k-concurrency = Rk* 
T is solvable in Rk* iff T is solvable k-concurrently: 

1.  k-concurrency simulates Rk*  

2.  Rk*  simulates k-concurrency 

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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1. From k-concurrency to Rk* 

Rk can be solved k-concurrently:
k-concurrent chromatic simplex agreement on Rk 

...	

N+1	

N	

2	

1	

See	<	N+1	

See	<	N	

See	1	or	2	

See	1	

Two rounds of k-concurrent IS implementation [BG93] give Rk



2. From to Rk*  to k-concurrency
§  Rk can be used to solve k-set 

agreement:
ü Decide on the value of (up to k) 

“leaders” processes (chosen by the 
size of IS1 output) 

§  IIS (and thus Rk*) can simulate 
RW [BG97,GR10]

Simulate a protocol that uses read-
write and k-set consensus objects? 

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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Not that simple: how to combine 
simulating RW with solving k-SA? 



Example: total order (k=1)
Solution of any task (I,O,Δ) in 
just one iteration of Lord 

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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Simulating k-concurrency
§  Adaptive k-set consensus

ü k-commit-adopt: commit (decide) if among k “fastest” 
non-terminated processes, adopt otherwise

§  RW + (adaptive) k-set consensus => k state 
machines
ü Generalized universality [GG11]
ü m active simulators: machines 1..min(m,k) are active
ü Any RW protocol on up to k state machines can be 

simulated
§  k processes simulate a k-concurrent system

ü Extended BG simulation [Gaf09] 
ü Let state machines be (EBG) simulators

RW + k-set agreement simulate k-concurrency
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Other models?
§  Adversarial models [DFGT09]

ü Non-uniform/correlated faults
ü [SHG16]: t-resilience

§  Set-consensus collections [DFGK16]
ü RW + set-consensus objects in {(s1,t1),…,(sm,tm)}
ü k-concurrency ≅ k-set consensus

§  Affine tasks are in X 2(sN)
ü Sometimes even in X 1(sN)

p r	 s	

write value is simply changed (line 30), a dummy write thus consists in re-writing the same value. 2

Lemma 5 In R⇤
k, Algorithm 2 provides a non-blocking simulation of any shared memory algorithm

with access to k-set-agreement objects.

The proof of Lemma 5 is delegated to Appendix B. The main aspects of the proof are taken
from the base algorithm from [17], while the liveness of the agreement objects simulation relies on
the restriction provided by R⇤

k and the maximal size of contention sets.
Lemma 5 implies the following result:

Theorem 6 Any task solvable in the k-set-consensus model can be solved in R⇤
k

Proof. To solve in R⇤
k a task solvable in the k-set-consensus model, we can simply use Algorithm 2,

simulating any given algorithm solving the task in the k-set-consensus model.
The non-blocking simulation provided by Algorithm 2 ensures, at each point, that at least one

live process eventually terminates. As there are only finitely many processes, every live process
eventually terminates. ⇤
Lemma 2, Theorem 4, and Theorem 6 imply the following equivalence result:

Corollary 7 The k-concurrency model, the k-set-consensus model, and R⇤
k are equivalent regarding

task solvability.

5 Concluding remarks: on minimality of Chr2 s for k-set consensus

Figure 5: Fully ordered sub-

Chr s

This paper shows that the models of k-set consensus and k-concurrency
are captured by the same a�ne task Rk, defined as a subcomplex of
Chr2 s. One may wonder if there exists a simpler equivalent a�ne task,
defined as a subcomplex of Chr s, the 1-degree of the standard chromatic
subdivision. To see that this is in general not possible, consider the case
of k = 1 (consensus) in a 3-process system. We can immediately see
that the corresponding subcomplex of Chr s must contain all “ordered”
simplexes depicted in Figure 5. Indeed, we must account for a wait-free
1-concurrent IS1 run in which, say, p1 runs first until it completes (and
it must outputs its corner vertex in Chr s), then p2 runs alone until it
outputs its vertex in the interior of the face (p1, p2) and, finally, p3 must
output its interior vertex.

The derived complex is connected. Moreover, any number of its iterations still results in a
connected complex. The simple connectivity argument implies that consensus cannot be solved in
this iterated model and, thus, the complex cannot capture 1-concurrency.

Interestingly, the complex in Figure 5 precisely captures the model in which, instead of consensus,
weaker test-and-set (TS) objects are used: (1) using TS, one easily make sure that at most one
process terminates at an IS level, and (2) in IS runs defined by this subcomplex, any pair of

2
Note that our agreement algorithm is far from e�cient for multiple reasons. Progress could be validated at every

round and not only when a write is validated. Moreover, processes could also preventively decide the output for

objects not yet accessed. Lastly, processes could also adopt proposals from non-leaders when no visible leader has a

proposition.
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2-consensus 
(TAS)

A:16 Gafni et al.

PROOF. If T and T 0 are terminating subdivisions of s, we say that T 0 is a stable
refinement of T if |K(T )| = |K(T 0)|, and every simplex of T 0 is contained in a simplex
of T ; i.e., K(T 0) should be a subdivision of K(T ). Note that if T is admissible for a
model M , then so is T 0.

Given the continuous map f , we shall construct a simplicial, chromatic approxima-
tion � : K(T 0) ! O as needed to apply GACT; here, T 0 is a stable refinement of T .

We first construct a chromatic subdivision K

0 of K(T ), whose vertices are not nec-
essarily in the standard chromatic subdivisions of I, and a chromatic map �

0 : K 0 ! O
(an approximation to f ) such that �0 is carrier-preserving: �0(�) 2 �(⌧) when |�| ✓ |⌧ |.
We do this inductively on d � 0: For each d, we define the values of �0 on the simplices
that are contained in d-dimensional faces of |I|. Suppose we have defined �

0 for d � 1,
and pick a d-dimensional face ⌧ of |I|. The restriction of f to |K(T )| \ |⌧ | can be ap-
proximated by a simplicial map from a subdivision of K(T ), extending the already
constructed �

0 on the (d � 1)-dimensional boundary. Further, since K(T ) is locally fi-
nite (by definition) and �(⌧) is link-connected, it follows from Theorem 9.4 that we can
arrange for �

0 to preserve colors.
Thus, we find a sufficiently fine stable refinement T 0 of T and a chromatic, carrier-

preserving map g : K(T 0) ! K

0. We then set � = �

0 � g and apply Theorem 6.1.
Conversely, if T is solvable in M , we can apply GACT and obtain a terminating

subdivision T and a chromatic map � : K(T ) ! O. The desired continuous map f is
the geometric realization of �.

10.2. An example of GACT in action
Consider the t-resilient model Rest from Example 2.2. Let Lt be the affine task with
output complex consisting of all the simplices � in the second chromatic subdivision
Chr2 s such that no vertex of � is on an (n � t � 1)-dimensional face of s. For example,
when n = 2 and t = 1, the output complex for L

1

looks like:

L1

PROPOSITION 10.2. The task Lt is solvable in the model Rest.

PROOF. Note that for each face t ✓ s = I, the complex �(t) for the task Lt is link-
connected. Therefore, it suffices to find a terminating subdivision T and a continuous
map f with the properties required in Proposition 10.1.

For n � 0, let R̃n ⇢ |s| be the union of (the geometric realizations of) all the simplices
� ⇢ Chrn+2

s such that no vertex of � is on an (n � t � 1)-dimensional face of s. Let
R

0

= |Lt| and, for n > 0, let Rn be the closure of R̃n � R̃n�1

. The union of all Rn’s is the
complement of the (n� t� 1)-skeleton of s:

R2

R0

R1
R2

R1

R1
R2
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What is good about it?
§  Compact representation of non-compact models

§  Conjecture: possible for all “natural models”
ü Captured by computing artifacts
ü Not 0-1-exclusion, WSB, Möbius etc.

§  Conjecture: relations between models (affine 
tasks) are decidable
ü Reduces to maps between bounded sub-complexes of 

X 2(sN)
ü 3-process, read-write wait-free solvability of (colorless) 

tasks are undecidable [GK95,HR97] 



Tunable BG simulation
§  Simulated model

ü RW [BG93, Gaf09,…]
ü RW+{set-consensus objects} [CR93,GG11,RS13, 

DFGK16...]
ü Restricted concurrency [FGRR14,GHKR16,...]
ü Adversarial [GK10, DFGK16]

§  Simulating model
ü Static RW [BG93,Gaf09,…]
ü RW+{set-consensus objects} [...,AEG16,DFGK15]
ü Adversarial [GK10,GK11,DFGK16]
ü Message-passing Byzantine [IRS16]

§  Simulated protocols
ü Colorless [BG93,RS14,GK10]
ü Generic [Gaf09,…GHKR16]

§  Agreement protocols
ü Safe agreement [BG93,…]
ü Extended agreement [Gaf09,…]
ü OF consensus [Kuz13]

p1	 pn	...	
P

q1	 qk	...	
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