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What's in the tin?

A stable numerical scheme for PDEs of the form
100 = Hp
. 1
H =1 Z (Bkc’?k -+ §8kBk> —C

k=1...d
(Wlth By, C € Herm((C) and ‘Bk‘ < 1)

implementable by applying unitary matrices locally

.e. Dby future quantum simulation devices.



Discretize physics?
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Cellular Automata

An old CompSci dream : to capture physics in this
formalism.



Discretize physics?
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.. as Cellular Automata / Quantum Walks

Theorems about : the extent in which physics particles can
be captured in this formalism.



Discretize particules

Dirac equation
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Chess game : neutrino
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Chess game : electron

Rotations
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Chess game : electron

Rotations

C= [c ] Theorem : In the continuum limit, this
C

s Quantum Walk converges to the Dirac

Equation.
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Chess game : electron

States
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Chess game : electron

d(x,t+¢)

u(x,t+e)

W(e)
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Chess game : electron

Expand

d+£8td

u+£8tu

W:W(O)+£W(1)

O

u-£d u
X

d+aaxd



Chess game : electron

Order O

u(x,t+e)=u(xze,t)




Chess game : electron

Order O

u(x,t+e)=u(xze,t)

VV(O) = X




Chess game : electron

Order 1

d+ 8td =d+ axd +... ut 8tu =u - 8Xu +...
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Chess game : electron

Order 1

u- axu d+ axd



Chess game : electron
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Order 1




Chess game : electron

Order 1 .
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Chess game : electron

Rotations

C= [c ] Theorem : In the continuum limit, this
C

s Quantum Walk converges to the Dirac

Equation.
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Chess game : electron

Rotations

C= [c ] Theorem : In the continuum limit, this
C

S Quantum Walk converges to the Dirac

Equation.
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Consistency vs convergence
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Consistency vs convergence
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Consistency vs convergence

Theorem
Vi (0) € H?, Vt, Ve

[WLEhp(0) — b(2) ]2 = £(5/2)t]|1(0) || 2.

Morale: unitarity gives you stability in Sobolev norm, for
free, and so convergence is for free, too.



Discretize physics?
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Cellular Automata / Quantum Walks

Theorems about : the extent in which Curved Spacetime
can be captured in this formalism.



Curved space : problem 1
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Curved space : problem 1

To

time

space



Curved space : problem 1
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Transport term is fixed by 0™ order & grid :-((



Curved space : idea 0
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[Di Molfetta , F. Debbasch, M. E. Brachet, “Quantum walks as massless Dirac Fermions
in curved Space-Time”, PRA, arXiv:1212
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Curved space : idea 0

[Di Molfetta , F. Debbasch, M. E. Brachet, “Quantum walks as massless Dirac Fermions
in curved Space-Time”, PRA, arXiv:1212.5821]
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Curved space :

|

u

|

\

\

—%J,\'/\/,\}(\

idea 1

i R

/
/

\

*

\

-

/

\

/

%

\

\

/\/N/\/X/\K

\

l

Kx/\yx/\/x

\

ﬁk\/ﬁ?\/

I

/
e

v

A

W(¢)

l

l

\

L

\
A

/x/\k\/\Vl

4



Curved space :
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Curved space : idea 1

States
W(X-€,t+2¢)
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Curved space : idea 1

States
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Curved space : idea 1

States

u(x-g,t+2¢)
u’(x+e,t+2¢)

u(x) := u(x+e)+u(x-¢)

u’(x) := u(x+g)-u(x-€)
W
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u’(x-2¢) ' [u(x-2¢) '
H

u(x-3¢,t) u(x-g,t)



Curved space : idea 1
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Curved space : idea 1

u+2£au
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Curved space : idea 1

0" order

N



Curved space : idea 1

0" order u
d
0
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Curved space : problem 2

18t order
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inconsistency?



Curved space : problem 2
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Curved space : problem 2
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Curved space : idea 2
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Curved space : idea 2
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Curved space : idea 2
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Curved sp: idea 2
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Tin content

Theorem

A stable numerical scheme for PDEs of the form

100y = H
. 1
H =1 E (Bkc‘?k + §8kBk) —C

k=1...d
(with By, C' € Herm(C) and |By| < 1)

implementable by applying unitary matrices locally.
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Curved space simulations : BH




Conclusion

Non-interacting physics particles in curved space-time
...as a Quantum Walk.

The point?

e stable numerical scheme
e quantum simulation device compatible
e to simplify, understand, offer toy models.

OK, but what about symmetries?



Extra 1



Discretize physics?
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Cellular Automatas / Quantum Walks

Theorems about : the extent in which the SR notion of time
can be captured in this formalism.



Time in SR

Observer at rest




Time in SR

Observer at rest




Time in SR

Observer at rest

Uniform observer




Time in SR

Observer at rest

Uniform observer

Relativity
Both are right.




Time in SR
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Time in SR
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Lorentz transform
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Lorentz transform
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Lorentz transform
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Discrete Lorentz transform
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Discrete Lorentz transform
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Discrete Lorentz transform
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Discrete Lorentz transform
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Discrete Lorentz transform



Discrete Lorentz transform
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Covariance

Relativity

Laws of Physics are the same for uniform observers.
Any uniform referential is valid for describing the world.

Transform(Dirac Equation) = Dirac Equation
Transform(Physics Law) = Physics Law

A fundamental symmetry of physics.
Can it be discretized?



Covariance

Relativity

Laws of Physics are the same for uniform observers.
Any uniform referential is valid for describing the world.

Transform(Dirac Equation) = Dirac Equation
Transform(Quantum Walk) = Quantum Walk?

A fundamental symmetry of physics.
Can it be discretized?



Covariance

Transform(Quantum Walk) = Quantum Walk?




Discrete covariance
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Discrete covariance




Discrete covariance

If

Then

Theorem :

e The Dirac QW is first-order only
discrete-covariant.

e The Clock QCA is discrete-covariant and
simulates the Dirac QW.




Indulging into reductionism




Indulging into reductionism

We might leave in a “great quantum circuit”.

This great quantum circuit would be equivalent to some
others... each of which would be a valid representation of
our world.

The notion of time would then be relative to this choice of
representation, just like in SR.



Extra 2



Curved space : idea 2
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Curved space : idea 2

0" order




Curved space : idea 2
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Curved space : idea 2

0" order

Et
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and this still has a
continuous limit.



Curved space : idea 2
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Curved space : idea 2
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Curved space : idea 2
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Curved space : idea 2

1t order
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Curved space : Dirac Eq.
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