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The quest for a deeper understanding of highly-symmetric structures in geometry, combinatorics, and algebra
has inspired major developments in modern mathematics and science. Symmetry often provides the key to
unlock the secrets of complex discrete structures that otherwise seem intractable.

The 5-day workshop focussed on geometric, combinatorial, and algebraic aspects of highly-symmetric
discrete structures such as polytopes, polyhedra, maps, incidence geometries, and hypertopes. It brought to-
gether experts and emerging researchers in the theories of polytopes, maps, graphs, and incidence geometries
to discuss recent developments, encourage new collaborative ventures, and achieve further progress on major
problems in these areas. In recent years there has been an outburst of research activities concerning discrete
symmetric structures in geometry and combinatorics, and the workshop capitalized on this momentum.

Our main objective was to nourish new and unexpected connections established recently between the
theories of polytopes, polyhedra, maps, Coxeter groups, and incidence geometries, focussing on symmetry as
a unifying theme. In each case an important class of groups acts on a natural geometrical and combinatorial
object in a rich enough way to ensure a fruitful interplay between geometric intuition and algebraic structure.
Naturally their study requires a broad and long-range view, merging approaches from a wide range of different
fields such as geometry, combinatorics, incidence geometry, group theory and low-dimensional topology.
These connections are further enriched by bringing in new ideas and methods from computational algebra,
where powerful new algorithms provide an abundance of inspiring examples and challenging conjectures.

In polytopes and symmetry, the recent progress centered around the modern theory of abstract poly-
topes and combinatorial symmetry. Highly-symmetric abstract polytopes are combinatorial structures with
distinctive geometric, algebraic, or topological properties, in many ways more fascinating than traditional
highly-symmetric polyhedra, polytopes or tessellations. Their automorphism groups are certain quotients
of Coxeter groups, called C-groups, satisfying an intersection condition on subgroups that ensures desirable
combinatorial and geometric properties. The rapid development of abstract polytope theory has resulted in a
rich theory featuring an attractive interplay of methods and tools from discrete geometry (classical polytope
theory), and group theory and geometry (Coxeter groups and their quotients, as well as reflection groups over
the reals, complex numbers, or finite fields), combinatorial group theory (generators and relations), and hy-
perbolic geometry and topology (tessellations and their symmetry groups). Still, even after an active period
of research, many deep problems have remained open and await solution.

Regular or chiral maps and hypermaps on surfaces have been studied since the time of Felix Klein. Deep
exciting connections exist between hypermaps and other branches of mathematics (hyperbolic geometry,
combinatorial group theory, Riemann surfaces, number fields, Galois theory, and graph theory). For instance,
surface maps (not necessarily regular) can be viewed as complex algebraic curves, defined over algebraic
number fields. A central theme in the theory of maps is the problem of their classification, which is usually
approached from one of the following three viewpoints: graph-theoretical, group-theoretical, and topological.
In recent years, great progress has been made in the computer-aided enumeration of maps by genus, exploiting

1



2

new fast algorithms for finding low index normal subgroups in finitely-presented groups. These findings have
lead to a host of challenging new conjectures. There are similar approaches to the classification of certain
types of highly-symmetric graphs such as arc-transitive graphs.

Incidence geometries provide an overarching theme for most research activities in polytopes and hyper-
maps. In this vein, maps (usually) are abstract polytopes of rank 3, and in turn, abstract polytopes are thin
residually-connected incidence geometries with a string diagram. Thus progress in either subject is likely
to influence the others. Polytopes and maps stand to benefit greatly from new developments on diagram
geometries and buildings. In a nutshell, buildings are the natural geometric counterparts of certain kinds of
simple Lie groups where the classical regular polytopes or Coxeter complexes occur as fundamental struc-
tural components (apartments). On the other hand, diagram geometries provide a geometric interpretation
for the sporadic simple groups, and although the theories of buildings and diagram geometries are highly
developed, the understanding of their interaction with polytopes and hypermaps is still limited at this point.
Recently there has been considerable progress in the study of highly-symmetric hypertopes (hybrids of poly-
topes and incidence geometries). These are thin geometries which relate to abstract polytopes in a similar
way as hypermaps to maps.

The following research directions captured the broader themes underlying the workshop activities.

• Classification of highly-symmetric maps on surfaces and related graphs.

• Group-theoretical and topological classification of regular and chiral polytopes.

• Developing a theory of regular or chiral hypertopes.

• Polytope-theoretic interpretation for sporadic and other simple groups.

• Connection groups (monodromy groups) of polytopes.

• Symmetries in designs and finite geometries.

• Topics in combinatorial geometry and combinatorics related to symmetry.

The workshop was a great success and featured an attractive mix of 30-minute lectures, problem sessions,
and small group collaborations. It provided ample time and opportunity for participants to interact and engage
in mathematical discussion. The emphasis of the workshop was on small group collaborations.

The small research groups formed around various problems proposed during the afternoon problem ses-
sions on the first day. Summaries of these activities are included in this report. The work in small research
groups was a stimulating experience for all participants, including in particular junior researcher and graduate
students.

1 Working Groups Reports

1.1 Working group “Connection Groups of Truncations of Torus Maps”
Research Problem: Determine the connection group (monodromy group) of the truncation of the regular
torus map {4, 4}(n,0).
Group Members: This group consisted of two experienced researchers (Gabe Cunningham and Eugenia
O’Reilly-Regueiro), and one graduate student (José Collins).
Progress: A recent manuscript by Daniel Pellicer and Gordon Williams describes how to represent the
connection group Con(P) of a k-orbit polytope P as a subgroup of the wreath product of the automorphism
group Γ(P) with Sk. Our goal was to use this procedure to determine the size and structure of the connection
group of the truncation of {4, 4}(n,0).

Let Pn = {4, 4}(n,0) and let Qn be the truncation of Pn. The map Qn is a toroidal quotient of the
Archimedean tiling [4.8.8]. It is a vertex-transitive 3-orbit polytope. Using Pellicer and Williams’ algorithm,
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we determined that the generators r0, r1, r2 of Con(Pn) could be represented as elements in S3 n Γ(Pn)3 as
follows:

r0 = ()[ρ0, ρ1, ρ1]

r1 = (1, 2)[1, 1, ρ2]

r2 = (2, 3)[ρ2, 1, 1].

So Con(Qn) ∼= S3 n H , where H is a subgroup of Γ(Pn)3. The goal then became to determine H; i.e.,
which triples of automorphisms [α1, α2, α3] can be obtained from these generators.

We started by trying to identify elements in Con(Qn) whose automorphisms were all translations. We
found that, with respect to a certain base flag,

(r0r1r2)6 = ()[−2e2,−2e1, 2e1],

where e1, e2 are unit translations in the x and y direction, respectively. Now, if n is odd, then it follows that
[e2, e1,−e1] is in H . Conjugating this element by various elements in Con(Qn), we were able to show that
the full direct product of all 3 translation subgroups lies in H .

Having identified a large normal subgroup of H (and indeed of Con(Qn)), we took the quotient by it.
This has the effect of passing to Con(Q1), which is small enough to be amenable to computer calculation.
We found that |Con(Q1)| = 192. Since the direct product of the 3 translation subgroups has order n6, we
find that |Con(Qn)| = 192n6. In particular, the connection group of Qn has index 16 in S3 n Γ(Pn)3.

The case with n even is slightly more complex, but similar analysis should work. We do not yet have
a complete structural description of Con(Qn) (in either case), nor a presentation, but we have made some
progress.

1.2 Working group “Incidence Complexes as Skeletons of Polytopes”
Research Problem: Realizing highly-symmetric incidence complexes as skeletons of highly-symmetric ab-
stract polytopes.
Group Members: This group consisted of seven experienced researchers (Javier Bracho, Peter Brooksbank,
Maria Elisa Carrancho Fernandes, Asia Ivic Weiss, Dimitri Leemans, Egon Schulte and Klara Stokes), and
two graduate students (Anneleen De Schepper and Antonio Montero).
Progress: An incidence complex is a combinatorial structure (a certain ranked partially set) that generalizes
the notion of abstract polytope. An incidence complex K is regular if the action of its automorphism group
is transitive on the set of flags of K. Examples of regular incidence complexes arise in a natural way by
considering the so-called skeletons of regular abstract polytopes. For instance, the incidence structure formed
by the vertices, edges, and squares of the cubical tessellation of 3-space gives an incidence complex of rank 3.
This incidence complex is the 2-skeleton of the cubical tessellation.

A natural problem is to determine if every regular incidence complex can be constructed this way. More
precisely, given a regular incidence complex K of rank k, is there an abstract regular polytope P of rank n,
with n > k, such that K is the (k − 1)-skeleton of P? Of particular interest is the case when n = k + 1.
Clearly, except in degenerate cases, for P to exist, K must have the property that each face of co-rank 2 lies
in at least three facets, and we are assuming this from now on.

The following partial results were obtained.

• We proved that the 2-skeleton of the 5-simplex is not the 2-skeleton of any regular 4-polytope. How-
ever, it is the 2-skeleton of a chiral 4-polytope of type {3, 4, 4}.

• The 2-skeleton of the 6-simplex is not the 2-skeleton of any regular or chiral abstract 4-polytope.

• We found an example of a regular incidence complex of rank 4 that cannot be the 3-skeleton of any
regular or chiral polytope of rank n for any n ≥ 5.

Thus the answer to the above question is negative. The broader problem then becomes to find necessary
and sufficient conditions for certain classes of incidence complexes to occur as skeletons of abstract polytopes.
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1.3 Working group “The Wooly Hat”
Research Problem: Covering graphs of the Wooly Hat graph (see the figure below).
Group Members: This group consisted of three experienced researchers (Leah Berman, Hiroki Koike and
Steve Wilson), and one graduate students (Elı́as Mochán).
Progress: During the CMO/BIRS Workshop we worked on covering graphs of the Wooly Hat graph with
a finite cyclic group of covering transformations. More specifically, we tried to explain why there does not
appear to exist any edge-transitive covering graph of this type.
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Figure 1: The Wooly Hat graph with a standard voltage assignment.

All such coverings may be obtained as the derived graph WHn(a,b, c,d) of a voltage graph as in the
figure below, where a, b, c, d ∈ Zn := Z/nZ. We restricted ourselves to study connected coverings, so we
assumed gcd(n, a,b, c,d) = 1. We were able to show that the automorphism given by the reflection on the
vertical axis always lifts to any covering graph. This implies that any edge transitive covering should also be
arc-transitive and therefore vertex-transitive.

The fact that the reflection always lifts also implies that any vertex-transitive cover that is not edge-
transitive, should have exactly two orbits on arcs: one corresponding to the lifts of the loop and two BC-
edges, and the other consisting of the lifts of the remaining BC-edge (say, the one with voltage c) and the
edges of voltage 0. We also proved that in this case gcd(b− d,n) = 2a.

Using the aid of the computer we found many examples of vertex-transitive coverings of the Wooly Hat,
none of them edge-transitive. We found many infinite families, and managed to prove that WHn(a,b, c,d) is
vertex-transitive if the following conditions hold:

1. 2 | n, c, 2 - a, b, d,

2. b− d = 2a,

3. a+ 2c = b+ 2d.

All the examples we found satisfied the first two conditions, and most of them satisfied the third.

1.4 Working group “Edge-transitive maps”
Research Problem: Constructing and analysing edge-transitive maps on surfaces.
Group Members: This group consisted of four experienced researchers (Marston Conder, Isabel Hubard,
Gareth Jones and Gordon Williams), and four graduate students (Patricio Garcı́a, Alejandra Ramos, Andrea
Ramos Tort and Claudia Silva).
Progress: An edge-transitive map is a 2-cell embedding of a connected graph or multi-graph as a map on
some closed surface, with the property that the group of incidence-preserving automorphisms has a single or-
bit on edges. This is a weaker but still important variant of the notion of a regular map (whose automorphism
group has a single orbit on ordered edges (or even on incident vertex-edge-face triples)), but relatively little
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research has been done on them; see the references [x] and [y] below for two of just three papers having them
as principal topic.

It is known that edge-transitive maps can be classified into 14 types according to the existence of particular
kinds of automorphisms, and certain properties of these maps and their groups were described by Gareth Jones
in his lecture earlier in the workshop timetable. A PDF copy of his talk was distributed to all the members
of the working group by Isabel Hubard. Marston Conder added some further background on presentations
of the universal groups for the 14 types, as well as information about vertex-, edge-and face-stabilisers, and
”forbidden automorphisms” (the presence of which puts such a map into a different class).

Marston Conder and Gareth Jones set some exercises for the group that were deliberately chosen to be
accessible to the graduate students, and yet provided new insights into this topic. Although the emphasis was
on learning about edge-transitive maps and how to handle them, partly because the topic was new to most
members of the group, everyone in the group learned something new, and some interesting discoveries were
made.

For example, the group worked out (new) details that are helpful in constructing and/or analysing exam-
ples, and with the help of some computing resources were able to determine the smallest examples of maps
in each class, and then also developed alternative constructions for many of the latter.

Incidentally, some of this work was taken further forward at another BIRS meeting four weeks later, in
Banff.
[x] J. Širáň, T.W. Tucker and M.E. Watkins, Realizing finite edge-transitive orientable maps, J. Graph Theory
37 (2001), 1-34.
[y] J.E. Graver and M.E. Watkins, Locally finite, planar, edge-transitive graphs, Memoirs Am. Math. Soc.
126 (#601), 75pp., 1997.

1.5 Working group “Enumerating Asymmetric Polytopal Maps”
Research Problem: Constructing and analyzing small polytopal maps with trivial automorphism groups.
Group Members: This group consisted of one experienced researcher (Barry Monson), and four graduate
students (Anneleen De Schepper, Eric Ens, Jessica Mulpas, Briseida Trejo-Escamilla).
Progress:

1. According to a rather general definition, a map M is an embedding of a finite graph into a compact
surface so that each component of the set-complement of the graph (in the surface) is an open topo-
logical disc. The closures of these discs are the faces of the map. The vertices and edges of the graph
supply the vertices and edges of the map.

We can make subtle adjustments to this definition. Usually we can safely think of these things by
drawing nice pictures on some surface.

2. We will consider just maps which are rank 3 abstract polytopes. After all, the (non-polytopal) map
consisting of just a single node on the sphere has trivial automorphism group:

•

Polytopal maps are especially well-behaved: each edge has 2 vertices and lies on 2 faces; each vertex
on a face is on two consecutive edges of that face. The vertices and edges of each face form a single
cycle; thus a p-face has p distinct vertices and p distinct edges. Dually, the edges and faces on a given
vertex form a single q-cycle called the vertex-figure for that vertex.

All this enables straightforward counting.

3. Let us use the word degree to name either the number of edges on a face or the number of edges at a
vertex. In a polytopal map, all such degrees are at least 2. For k ≥ 2, let vk be the number of degree k
vertices in the map; and let fk be the number of degree k faces. Thus

v = v2 + v3 + v4 + · · · (1)
f = f2 + f3 + f4 + · · · (2)
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4. Example. In convex polyhedra the surface is a polytopal map of spherical type; and v2 = f2 = 0.

5. Now count the edges in two ways; we assume nothing yet about the genus of the surface. Since each
edge lies on 2 vertices and on 2 distinct faces, we have

2e = 2v2 + 3v3 + 4v4 + · · · (3)
2e = 2f2 + 3f3 + 4f4 + · · · (4)

Thus
2e ≥ 2(v2 + v3 + v4 + · · · ) = 2v,

so that e ≥ v; likewise e ≥ f .

6. Back to our problem.

By experiment we found a spherical mapM with v = 4 vertices, e = 6 edges and f = 4 faces (one
2-gon, two 3-gons, one 4-gon). These data suffice to define the full structure of this 3-polytope. A
picture will convince the reader thatM is asymmetric and, as it happens, self-dual.

Suppose we can improve on this asymmetric polytopal map with e = 6 edges (and hence 24 flags).
That is, assume e ≤ 5. Since each p-face really does have p distinct edges, and each q-valent vertex
really does lie on q distinct edges, this means v6 = v7 = · · · = 0 and f6 = f7 = · · · = 0. Thus

2e = 2v2 + 3v3 + 4v4 + 5v5 ≥ 2v (5)
2e = 2f2 + 3f3 + 4f4 + 5f5 ≥ 2f. (6)

Now we can enumerate the numerical possibilities by mild brute-force! Caution: there will be more
subtle geometric limitations.

7.
e f2 f3 f4 f5 f

5 2 2
5 1 1 1 3
5 1 2 3
5 2 1 3
5 3 1 4
5 2 2 4
5 5 5

4 2 2
4 2 1 3
4 1 2 3
4 4 4

3 2 2
3 3 3

2 2

8. So now we have something finite to work with. Notice that the restrictions on vertex degrees are exactly
of the same kind, by a dual argument.

But not all combinations will work out!

How many maps can you build with these limited possibilities? What is the genus for each? Are any
non-orientable? And, finally, do any have trivial symmetry?

9. Our work suggests that we do indeed have the smallest asymmetric 3-polytopeM. As we have men-
tioned, it is realized as a self-dual map on the sphere with v = 4 vertices, e = 6 edges and f = 4 faces
(one 2-gon, two 3-gons, one 4-gon).
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A separate calculation in Gap shows that the monodromy group G(M) has Schläfli type {12, 12} and
order

114721266401280000 ' 1.15× 1017.

Thus the minimal regular cover ofM is huge.

10. Where to go from here?

We need to double check that the smallest asymmetric map is unique to isomorphism. Then it will be
interesting to tackle the problem in higher ranks. (The situation in ranks 0, 1, 2 is clear.)

1.6 Working group “Radon-type theorems for lattice point sets”
Research Problem: Radon-type theorems for lattice point sets.
Group Members: This group consisted of four experienced researchers (Maria del Rio Francos, Natalia
Garcia Colin, Daniel Pellicer and Pablo Soberon).
Progress: We worked on the following problem from combinatorial geometry: Find the minimum positive
integer n such that for any setX of n points with integer coordinates in Euclidean space there exists a partition
of X in two sets Y1 and Y2 such that the intersection of the convex sets of Y1 and Y2 contains a point with
integer coordinates.

It was previously known that n is at least 11, and that it is at most 17. We analysed a set with 10 points
with no such partition, and tried to find one such set with 11 points, but this was unsuccessful.

Then we studied the proof of the fact that 17 points suffice and realised that, in some steps of this proof,
some strong conditions are used to conclude relatively weaker conclusions. This gives the idea that the proof
can be adapted so that these conditions are used in all their strength to show that n is at most 16.

We made several attempts on where to improve the proof, and obtained stronger lemmas than the ones
used in the paper that proves that n is less or equal to 17. It looked like we were on a right track, but at that
point time was over and our partial results were insufficient to make a claim on sets of 16 points.

2 Lectures
The workshop also featured fifteen 30-minute lectures scheduled in the mornings. The topics varied across the
board from polytopes, to hypertopes, to maps, to graphs, to designs, to finite geometries, and to configuration
spaces for mass partitions. The titles and abstracts for these lectures are included below in the order in which
the lectures were given.

Adriana Hansberg: On zero-sum Km over Z.
In this talk, we will show the following results: For every integer n ≥ 5 and every weighting function

f : E(Kn) 7→ {−1, 1} on the edges of the complete graph Kn such that

|
∑

e∈E(Kn)

f(e)| ≤ n(n− 1)/2− h(n),

where h(n) = 2(n+ 1) if n ≡ 0 mod 4 and h(n) = 2n if n 6≡ 0 mod 4, there is always a copy of K4 in Kn

for which
∑

e∈E(K4)
f(e) = 0, and this bound is sharp. However, if we consider any Kk with k ≥ 2, k 6= 4,

this is not true anymore: we show that there are infinitely many values of n such that there is a weighting
function f : E(Kn) 7→ {−1, 1} with

∑
e∈E(Kn)

f(e) = 0 and such that
∑

e∈E(Kk)
f(e) 6= 0 for every copy

of Kk in Kn. These results solve a problem raised by Caro and Yuster. This is a joint work with Yair Caro
and Amanda Montejano.

Gabriela Araujo-Pardo: The achromatic number of Kneser graphs and their relationship with Steiner
triple systems

In this talk we give the notion of complete colorings in graphs, achromatic number, Kneser graphs and
Steiner triple systems. Also, we explain how the Steiner triple systems solve the problem about the existence
of complete colorations on Knesser graphs that attain the upper bound of the achromatic number, where the



8

achromatic number of a graph G is the maximum integer value for the number of chromatic classes in a
complete and proper coloring of G.

Natalia Garcı́a-Colin: Towards a projective Upper/Lower bound theorem
The Upper and Lower bound Theorems in convex geometry deal, respectively, with the maximum and

minimum number of facets that a convex d-dimensional polytope with n vertices can have. In this talk we
will offer bounds for such numbers for what we refer to as the projective case of this problem. Namely, we
are interested in the following:

Problem 1: Given a set of n points in general position X ⊂ Rd what is the maximum number of facets
that conv(T(X)) can have, among all the possible permissible projective transformations T of X .

Problem 2: Given a set of n points in general position X ⊂ Rd what is the maximum number of vertices
that conv(T(X)) can have (as the support of the convex hull), among all the possible permissible projective
transformations T ? We define the projective class of a set of points X ⊂ Rd as the set of all possible
point configurations that are the image of X under a permissible projective transformation, and denote it [X].
Mimicking the polytope notation, let fk([X]) be the maximum number of k-faces that the convex hull of a
point configuration in the class [X] can have, i.e. fk([X]) = maxY ∈[X]fk(conv(Y)). Finally we denote as
fk(n), the minimum fk([X]) over all the possible configurations of n points, i.e. fk(n) = minX⊂Rd |X| =
nfk([X]).

With this notation, Problems 1 and 2 can be interpreted as the task of finding the value of fd?1(n) and
f0(n) respectively. Both problems are natural generalizations of the well-known McMullen’s problem: What
is the maximum n such that any set of n points in general position, X ⊂ Rd, can de mapped by a permissible
projective transformation onto the vertices of a convex polytope? These two problems are closely related.
Moreover, Problem 2 has a direct application to the problem of counting the number of Radon partitions
induced by a colouring.

Marston Conder: Symmetric Cubic Graphs as Cayley Graphs
A graph X is symmetric if its automorphism group acts transitively on the arcs of X , and s-arc-transitive

if its automorphism group acts transitively on the set of s-arcs of X . Furthermore, if the latter action is
sharply-transitive on s-arcs, then X is s-arc-regular. It was shown by Tutte (1947, 1959) that every finite
symmetric cubic graph is s-arc-regular for some s ≤ 5. Djokovič and Miller (1980) took this further by
showing that there are seven types of arc-transitive group action on finite cubic graphs, characterised by the
stabilisers of a vertex and an edge. The latter classification was refined by Conder and Nedela (2009), in terms
of what types of arc-transitive subgroup can occur in the automorphism group of X . In this talk we consider
the question of when a finite symmetric cubic graph can be a Cayley graph. We show that in five of the 17
Conder-Nedela classes, there is no Cayley graph, while in two others, every graph is a Cayley graph. In eight
of the remaining ten classes, we give necessary conditions on the order of the graph for it to be Cayley; there
is no such condition in the other two. Also we use covers (and the ‘Macbeath trick’) to show that in each of
those last ten classes, there are infinitely many Cayley graphs, and infinitely many non-Cayley graphs. This
research grew out of some recent discussions with Klavdija Kutnar and Dragan Marušič.

Gareth Jones: Edge-transitive maps
In 1997 Graver and Watkins partitioned edge-transitive maps into 14 classes, distinguished by the quotient

of each map by its full automorphism group. These classes include those of regular, chiral and just-edge-
transitive maps. I shall describe the possible topological and combinatorial properties of the maps in these
classes, including maps with boundary, together with the possibilities for their automorphism groups. In the
case of finite simple groups, the latter builds on results of Nuzhin and others relevant to regular maps (with a
small but important correction), and more recently of Leemans and Liebeck for chiral maps.

Peter Brooksbank: Orthogonal groups in characteristic 2 acting on polytopes of high rank
In a series of three papers, Monson and Schulte showed that, subject to some mild constraints, certain

families of real reflection groups can be reduced modulo odd primes to yield finite string C-subgroups of
orthogonal groups. Further, polytopes of any desired rank can be constructed this way. In this talk I will
show that the latter is also true for orthogonal groups defined over any non-prime field of characteristic 2.
Of course, the modular reduction method cannot be used for such groups, so the polytopes are constructed
from scratch using analogues of reflections. This is a report on recent joint work with J.T. Ferrara and Dimitri
Leemans.
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Jeremie Moerenhout: Chiral polytopes and groups of type PSL(2, q)

In terms of their symmetries, not many geometric objects have received more attention than polytopes.
Since ancient times, polytopes have been considered with great interest, not only for aesthetic reasons, but
also for scientific reasons. More recently, the theory of abstract polytopes, which generalizes the concept
of classical polytopes, has emerged as a powerful tool for studying symmetries. In the last decade, efforts
to classify highly symmetric polytopes, including chiral and regular ones, have highly increased. Given a
group Γ, a lot has been done in order to enumerate all polytopes of a certain type and which have Γ as their
group of symmetries. Many results have been obtained for almost simple groups and atlases for small groups
have been drawn up. However, not much is known about chiral polytopes, which are polytopes that have
all possible rotational symmetries but no reflection. In this talk, we will define the basic notions necessary
to understand the presentation. Then we will go through some techniques to prove the existence of chiral
polytopes whose automorphism group is isomorphic to an almost simple group with socle PSL(2, q).

Gabriel Cunningham: Non-flat regular polytopes and restrictions on chiral polytopes
An abstract polytope is flat if every facet is incident on every vertex. In this talk, we prove that no chiral

polytope has flat finite regular facets and finite regular vertex- figures. We then determine the three smallest
non-flat regular polytopes in each rank, and use this to show that for n ≥ 8, a chiral n-polytope has at least
48(n− 2)(n− 2)! flags.

Eric Ens: Block systems on the facets of toroidal hypertopes (Abstract not available.)

Maria Elisa Carrancho Fernandes: Small regular hypertopes of rank 3
We describe the smallest C-groups with complete diagram whose rank 3 residues are hypermaps of type

(n, n, n). It turns out that these C-groups are not hypertopes, indeed all rank 3 residues fail to be thin. We then
focus on rank 3 regular hypertopes. A characterization of thinness will be given and some infinite families of
“small” rank 3 regular hypertopes of type (n, n, n) will arise. This is a joint work with Michael Giudici.

Klara Stokes: Pentagonal geometries
Generalized polygons are Bruhat-Tits buildings of rank two. They can also be defined in terms of their

bipartite incidence graph, which has the property that the girth is twice the diameter. By the Feit-Higman
Theorem (1964), the only finite generalized polygons are thin (two points on each line or two lines on each
point) or the diameter is 3, 4, 6 or 8, corresponding to the finite projective planes, the generalized quadrangles,
the generalized hexagons and the generalized octagons, respectively. In particular there are no generalized
pentagons. An alternative way to generalize the pentagon was introduced by Simeon Ball et al. in [1]. In this
talk I will discuss what we know about these incidence geometries. This is joint work with Terry S. Griggs
and Tony Forbes, The Open University, UK.
[1] S. Ball, J. Bamberg, A. Devillers and K. Stokes. An alternative way to generalize the pentagon. J. Combin.
Des., 21:163179, 2013.
[2] T. S. Griggs and K. Stokes. On pentagonal geometries with block size 3, 4 or 5. Springer Proc. in Math.
& Stat., 159:147157, 2016.

Alonso Castillo-Ramirez: Cellular automata and finite groups.
Let G be a finite group and A a finite set. A cellular automaton is a transformation of the configuration

space AG that commutes with the natural action of G. We shall present some algebraic results on the monoid
of cellular automata overAG, and discuss some of the difficulties of extending these to a more general setting.

Patricio Ricardo Garcı́a-Vazquez: Flag-transitive biplanes with prime-squared points as difference
sets

It is well known that if G is an abelian group and D = (G,Dev(c)) is a (v, k, λ)-symmetric design for
some k-subset c of G, then c is (v, k, λ)-difference set in G. In this talk we will give a similar result for
(p2, k, 2)-biplanes with a primitive, flag-transitive automorphism group of affine type that characterizes them
as some difference sets in GF(p2).
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Maria Del Rio Francos: Embeddings of biplanes
Given a combinatorial designD and its incidence graph ID, the embedding ofD on a surface S is defined

by a transformation on the embedding of the graph ID on S. In this talk will be introduce this concepts to
describe the embedding of the possible biplanes known so far.

Pablo Soberón: Symmetries in configuration spaces for mass partition
We describe how the symmetries in configuration spaces for mass partition problems are the key to solving

such problems. In particular, we will focus on the following problem: Given positive integers r and d, and
d smooth finite measures in Rd, there is a partition of Rd into r convex sets that simultaneously splits each
measure evenly.

3 Book References
The following list of book references is an indication of the high level of activity in the workshop’s research
area. The list includes books that have already appeared, but also several others which are currently being
written.
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