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Consider the optimization problem
minyen {f(x) + g(Lx)} (1)
» f:H—RU{+00} and g : G — R U {+o0} are proper,
convex and lower semicontinuous functions

» H and G are real Hilbert spaces
» L :H — G is a linear continuous operator.

If (1) has an optimal solution X € H and

0 € sqri(dom g — L(dom f)),
the optimality conditions read:

0 € 9f(x) + L*0g(Lx)
hence there exists v € G such that:
—L*v € 0f(x) and v € 0g(Lx) (2).

If (2) holds, X is solves (1) and V solves the Fenchel dual problem:

max,eg{—f*(—L*v) — g*(v)}.
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Methods for solving the optimization problem

minxer{F(x) + g(Lx)} ().
Primal-dual splitting algorithms (Combettes, Chambolle, Pock,
Condat, Vu, Pesquet, Bot, etc.):

xkl = prox..¢ (xk — TL*(2yk — yk_l))

yhtt ProX g+ (yk + aka“) :

» the nosnmooth functions are evaluated separately through
their proximal operators

_ 1
prox,g(x) = argmin { £(») + 5_ly — xI?}
yeH T
= (Id+70f)71(x).
> the algorithm solves both primal and Fenchel dual problem
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ADMM (alternating direction method of multipliers):

XK1 e argmin Le(x, z, y*¥) = argmin {f(X) + £||Lx ok C—lkaz}
x€R" xERP 2
c
T = argmin LC(Xk+17z,yk) = argmin {g(z) + *HLXkH —z+ C—lykllz}
zeRm zERm 2
Y = R (L - 2k,
where

Le(x,2,y) = F(x) + £(2) + {y. Lx = 2) + 5 | Lx = 2|

is the augmented Lagrangian associated to (1).
» Notice that the first minimization is not a proximal step, due to L.

> in very simple situations, like f(x) = (1/2)|/x||?, the first
minimization requires (Id +L*L)~!

Proximal ADMM overcomes these limitations: add some extra proximal
terms in the above minimizations.
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Main results presented in this talk:

» a unifying scheme: an algorithm for solving monotone
inclusions which recovers many of the algorithms mentioned
above

» convergence analysis
» several algorithms from the literature as special instances

> convergence rates for the iterates: variable metric techniques
with strategies based on suitable choice of dynamical step
sizes
> convergence rates
» several algorithms from the literature as particular cases
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Problem formulation

The aim is to solve the primal monotone inclusion
find x € H such that 0 € Ax + (L* o Bo L)x + Cx,
together with its dual monotone inclusion
find v € G such that 3x € H : —L*v € Ax + Cx and v € B(Lx).
» A:H = H and B : G = G are maximally monotone operators

» C:H — H is n-cocoercive: (x —y, Cx — Cy) > n|Cx — Cy|?
» L:H — G is linear and continuous

We are looking for a primal-dual solution (x,v) € H x G:

— L*v € Ax+ Cx and v € B(Lx).
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Algorithm

-1
Xkl = (cL*L + Mf + A) {cL*(zk —cyR) + MfxR - ka}
-1
PAREE (Id +c Mk + CilB> [Lx’”r1 +clyk 4 cflMé‘zk}
yk+1 — yk + C(LXk+1 _ Zk+1).

v

My € S.(H), Mk € S,(G) for all k

S4+(H) : the operators U : H — H which are linear,
continuous, self-adjoint and positive semidefinite

cL*L + Mf € Py, (H) for all k, with a >0

Pa(H) :={U €S (H): U=ald ie. (Ux,x) > alx|? Vx € H}.

v

v

v

7 E.R. Csetnek ADMM for monotone operators: convergence analysis and rates



Algorithm

-1
KA = (el L ME+ A) el (2 = e Thyk) + Mk — O]
-1
= (d+eIME + cT1B) L g ey R Mg 2]

yk+1 — yk +C(LXk+1 —Zk+1).

The algorithm is well defined:
if Ué€ Po(H) a>0,A:H = H maximally monotone,

then:
V x € H, 3p € H such that p = (U + A)"x.

This follows from
(U+A)T=(d+UtA)Tou?
and
U~'A is maximally monotone in (#, (-,-)y)

where
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The first two relations are equivalent to
0 € A(Hh) b cL* (LM — 2K e 7Ly k) 4 ME (KT — xK) 4 C(x5),
0 € BZK 4 (—Lx 1 4 251 — 7 1yk) 4 ME (25 — 25).

Particular cases: Proximal ADMM and classical ADMM
Take the variational case

A=0f,B=0g and C = Vh.
0 € OF (XM 1) el * (Lx 1 — 2K 4 71y K) 4 MF (XK — xR+ V h(xK)

is equivalent to

1
XK+ = argmin {f(x)+<x_xk, Vh(xk)>+%||Lx—zk+c_1yk||2+§||x—xk||ﬁ/,lk}.
xEH

while
0 € Dg (1) + c(—LxkHt 4 251 — o1y k) 4 Mk (R — )

is equivalent to

. c _ 1
2441 = argmin {g(z) + STz TP 4 Sz - zkm} :
zeG 2
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This particular case leads to

c 1
X = argmin, cqy { F(X)+(x—x5, Vh(xk)>+§||Lx—zk+c*1yk\|2+§||x—xk||%/,1k}

. c _ 1
ZKk+l — argmin, g {g(z) + §||ka+1 —z+c NP+ EHZ — zk||ﬁ42k}
YR = yk g o(LxR L - gk,
in connection with
minyen {f(x) + g(Lx) + h(x)} (1).
» h=0and Mf = M§ = 0 leads to the classical ADMM

» h=0 and M, MX constant leads to the Proximal ADMM:
Shefi-Teboulle 2014, Toh, Sun, etc.

> the general case as above: Banert, Bot, C., 2017
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The role of M;

A special choice of M; induces a proximal step in the minimization

. c _ 1
Xkl — argmin, .4, {f(x)—i—(x—xk, Vh(xk))+§||Lx—zk+c 1yk\|2+§||x—xk||ﬁ/,1k}

Take 1
My := =1d —cL*L for 7 >0
T

then one obtains the proximal step:

X1 = (1d +70f) [Tel* (2" — c71y*) + x* — Tel* Lx* — 7V h(x")] .
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Primal-dual algorithms as special cases

Algorithm

N (A R s A)71 lcL* (2" = c7hyk) + Mfx — K|
PAREIE (Id +c M5 + c’lB)i1 [ka“ +clyk 4 c’lMﬁzk}
YL = kg (LR R,

1
For Mf := = 1d —cL*L for 7 > 0 and MX =0 we get
T

yk—i—l = Jpi (yk + chk“)
k2 Joa (Xk—f—l o Cxkt TL*(2yk+1 . yk))
» Vi 2013

» the case C = 0: Bot, C., Heinrich 2013
» the variational case: Condat 2013, Cambolle-Pock 2011
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Algorithm

-1
KA = (el L ME+ A) T [elr (2 = e Thyk) 4+ Mk — ock]
-1
ZK = (Id +c MK + C_lB> [kaH +clyf 4 c_ll\/lgzk}
yk+1 — yk + C(ka+1 _ Zk+1)_

Convergence result: assume

> the set of primal-dual solutions is nonempty

> Mf— ﬁ Id € S;(H)

> Mf € Si(H), Mf = M, M5 € 84(G), M§ = My
Suppose that one of the following assumptions holds:
(1) Mf = 2 1d € Pay(H) with ag > 0 for all k > 0;
(1) L*L € Po(H) and MY € Po,(G), o, a2 > 0 for all k > 0.
Then (x*, 2%, y*) >0 converges weakly to (x, Lx, v), where
—L*v € Ax + Cx and v € B(Lx).
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The case C =0

Algorithm

A= (el L+ M+ A)_l [eL* (2" = 71y %) + Mfx]

A = (d+eTME c—ls)_l L cThyk s M
YR ok (LR gk,

Convergence result: assume

> the set of primal-dual solutions is nonempty

> M€ SL(H), Mf = M{™, My € Si(G), My = My™
Suppose that one of the following assumptions holds:

(1) ME € P, (H) with a; > 0 for all k > 0;

(I) L*L € Po(H) and Mk € P, (G), o, > 0 for all k >0,
() L*L € Po(H) with a > 0 and 2M5T! = M = M5 for all k.
Then (x*, z%, y*) >0 converges weakly to (x, Lx, v), where
—L*v € Ax and v € B(Lx).
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The role of variable M

induces dynamic step sizes in the algorithm and allows to
accelerate the convergence behavior.

Algorithm
(accelerated version)

— (TeLL* + M+ BN T [—rL(2f — 7 xK) + MEyK]

0 X 0k
K1) L +1 Kk k
( h\ > y T+ \ Cx

+ \ (Id +>\Tk+1A hH [fL*ykJr1 + )\Tkjrllxk — x4

Thk+1
kL — gk g Tl (7L*yk+1 _ zk+1)
k

)

where
> X\, 7k, 0k > 0 for all k > 0
> T LL* + MY € P, (G) for a > 0 for all k > 0.
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Particular instances (accelerated primal-dual algorithms)

The choice
mlL* + Mf = o, M 1d Yk >0
leads to
Tk+1 *
= Jra/na [Xk + TJr <_I— yk+1 - CXk)}
yk2 — yy Bt {yk—f—l +opal (Xk+1 + 9k+1(xk+1 _ Xk))]

» Bot, C., Heinrich, Hendrich 2015

» variational case and C = 0: Chambolle-Pock 2011
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Particular instances (accelerated proximal ADMM)

The variational case

A=0f,B=09g,C=0

leads to
. " _ 2 1
y*t = argmin [g*(y Ly +2" =7 04"+ Sy —ykllﬁﬂk}
y€G 2
2"t = @, argmin [f*( )—I——Tk+1 | =Ly =z + 7 LXK ]
zEH
(0/( o 1) L*yk+1
xkl = xk gy Tk+1 ( Lryktt zk+1).

Ok
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O(%) convergence rate for the sequence (x*)xen

Assume

> the set of primal-dual solutions is nonempty
A+ C is ~y-strongly monotone, v > 0
Uty < 279, A > u+ 1, oori||L]]? < 1,

0, = for all k
V1T A (27 HTks1)

Thra = OkTha1, k1 = 0) toy for all k
> Ll + MK = 7 Lid for all k
LU S MS e AL MG for all k.

Tk+1 Tk+2

Then there exists ¢ > 0 such that

vV vy

v

c
||Xk — x| < P Vk > 2,
where x is the unique solution of the inclusion:

0€ Ax+ (L*oBo L)x + Cx.
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