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Structured nonconvex optimization

composite problem separable problem

minimize ¢1(s) + p2(s) minimize f(r)+ g(2)
subject to Ax+ Bz =10

v

templates for large-scale structured optimization

v

©1, Y2, f, g can be nonsmooth
» numerous applications

» machine learning

» statistics

» signal /image processing,

» control. ..

v

traditional algorithms usually do not apply
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Structured nonconvex optimization
composite problem separable problem
minimize ¢1(s) + pa(s) minimize f(z)+ g(z)
subject to Ax+ Bz =10

» resurgence of proximal algorithms (or operator splitting methods)
» reduce complex problem into a series of simpler subproblems

» perhaps most popular proximal algorithms

Douglas-Rachford Splitting (DRS)
Alternating Direction Method of Multipliers (ADMM)

» elegant, complete theory for convex problems
(monotone operators, fixed-point iterations, Fejér sequences. .. 1)

1Bauschke H.H. and Combettes P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer 2011
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Contribution

composite problem separable problem
minimize ¢1(s) + pa(s) minimize f(z)+ g(z)
subject to Ax+ Bz =10
DRS & ADMM
» being fixed point iterations, DRS & ADMM can be agonizingly slow
» nonconvex problems: incomplete theory, results empirical or local''?
» global results have recently emerged (see next slides)
this talk
» global convergence theory for nonconvex problems based on the

Douglas-Rachford Envelope (DRE)
» more importantly, new, robust, faster algorithms

1 . . . P
R. Hesse and R. Luke Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems.

SIAM Opt. 23(4) 2013
2F. Artacho, J. Borwein and M. Tam Recent Results on Douglas—Rachford Methods for Combinatorial Optimization Problems.

JOTA 163(1) 2014
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Many applications...

» ADMM: amenable for distributed formulations (via consensus)
» Nonconvex problems: no need for convex relaxation
rank constraints, 0/Schatten-norms, (mixed-) integer programming

Some examples:

» hybrid system MPC!
distributed sparse principal component analysis (SPCA)?
» dictionary learning3
» background-foreground extraction*
» sparse representations (signal processing)6

v

5

lTakapoui R., Moehle N., Boyd S. and Bemporad A. A simple effective heuristic for embedded mixed-integer quadratic pro-
gramming. |IEEE ACC 2016

Hajinezhad D. and Hong M. Nonconvex ADMM for distributed sparse principal component analysis. GlobalSIP 2015

Wai H. T., Chang T. H. and Scaglione A. A consensus-based decentralized algorithm for non-convex optimization with appli-
cation to dictionary learning. ICASSP 2015

4Chartrand R. Nonconvex splitting for regularized low-rank + sparse decomposition. IEEE TSP 2012

5Yang L., Pong T. K. and Chen X. ADMM for a class of nonconvex and nonsmooth problems with applications to background/-
foreground extraction. SIAM 2017

6Chartrand R. and Wohlberg B. A nonconvex ADMM algorithm for group sparsity with sparse groups. ICASSP 2013
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DRS for nonconvex problems

to solve
minimize ¢;(s) + pa(s)

starting from s € IR", iterate

u = prox,, (s
v € Prox.,, (2u — s)
sT=s+Av—u)

standing assumptions
1. o1 and @9 are prox-friendly, however both can be nonconvex
2. dom ¢ is affine and V¢ is Lipschitz on dom ¢

3. p2+ %H -||? is bounded below for some v > 0 (prox-bounded)
4. dom py C dom ¢,
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Structured Optimization

Tools: proximal map

Only proximal operations on ¢ and @3:
_ : 1 2
prox.;(s) = argmin {h(w) + ZHw — s }, v >0
w

> a generalized projection: for h = é¢, prox,;, = Il¢

Properties

v

well defined for small ~

v

Lipschitz for ¢1 (for small 7), but set-valued for ¢,

v

“prox-friendly” (easily proximable) in many useful applications

v

the value function is the Moreau envelope

W(s) = min {h(w) + 5w — s[*}

v

h7 is locally Lipschitz in general, even smooth for convex h
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Douglas-Rachford Envelope

“Integrating” the fixed-point residual

u = prox.,, (s)

v = Pprox,,, (2u — s)

minimize ¢ = @1 + P2 {
convex nonsmooth case with Douglas-Rachford
» stationary points characterized by © — v =0

» Douglas-Rachford envelope discovered for convex problems?

Py (s) = 0] () = VeI ()1 + @3 (s — 29V ] (5))

real-valued function with gradient proportional to the DR-residual
(for p1 € C?, v < 1/Ly,)

R (s) = M, (s)(u—v) M, (s) =T —2yV?p](s) = 0

» used to devise accelerated DRS (ADMM via dual?)

1Patrinos P., Stella L. and Bemporad A. Douglas-Rachford splitting: complexity estimates and accelerated variants. CDC 2014
2Pejcic I. and Jones C. Accelerated ADMM based on accelerated Douglas-Rachford splitting. ECC 2016
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Douglas-Rachford Envelope

“Integrating” the fixed-point residual

oy (s) = @1 () = IIVeT ()17 + @3 (s — 29V ] (5))

If
» 1 :domy; — IR has L, -Lipschitz gradient
» dom ¢, is affine and contains dom -
» no convexity assumptions!

then for v < 1/L,,,
» inf p = inf <p7DR

DR

> s € argmin gy

<= prox., (s) € argmin

TPl

Minimizing ¢ is equivalent to minimizing PR
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Douglas-Rachford Envelope

“Integrating” the fixed-point residual

oy (s) = @1 () = IIVeT ()17 + @3 (s — 29V ] (5))

If
» 1 :domy; — IR has L, -Lipschitz gradient
» dom ¢, is affine and contains dom -
» no convexity assumptions!

then for v < 1/L,,,
» inf p = inf <p7DR

» s € argmin PR <= prox s) € argmin
g Py P g ®

Ye1
M. . P . . I .. .« . DR
inimizing ¢ is equivalent to minimizing ¢

Notation: for 2 € dom 1, V() is the unique in dom 4,0! s.t.

e1(y) = o1(z) + (Vi (2),y — ) + o(|ly — #||*) y € dom
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Douglas-Rachford Envelope

DRE as an Augmented Lagrangian

» alternative expression

v 1

P = inf {ei(w) + eaw) + (Ver(u).w —u) + & flw —

where u = prox., (s).
> minimum attained at v € prox. ,(2u — s):

P71 (s) = @1 (u) + 2(v) + (Veor (), v — ) + 55 [Jv — ul|?
> apparently,
PR (s) = Ly(u,v,y) for y=—Vii(u)
where L. is the augmented Lagrangian relative to

minimize ¢;(z)+ p2(2) subject to ===z
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Douglas-Rachford Envelope

A new tool for analyzing convergence

Key property: sufficient decrease after one DRS iteration

v¢2( ol

sT=s+Av—u)

u = prox., (s)
{v € prox.... (2u — s) <p7DR(s+) < @PR(s) —cllu—v||? Fe=c(y,A) >0

oD (s)
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Douglas-Rachford Envelope

A new tool for analyzing convergence

Key property: sufficient decrease after one DRS iteration

u = prox., (s)
v € prox:;(Zu — ) <p7DR(s+) < ng(s) —cllu—v|* Je=c(y,A) >0
sT=s+Av—u)

oD (s)

\VZ

D)
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Douglas-Rachford Envelope

A new tool for analyzing convergence

Key property: sufficient decrease after one DRS iteration

u = prox., (s)
{v € prox:;(Zu— s) @?R(s+) < @QR(S) —cllu—v|* Je=c(y,A) >0

sT=s+Av—u)

» nonconvex DRS studied only recently, using the DRE
» only A =1 (plain DRS) and A = 2 (PRS) analyzed
» bounds on v based on enforcing ¢(,A) > 0
In this work,
» study extended to A # 1,2

» much less conservative upper bound on
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Douglas-Rachford Envelope

A new tool for analyzing convergence
Nicer results if we can improve the quadratic lower bound
%l — I < hiy) - h(@) — (Vh(z),y — o) < Bl —y]?

for some oy, € [~ L, Ly].

h(z) = 42* + sin(5x) has
Ly =33
op = —17

key inequality: if o, < 0, for any L > Ly with L+o0, >0
h(y) > h(@)+(Vh(z),y—z) + 5725 |y — 2l* + g5 VAly) = V()|
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Douglas-Rachford Envelope

A new tool for analyzing convergence
Nicer results if we can improve the quadratic lower bound
Tl =yl < hly) = h(z) = (VA(z),y — ) < Hllz —

for some oy, € [—Lp, Ly).

h(z) = 42* + sin(5x) has
Vo L, =33
! op = —17

key inequality: if o, < 0, for any L > Ly with L+o0, >0

yl|?

h(y) = h(@)+H(Vh(@), y—2) + gtesly — @l® + gign I VAly) = Vh(z)|?
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Douglas-Rachford Envelope

A new tool for analyzing convergence

» )\ = 1: nonconvex DRS first studied by Li & Pong,! using the DRE

new bound much less conservative
Range of 4 for A =1
2 plays no role

V77 SR
s > oo /Loy €11
| —— Li-Pong?

ar : > larger 04, /L,, = larger bound on
3 gl

1/ : “ B ”

/2L i > 1 “mildly nonconvex™:
: any v < /L, gives decrease

1/ar § |
] > can always use 7 < 1/(2L,,)

-1 ~0.5 0 0.5 1

convexity/Lipschitz ratio o/L

B Li G. and Pong T.K. Douglas—Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems.
Mathematical Programming 2016
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Douglas-Rachford Envelope

A new tool for analyzing convergence

» )\ = 1: nonconvex DRS first studied by Li & Pong,! using the DRE

» )\ = 2: nonconvex PRS studied by Li, Liu & Pong,? using the DRE

new bound much less conservative
Range of v for A = 2 (PRS)

1L
3
/ar > 5 plays no role
Vo » can even choose 2 < A\ < 4!
1/ar,
-1 0.5 0 0.5 1

convexity/Lipschitz ratio 7/L

1 Li G. and Pong T.K. Douglas—Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems.
Mathematical Programming 2016

2Li G., Liu T. and Pong T.K. Peaceman-Rachford splitting for a class of nonconvex optimization problems. Computational
Optimization and Applications 2017
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Douglas-Rachford Envelope

Regularity

» if o1 is C2 and (s is convex, the DRE is C'
» for nonconvex 1, 2, although not diff.ble, the DRE is locally
Lipschitz
Furthermore, under mild conditions
» it is C'! around minima
» and even twice diff.ble there!

The DRE leads to novel fast DRS-based algorithms
for minimizing ¢ (this talk)
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Douglas-Rachford Line-search Algorithm

A Lyapunov function for globalizing convergence

Choose A, ensuring sufficient decrease, 0 < o < ¢(y,A), and s € R™
1: u + prox,, (s)
v < prox. ., (2u — s)
Compute a direction d € dom p! and set 7 <1
sT s+ (1—7)A\v—u)+7d
if PPR(s) < @D (s) — oflo — ull® then
set s < s* and go to step 1.
else
set 7 < 7/2 and go to step 4.

@ HH® N

~

» step taken along convex combination of DR and custom directions
» continuity of ¢, + suff. decrease of DR direction
= condition at step 5 passed for 7 small enough

The DRE
» globalizes convergence for any d
» favors fast directions, thanks to local properties of the DRE



Douglas-Rachford Line-search Algorithm

A Lyapunov function for globalizing convergence

Convergence result

Suppose that the standing assumptions hold and ~, A are s.t. ¢(, A) > 0.
1. the sequence of DR-residuals (|[v* — u¥|)), o is square-summable.

2. all cluster points of (u*), .. (vF),cn are stationary for ¢

» result holds for any sequence of directions in dom f|

» under extra mild assumptions (coercivity, KL property): convergence
of entire sequence, linear convergence
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Douglas-Rachford Line-search Algorithm

Examples of directions

DR-residual custom d

stT=s+ (1—-7)\v—u)+7d

convex combination

Key idea: d selected as fast direction for nonlinear equation
R.(s)=0

where R, (s) = v — u is the DR-residual.

> If d are “fast”, eventually 7 = 1 when close to solution

» and algorithm reduces to the “fast” scheme s = s + d.

14/28



Douglas-Rachford Line-search Algorithm

Examples of directions

DR-residual custom d

stT=s+ (1—-7)\v—u)+7d
I convex combination I

Possible choices:

» Newton-type directions
d=—-HR,(s), H is n x n matrix

» quasi-Newton (BFGS, Broyden...): only linear algebra
» limited-memory quasi-Newton (L-BFGS): only scalar products

» Nesterov-type acceleration (next slide): negligible operations

All such directions are feasible: d € dom ap!
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Douglas-Rachford Line-search Algorithm

Examples of directions

DR-residual custom d

stT=s+ (1—-7)\v—u)+7d

convex combination

Nesterov-like acceleration:
momentum term

—_—~
d:A(U—u)—i—Z—;%(uﬁ'fw) where w = s+ (v — u)

v

whenever 7 = 1 is accepted, iteration becomes Accelerated DRS?
» (1 convex quadratic, ¢ convex == O(1/k?) rate

v

v and/or @y nonconvex: no guarantee of acceleration

v

but algorithm is globally convergent

v

in practice, when (1 is not concave it seems we have acceleration

lPatrinos P., Stella L. and Bemporad A. Douglas-Rachford splitting: Complexity estimates and accelerated variants. 53 |EEE
CDC, 2014.
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Douglas-Rachford Line-search Algorithm

Superlinear convergence

Superlinear convergence result

Suppose that the basic assumptions hold and that
1. (u¥), o converges to a strong local minimum u* of ¢
2. ¢y is C? around u*

3. oo is prox-regular at u* for —V (u*),
and has generalized quadratic second-order epiderivative.

If the directions satisfy the Dennis-Moré condition (e.g., Broyden)

'ukfuk+JR,y(s*)dk -
— =),

lim
[EAl

k— o0
S4 being the limit point of s* then
> unit stepsize 7, = 1 is eventually always accepted, and

> the sequence (s*), . converges superlinearly to s*.




Separable problems

» ADMM first interpreted DRS on the dual (Eckstein & Bertsekas)
» No convexity: we interpret ADMM as DRS on the primal

minimize f(z)+ g(z)
subject to Az + Bz =10
> rewrite as
mir%:igrgize f(x)+g(2)
subject to Ar=b—s5,Bz=35
» minimizing first with respect to z, 2z
minimize (Af)(b—s)+ (Bg)(s)
where
(Lh)(s) = ir;f {h(z) | Lx = s}

is the image function
16 /28



ADMM & DRS

separable problem image formulation
minimize f(z)+ g(z) minimize (Bg)(s) + (Af)(b—s)
. S | S —— e O ——
subject to Ax+ Bz =10 ©1(s) wa(s)
» apply DRS to equivalent image formulation
vt € prox.,, (2u — s)
(update order shifted) ¢ s™ =s+vT —u
ut = prox,,, (s*)

» use proximal calculus rules
vt =b— Az™ where 2t Eargminx{f(x)—i—%HAa:—b—i—s\F}
ut = Bzt where 2t € argminz{g(z) - %HBZ — 5H2}

» introduce .
y=—Vi(v) = 'y_l(Bz )

and eliminate s. ..
17/28



ADMM & DRS

separable problem image formulation
minimize f(z)+ g(z) minimize (Bg)(s) + (Af)(b—s)
. S | S —— N———
subject to Ax+ Bz =10 ©1(s) wa(s)

» ...to arrive at ADMM

zt = argmin_ Ls(z, z,y)

zt =argmin, Lg(z™, 2, y)

yt =y + B(AzxT + Bzt —b)

» where § =1/v and

Lol ,9) = f(z) + 9(2) + {y, Av -+ Bz~ ) + | Az + Bz b}

is the augmented Lagrangian
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ADMM & DRS

separable problem image formulation
minimize f(z)+ g(z) minimize (Bg)(s) + (Af)(b—s)
. S | S —— N———
subject to Ax+ Bz =10 ©1(s) wa(s)

» equivalence between DRE and augmented Lagrangian

r € argmin, {f(x) + gHAx +s— bHQ}
DR _
‘Pl/@’(s) = Ls(z,z,y) for ¢4 = B(Bz — s)
z € argmin, Lg(z,2,y)

» sufficient decrease on DRE becomes (for simplicity, A = 1)
Ls(xt, 2T y") < Ls(z,2,y) — c| Az + Bz — b|)?

rT=argmin, Ls(z, 2, y)
for ADMM updates ¢ z*= argmin_ Lg(z7, 2,y)
yt=y+pB(Az" + Bz —b)
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ADMM-LS

,

Choose 3 large enough ensuring sufficient decrease, 0 < o < ¢(8)
1: Compute a direction d € Bdom g/ and set 7 + 1

y*? —y— Br(Az+ Bz — b+ d)

2T < argmin, Ls(z, z,y"/?)

yt — y"? + B(Az + Bzt —b)

"+ argmin, Lg(z, 2T, yT)

if Lo(xT,2T,yT) < Ls(x,2,y) —o||Az + Bz — b||*> then
set z < 21,2 ¢ 2%,y « yT and go to step 1.

else
set 7 <— 7/2 and go to step 2.

FINECIE I CORTD

&

» algorithm is DRLS applied to image formulation

» 7 =0 = only steps 3,4,5 needed: algorithm equivalent to ADMM
(after update order shift)



ADMM

Convergence result

Suppose that
1. Bdomg D b— Adom f
2. (Byg) is Lipschitz smooth on Bdom g (see next slide)
3. ADMM subproblems level bounded wrt minimization variable
4. B is s.t. ¢(fB) > 0 (always exists)

Then
1. square-summable ADMM-residuals (||Az* + Bz" — b||),.cn
2. all cluster points of (xk,zk,yk)kE]N satisfy KKT

0cdf(x*)+ATy*, 0€df(z*)+B'y*, Az* + Bz*=b

» much less restrictive than existing results (see next slides)
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ADMM

Sufficient conditions for
p1(s) = inf {g(2) | Bz = s}

to be Lipschitz smooth on its domain: g Lipschitz smooth and

» B full column rank: choose

L
B> 2Ly, where L, = )\min(éTB)
» g convex, B full row rank: choose
B >1L h L Ly
where = —
a1 U Amin(BBT)

» z(s) = argmin, {g(z) | Bz = s} is Lipschitz on B dom g*

lstanding assumption in Wang, Yin, Zeng (2015), for both z(s) and z(s) = argmin, {f(z) | Az =b — s}
20/28



ADMM

Sufficient conditions for
p1(s) = inf {g(2) | Bz = s}

to be Lipschitz smooth on its domain:
alternatively,

> g “B-smooth™:

[(Vg(z) — Vg(y),z — y)| < Ly sl Bz — y)|”

only for z,y such that Vg(z), Vg(y) € range BT

In any case, L, can be retrieved adaptively!

1
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ADMM

Comparisons (bringing all under the same framework. . .)

’ Ours ‘ Hong et al.> | Li and Pong* ‘Wang et al.’ ‘ Goncalves et al.’
f cvx or smooth
g “B-smooth” Vg Lipsch. Vg Lipsch. Vg Lipsch. | Izt Vg Lipsch.
dom g affine geC? g lower-C?
z(s) loc. bound. A=1 A full row rank | z(s) Lipsch.
Lpg level bound. in z | B full col. rank B=1I z(s) Lipsch. | B full col. rank

z(s) = argmin, {f(z) | Az = s} and z(s) = argmin, {g(z) | Bz = s}

Notice that
> A full column rank = z(s) Lipschitz = z(s) locally bounded
» B full column rank = z(s) Lipschitz & Lz level bounded in z

3M. Hong, Z. Luo and M. Razaviyayn Convergence Analysis of Alternating Direction Method of Multipliers for a Family of
Nonconvex Problems SIAM Opt. 26(1) 2016

4G, Li and T.K. Pong Global Convergence of Splitting Methods for Nonconvex Composite Optimization. SIAM Opt. 25(4) 2015

5Y. Wang, W. Yin and J. Zeng Global Convergence of ADMM in Nonconvex Nonsmooth Optimization arXiv:1511.06324 2015

6M. Gongalves, J. Melo and R. Monteiro Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter

for solving nonconvex linearly constrained problems arXiv:1702.01850 2017
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ADMM

Comparisons (bringing all under the same framework. . .)

’ Ours ‘ Hong et al.> | Li and Pong* ‘Wang et al.’ ‘ Goncalves et al.’ ‘
(V7 S
| = Ours
i Hong et al. / Li-Pong
3ar | Copitm el upper bound for 1/s (the higher the better)
/a1 :
3 » the nonsmooth function plays no role
iz 3 » [ is the Lipschitz constant in the DRS-
3 equivalent problem (L = L(gy))
} ‘ ‘ » ours is the same bound as v = 1/5 in DRS
-1 —0.5 0 05 1

convexity/Lipschitz ratio /L

3M. Hong, Z. Luo and M. Razaviyayn Convergence Analysis of Alternating Direction Method of Multipliers for a Family of
Nonconvex Problems SIAM Opt. 26(1) 2016

4G, Li and T.K. Pong Global Convergence of Splitting Methods for Nonconvex Composite Optimization. SIAM Opt. 25(4) 2015
5Y. Wang, W. Yin and J. Zeng Global Convergence of ADMM in Nonconvex Nonsmooth Optimization arXiv:1511.06324 2015

M. Gongalves, J. Melo and R. Monteiro Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter
for solving nonconvex linearly constrained problems arXiv:1702.01850 2017
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Matrix decomposition

Split a signal S into a sparse X and low-rank Y:
minimize 3| X +Y — S|?+ X[ X|o
subject to rank(Y) <r

Example: separate foreground objects from background in a sequence of
video frames

» S is a matrix where each column is a video frame

» the background is mainly constant over time = Y low rank
» foreground moving objects = X sparse




Examples

» S contains 100 frames from the ShoppingMall dataset
» r=1,A=>5-10"3, 8192000 variables

102 | —DRS H

— A-DRS
—— DR-LBFGS

[a'

& 102 f i

10—6 | | | |
0 200 400 600 800 1,000
SVDs

Cost achieved:

DRS = 4.1330 - 103, A-DRS = 4.1118 - 103, DR-LBFGS = 4.0556 -

102
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Sparse PCA

maximize (z,Xx)

subject to ||z[j2 =1, zllo <k

» ¥ = AT A covariance matrix of data matrix A € R"™*"
» explain as much variability in data by using only k < n variables

» DRLS is readily applicable

v

f(z) = —(z, ¥x) nonconvex (concave)

g models intersection of unit {2 sphere with ¢y ball (nonconvex)

v
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Sparse PCA example

SPCA path
explained variance iterations
1r- 1,200
mmm DRS
1.000 = DR-LBFGS
0.8 |-
800 -
0.6 - 600 -
400 -
0.4
200 L
-e-DRS 200 I I
=4 DR-LBFGS I I I
() 2 1 1 1 | () ﬂ H H H H H ﬂ
0 100 200 300 400 500 5 60 115 170 225 280 335 390 445 500

max cardinality & max cardinality &



Consensus SPCA

centralized SPCA formulation

minimize — ||Az|3

subject to ||z]j2 =1, [zllo < &

distributed SPCA formulation: introduce copies of x1,...,xy of z

filxs)

N —_—-
minimize Z —HAM%H% +9(2)
i=1
subject to z; = 2

the problem is in ADMM form

» data is distributed across different agents/workers or A is huge
» each term ||A;z;||? can be prox-ed separately
» no exchange of data A; occurs, only variables

26 /28



Consensus SPCA: example

» each A € R™*" sparse, randomly generated
» n = 100,000 features, m = 50,000 data points
» rows are split into N subsets

Computing prox of —||A;z;||? requires factoring (once)

I —~yAA] € Rmixm

v

Cholesky factorization (e.g., using 1d1chol) O(m3)

7

N = 50 workers = m; = 1,000, ~ 0.03 seconds

v

» N =5 workers = m; = 10,000, ~ 7 seconds

v

N =1 workers = mq = m = 50,000, > 1 hour

27 /28



Consensus SPCA

N = 5 workers
10" g ;

E — ADMM E
100 F — ADMM-LBFGS |4
107! 4
% 1072 -
Rl 3
1 e
fi 1074 g -
107° ¢ ]
1075 1

1077, 100 200 300 200 500

iterations
final (z,Xz) iterations

ADMM 183 472
ADMM-LBFGS 185 138
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Consensus SPCA

N = 10 workers

10! ;
— ADMM E
10° — ADMM-LBFGS 3
?
Q
+
QH
=
1077(; 2(3(1 400 ()’(‘)() s[‘m 1,(‘100 1.5(10 1,400
iterations
final (z,3z) iterations
ADMM 181 1380
ADMM-LBFGS 187 239
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Consensus SPCA

N = 25 workers

I I
— ADMM ]
100 | — ADMM-LBFGS

||Azk + BzF — b

7L I I I | | ]
0 500 1,000 1,500 2,000 2,500 3,000

iterations
final (z,3z) iterations
ADMM 169 2636
ADMM-LBFGS 180 379

28/28



Consensus SPCA

N = 50 workers

10! ; ;
— ADMM i
100 | — ADMM-LBFGS 3

|Azk + B2k — b

7L I |
10 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

iterations

final (z,3z) iterations
ADMM 168 4000*
ADMM-LBFGS 175 521

*reached maximum number of iterations 28 /28
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N = 100 workers
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final (z,3z) iterations
ADMM 95 4000*
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*reached maximum number of iterations 2828
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