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Simplified Block-Iterative Splitting: Problem Setting
e Hilbert spaces ‘H,, H,,..., H,
e Maximal monotone operators T. : ' H. = 'H. Viel.n

e Continuous linear maps L, :' H, > H, Viel.n

Problem: find xe™, : {0e) LT (LX)
B

e As in previous talk, but expressed as a single inclusion
involving only one group of operators
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Simplified Block-Iterative Splitting

e Define the Kuhn-Tucker set

:{(z,wl,...,

e Whenever (z,w,,...,w.) e Z, the vector z solves our problem

W eT,(L2) Vieln, 3 Lw =o}

e Given (x,V.) € Graph(T.) Viel.n, define
gp(z,wl,...,wn):an:<Liz—xi Y, —Wi>
:>I_go(z,wl,...,wn)§0 vV(z,w,...,w )e”Z
(follows from monotonicity of T,,...,T.)
e o(-) is affine on the linear subspace K given by Zn Lw. =0
since quadratic terms are " (L;z,—w,) = <z > L ,> (z,0)

e \We will operate our algorithm in I — more restrictive than
previous talk; will require projections onto C
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Valid Inequalities for Z

Whenever y. e T.(x.) Viel.n,

o(Z,W,,...,W. )= ZLZ X, Y. — <O v(z,W,,...,W )eZ

@ 1s affine
. H={p|e(p)=0j
p(p)<0 VpeZ

But also: these inequalities fully characterize Z within £:
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Cutting Off an Arbitrary Point in IC\Z
e Take any p=(Z,W,,...,W ) e
e For each 1 €1..n, compute the unique proximal decomposition

(x.,y.) e Graph(T.) : x+cy.=LZ+cw for some c >0, hence

o(Z,W,...,W,) = Z <Li7_xi7yi _V_Vi>
IR VEL I VI LS

e And Iif p(Z,W,,...,w.)=0, then LZ=x and W, =Y. Vi, SO
(zZ,W,...,w ) is already in Zsince y. €T.(x;) Viel.n
Therefore:
e We may strictly separate any p=(Z,W,,...,w,) e C\Z from Z
e Inequalities of the form ¢(z,w,,...,w,) <0 fully characterize Z

e Z has to be a closed convex set (can prove in other ways...)
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Generic Projection Method for a Closed Convex Set Z

This structure suggests that we can use the following general
recipe for finding a point in a closed convex set Z:

e Given p, € IC, find separating hyperplane H, between p,  and Z

e Project p, onto H_, possibly with an overrelaxation factor
A €le,2-¢], giving p,.,, and repeat...

P
@, 1s affine

- H, :{ p| ¢k(p)zo}
¢.(p)<0 Vpel
?.(p) >0

e Fejér monotone: non-increasing distance to all points in Z

e Separators are “sufficiently deep” = (weak) convergence to
some point in Z

September 2017 6 of 40



Here Is one possible algorithm, for fixed O0<c . <c

One Way to Use this Idea (Similar to E and Svaiter 2009)

maX

Starting with an arbitrary (z°,w],...,w’) e K:

1.

For i=1...,n, pick any ¢, €[C.,Cns | @nd find the unique
(x5, yi) € Graph(T,): X +¢,, ¥ =Lz“+c; W (prox operation)
(Decomposition Step)

Define ¢, (z,W,,...,W )= Zn:<Liz - X, Y —Wi>
=1

S w W) e K by projecting (24w ..., w)

n

Compute (z
onto the halfspace ¢, (z,w,...,w.) <0
(possibly with some overrelaxation) (Coordination Step)
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Computing the Projection

Generic formula for projecting p onto {p‘ (a,p) < b} ;

[max{(a, p)—b,O}}a

Jal

In the case of the halfspace {pe K| ¢, (p)<0} =K ,

p*=P-

a=prOjn(Z:ﬂyik’xlk"“’X:)

e Difference from last talk:
There could be problems if proj,. is difficult to compute

e But often it is straightforward

e For example, suppose ‘H,="H,=---="H, the L are all identity
matrices, so the problemis 0e > " T,(x). Then

Projic (V. X1 X¢ ) = (V. X = X,..., X5 =X, where X =13"" x

n

September 2017 8 of 40



Making the Method More General

e At each iteration k, we do not process all the operators
1=1,...,n, but just some subset I, c{},...,n}

o For the others, we just recycle (x,y*) = (x, y)
e \We also consider lags:
Find (x,y{) € Graph(T,): x‘ +c¢, .y = Lz"" +cw™"
where d, (1) <k is some possibly earlier iteration.
e We also allow errors
(%, y) e Graph(T,): x*+¢;, ¥ =Lz%" +cw™ +ef
e Still have valid cuts for Z because (x,y;) € Graph(T,) Viel.n

e But are they sufficiently deep to force convergence to Z?
In some cases they might not cut off (z,w/,...,w) at all...
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Full Algorithm (Still Not as General as Previous Talk)
For k=1,2,...

Find (x,y) € Graph(T;): ' +c¢, . y; = Lz*" +ewV +ef iel,
(X, y) = (X, y<h) icl.n\I,

| Zl =

(US,...,u") = proj, (x,..., X ), where £ = {

V=Lt
max{zi_1<Liz — X,y —Wi>,0}
W+

Pick any 1 €[¢,2—¢]
Zk+1 _ Zk _ﬁkekvk
W =W — 4 Q.U Vi

=
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Convergence of the More General Method

The cuts are sufficiently deep (on average) and the method does
converge (weakly) under the following assumptions:

e Quasicyclic control: (there is a bound to how long we can
ignore any given operator) there exists some integer M >0
such that

(@A ij:{l,...,n} ve>0

This control rule borrowed from set intersection methods

e Bounded lags: there exists an integer D >0 such that
max{0,k —D}<d, (i) <k Vk=>0,Viel,

e Relative error criterion: there exists B > 0,0 €[0,1] such that

1! | |
. N2

k .,k d, (i) k d (i)
<ei Y — W >SGHYi — W " H
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Implications

This algorithm (and the more general one in the previous talk)
have some unique features among splitting methods

e The sets I, mean that we can adjust the balance between

effort expended solving subproblems (the prox operations) and
the effort expended on coordination

o In most n-way splitting methods, every operator must be
preocessed before you perform a coordination step

e Together, the |, and the lags permit a kind of asynchronous

parallel operation: at each iteration, you process some set of
subproblem calculations that may have been initiated at
earlier iterations.

If the operation proj,. is problematic, use the more general
method of the previous talk instead
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An Example Application:
A Non-Random Asynchronous n-Block ADMM-Like Algorithm

Problem, for f,..., f closed proper convex:

min ZL f.(t)
ST > Mt =b

Dual formulation (assuming standard regularity conditions):
miny £ (-M/X)+(x,b) = 0e> (-M,)af"(-M/x)+b
* A i=1
One possible way to apply our algorithm: for any b, +---+b =D,
T.(x) = (-M)ef" (-Mx)+b v

We then use the framework above with L =1d Viel.n and e =0
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A Non-Random Asynchronous ADMM-Like Algorithm

Workers” loop: (b. —w. Is the “target” value for M.t.)

Wait to receive command (z,1,w,, «) from “controller”
t. € Arg min{fi (t)+<z, Mit>+%|||\/|it—(bi _Wi)||2}
t

Xi:Z+:u(Miti_(bi_Wi)) y, =b —Mt,

Send (i,x,V;,t.) back to controller

e Looks like augmented Lagrangian iteration with multiplier z,
penalty 4, and constraint M.t. =b. —w., and like ADMM
subproblem

e Many workers operating in parallel, asynchronously

Controller starts with

n
- w. =0
1I

*Z,W,...W :

e Aset Q=1.w,, of available workers
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A Non-Random Asynchronous ADMM-Like Algorithm: Controller
“Controller” loop (leaving out iteration indices for simplicity):

While Q nonempty
Pick 1 €{],...,n} and remove some o from Q (*)
Pick 1 €| thyin: e | @nd send (z,i,w;, 1) to @
Wait for at least one worker to complete a task
For each worker o with a completed task
Receive (i,x,Y;,t.) from o
Insert @ into Q

Ve DT y=b->" Mt Xe2> X U« X% —-X Vi
d « ||v||2 > |, ||2 A <« arbitrary choice e[¢,2—¢]
0 < Amax{0,(z—x, Y, —W,)}

X< X—(0/d)v
W «—w —(@/d)u, Vi
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More about the Algorithm, Parallel Implementation

2 - - . 2
e |v|" measures the constraint violation and >"" |u,|" measures
the “disagreement” about the dual variables

e The controller algorithm description above assumes a global
memory space

e There is a more general version of the controller that accounts
for partitioned memory: some subsystems i can only be
processed on certain processors

o Details too complicated to show here, but conceptually
similar

e The implementation style is aimed at multicore or HPC
hardware rather than distributed sensor networks etc. on
graphs

e The controller should not have to be a serial bottleneck - the
controller functions may also be distributed
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Convergence Result
Proposition: In the ADMM-like algorithm above, suppose

e There is a bound on the ratio of the longest to shortest
possible subproblem solution time.

e Once in every M >0 executions of line (*), each possible value
of 1 Is selected at least once

Then z converges to an optimal dual solution and the t. are
asymptotically optimal for the primal:

Zi”:ll\/liti —~b and Iimsup(zin:1 f (ti))S font
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Commentary

Several asynchronous ADMM-like methods have been suggested for
an arbitrary number of blocks n. However, they each have some
combination of the following features:

e They require randomness in the activation of blocks and
convergence is in expectation (not along every sample path?)

e Convergence Is ergodic (in the long-term average of the
Iiterates)

e They require restrictive assumptions about the problem

This new method has “plain” convergence and does not require
randomness or restrictive assumptions (only some standard
convex-analytic regularity)

e \We also have huge freedom in choosing the proximal
parameters (stepsizes) inherited from the projective splitting
framework - can vary by both iteration and block
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A Related Application: Convex Stochastic Programming

e Consider a standard stochastic programming scenario tree:

Stages
s=1,....,T

<— Last-stage scenariosi=1,...,n —>

e 7. IS the probability of last-stage scenario i

e Will use “scenario” as a shorthand for “last-stage scenario”
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Convex Stochastic Programming

Stages

e System walks randomly from the root to some leaf

e At each node there are decision variables, for example
o How much of an investment to buy or sell

o How much to run a power generator, etc...
e ... and constraints that depend on earlier decisions

e Model alternates decisions and uncertainty resolution

September 2017 20 of 40



Problem Formulation and Notation

e Replicate decision variables: n copies at every stage
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Problem Formulation and Notation

e Replicate decision variables: n copies at every stage

O
O
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e X.. IS the vector of decision variables for scenario i at stage s
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Problem Formulation and Notation

O O[O0 O O
O Ol O0*O O O
O OlOJO O O

X € X

e X.. IS the vector of decision variables for scenario i at stage s

e X, Is the space of all variables pertaining to scenario i;

elements are X, = (X,..., X )
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Problem Formulation and Notation

e Replicate decision variables: n copies at every stage

C

0 O

DANE

)

O O
\_

X € X

O O O

C

) (

DANE

)

O O O
/

XeX

e X.. IS the vector of decision variables for scenario i at stage s

e X Iis the space of all variables for scenario I; elements are
X =(Xy,.o0y Xir)

o X =4, x---xX_Is space of all decision variables; elements are
X)) = (ko Xop Doy (X -0 Xor )

X = (X,
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Problem Formulation and Notation

4 ZiEZi\ )
O OO |0 O O

O OlO|0O O O
\_ —T /

O O O O O O

e Z Is X, without the last stage; elements z, =(z;;,...,7;_;)

-

e

o Z=2Z x---xZ 1S the space of all variables except the last
stage: elements z=(z,,...,2,) = ((Zy,--+ Z7 1)1 (Zygo - 2y 71))



Nonanticipativity Subspace

e N c Z is the subspace of Z meeting the nonanticipativity
constraints that z;, =z,, whenever scenarios | and j are

Indistinguishable at stage s

P~~~
@@ (o

©® ©©® ©@®
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Projecting onto the Nonanticipativity Space

e Following Rockafeller and Wets (1991), we use the following
probability-weighted inner product on Z:

((zyy- o 2,), (O, 0)) = D i (2,0

e With this inner product, the projection map proj,. : Z > N is
given by

proj,-(q) =z, where

zit = . > mat i=l..n, s=1..T-1

IS
(Zjesu,s)ﬂj) Jes(is)

and S(i,s) Is the set of scenarios indistinguishable from
scenario i at time s.

09090
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Formulation Continued
e h : X - Ru{+w} Is the cost function for scenario |

o Includes all constraints within scenario i
(infeasible points have h. (x.) = +x)

o Assume that h. is convex

e M, X, = Z Is the linear map (X,...,X;) — (Xg,--1 X 14)
(Just drops last stage from scenario 1)

e M: X — Z takes (x,...,X,)— (M X,...,M_X)
(just drops last stage from full decision vector)

We may formulate a convex stochastic program as

min > " mh(x)
ST MxeN

September 2017
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Formulation Continued
Further define f : X 5> Ru{+w} and g:Z — R u{+w} by

o 1= mh(x)

0, N . .
e g(2) :{+oo 2;\/ (the convex indicator function of N\)

Then our stochastic program is just

min £ (x) + g (Mx)
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Progressive Hedging (Rockafellar and Wets 1991)

e Apply the ADMM (alternating direction method of multipliers)
and obtain, with iterates {x*}c X {z*}Yc N, {W}c /",

X eArgXimin{hi (xi)+<M.x. w‘<>+§HMixi —zi"Hz} i=1...,n

Zk+1 —_ prOjN (Mxk+1)

Wt = w* + p(MX

k+l 7 k+1)

e Minimize each scenario separately, but with a linear-quadratic
perturbation on all variables except the last stage

e Average the results into a nonanticipative z

e Update Lagrange multiplier estimates w and repeat

e Note: Rockafellar and Wets present a derivation from first
principles, but it is also an application of the ADMM
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Progressive Hedging Is Naturally Parallel...

e The minimization step (subproblem) naturally decomposes by
scenario

e The remaining calculations take comparatively little time and
may also be parallelized (only communication is for the
summations required by proj,., and is simple/efficient)

..But Also Naturally Synchronous

e |[f some scenarios take longer than others, the algorithm
cannot proceed until the slowest one completes

e You must solve all n subproblems between successive
coordination steps
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Setup to Apply Asynchronous Splitting Method
Problem setup for stochastic programming

e H,=N (run algorithm in nonanticipativity subspace)

e H.=Z , but with inner product multiplied by 7.

e L : N — Z selects the subvector relevant to scenario i

o f(X)= nlin{nihi ((%.,%;))} minimizes scenario i’s cost over the
Iast—stagéT variables

o Remember, scenario-infeasible points have h,(x,) =+

e Then our stochastic program is just
rXT;?I_{? Zi:]_ fI (LI X)
e Apply the method from earlier in the talk for 0 e Z LT (LX)
=1

e Conveniently, it turns out that L=N", so K=NxN*
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A New, Asynchronous Alternative

Subproblem: (many operating in parallel, asynchronously)
Parameters sent from ““controller’:

ejel.n

® 2, =(Zy,--,Zi1) -

o Wi

e p>0

- which scenario to solve

: multipliers (same dimensions as z,)
. scalar penalty parameter

Receive i€l..n, z,w. € Z, p>0 from controller

X < Argmin b (x)-+ (M1, 7)+ 2 ]Mx -2 |

Y, =W, + p(M;X —7)
Returni, X =M.x., y. to controller

September 2017
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A New, Asynchronous Alternative: “Controller” Setup
The controller maintains working variables:
e 2=(z,...,2)e N
o W=(W,....w)e N
o X=(X,...,X )e Z (the tildes mean no last-stage variables)
o V=(Y,.-, Y, )EZ
At each iteration we also compute step direction vectors:
eU=(U,...,u)eN*
ev=(v,...,v)eN
Scalar parameters:

e Primal-dual scaling factor y >0 (improves conditioning; fixed?)
e Subproblem penalty parameters p e[p,p], 0< p < p (varying)

e Overrelaxation factors A e[g,2—¢] (varying)
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A New, Asynchronous Alternative: “Controller”

repeat
while there is a free worker o do
Choose a scenario I and p e[p, p]

Dispatch i,z.,w., p to worker o
wait for at least one worker to complete its task
for each worker o with a completed task
Receive I,X,y, from
U < X—proj,.(X)
V< proj,, (y)

re ol VP = 2l 2 m
¢ (z-Xw-y) =217 (2 -%) (W -y)

If ¢ >0 then
Choose some A el¢g,2—¢]
2 2+ (Aol )V
W<« W+ (Ao / 7)U
until termination detected

September 2017
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Partial Resemblance to PH

e Subproblem has recognizable pieces of the PH subproblem
optimization step and multiplier update

e Controller has proj,. operations

e But otherwise the controller algorithm comes from our
splitting framework

e Unlike progressive hedging, the algorithm runs asynchronously

0 Only a single subproblem needs to complete between
cycles of the controller (more is OK to0)

e [n our description, the controller looks centralized/serial, but
It could be distributed with careful implementation
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Conclusion / Summary / Ongoing Work
e A general decomposition method for monotone inclusions

e Gives freedom to...

o Strike arbitrary balance between computing and
coordination

o Not have to reevaluate every operator between each pair
of successive coordination steps

o Implement asynchronously without requiring randomness
e Numerous possible applications:

o Asynchronous ADMM-like method without randomness
(shown above)

0 Asynchronous stochastic programming decomposition
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Some Early Computational Results from JP Watson

e Contingency-constrained AC optimal power flow instances

e Two-stage stochastic programs with n scenarios

e \We run an asynchronous algorithm essentially the same as

described in this talk (but for stochastic programming)
e Compared to progressive hedging (PH)

e Use n processors, one per scenario (~ an ADMM block)

e These are very early results, lots left to do

Problem n PHTime Async Time
caseoww 11 0:00:02 0:00:02
cases’ 79 0:00:12 0:00:09
casell8 117| 0:02:03 0:01:40
case300 322 0:02:54 0:02:19
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“The mothership”

e Patrick L. Combettes and Jonathan Eckstein. “Asynchronous
block-iterative primal-dual decomposition methods for
monotone inclusions”. Mathematical Programming, online
July 2016.

September 2017 39 of 40



References Part 2

e Jonathan Eckstein. “A simplified form of block-iterative
operator splitting, and an Asynchronous Algorithm Resembling
the Multi-Block ADMM™.

e Convergence analysis for simplified framework in this talk...
e But weaker Initialization conditions than the “mothership”

e And an asynchronous ADMM-like method generalizing the one
In this talk

More realistic applications coming “soon”...
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