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Simplified Block-Iterative Splitting: Problem Setting 

• Hilbert spaces 0 1, , , n     

• Maximal monotone operators : 1..i i iT i n∀ ∈    

• Continuous linear maps 0: 1..i iL i n→ ∀ ∈   

Problem:  find 0x∈  :  *

1
0 ( )

n

i i i
i

L T L x
=

∈∑  

• As in previous talk, but expressed as a single inclusion 
involving only one group of operators  
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Simplified Block-Iterative Splitting 

• Define the Kuhn-Tucker set 

{ }*
1 1

( , , , ) ( ) 1.. , 0n
n i i i i ii

Z z w w w T L z i n L w
=

= ∈ ∀ ∈ =∑  

• Whenever 1( , , , )nz w w Z∈ , the vector z solves our problem 

• Given ( , ) Graph( ) 1..i i ix y T i n∈ ∀ ∈ , define 

1
1

1 1

( , , , ) ,

( , , , ) 0 ( , , , )

n

n i i i i
i

n n

z w w L z x y w

z w w z w w Z

ϕ

ϕ
=

= − −

⇒ ≤ ∀ ∈

∑

 

 

(follows from monotonicity of 1, , nT T ) 

• ( )ϕ ⋅  is affine on the linear subspace  given by *
1

0n
i ii

L w
=

=∑  

since quadratic terms are *
1 1

, , ,0n n
i i i ii i

L z w z L w z
= =

− = − =∑ ∑  

• We will operate our algorithm in  — more restrictive than 
previous talk; will require projections onto  
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Valid Inequalities for Z 

Whenever ( ) 1..i i iy T x i n∈ ∀ ∈ , 

1 1
1

( , , , ) , 0 ( , , , )
n

n i i i i n
i

z w w L z x y w z w w Zϕ
=

= − − ≤ ∀ ∈∑   

 
 
But also: these inequalities fully characterize Z within : 

Z { }
 is affine

( ) 0

( ) 0

H p p

p p Z

ϕ

ϕ

ϕ

= =

≤ ∀ ∈
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Cutting Off an Arbitrary Point in \ Z   

• Take any 1( , , , )np z w w= ∈  

• For each 1..i n∈ , compute the unique proximal decomposition 

( , ) Graph( ) :i i i i i i i ix y T x c y L z c w∈ + = +   for some 0ic > , hence  

1 1

2 2

1 1

( , , , ) ,

1 0

n
n i i i ii

n n
i i i i ii i

i

z w w L z x y w

c y w L z x
c

ϕ
=

= =

= − −

 
= − = − ≥ 

 

∑

∑ ∑



 

• And if 1( , , , ) 0nz w wϕ = , then i iL z x=  and i iw y i= ∀ , so 

1( , , , )nz w w  is already in Z since ( ) 1..i i iy T x i n∈ ∀ ∈  

Therefore: 

• We may strictly separate any 1( , , , ) \np z w w Z= ∈  from Z  

• Inequalities of the form 1( , , , ) 0nz w wϕ ≤  fully characterize Z 

• Z has to be a closed convex set (can prove in other ways…) 
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Generic Projection Method for a Closed Convex Set Z 

This structure suggests that we can use the following general 
recipe for finding a point in a closed convex set Z: 

• Given kp ∈, find separating hyperplane kH  between kp  and Z  

• Project kp  onto nH , possibly with an overrelaxation factor 
[ ,2 ]kλ ε ε∈ − , giving 1kp + , and repeat… 

 
• Fejér monotone: non-increasing distance to all points in Z 

• Separators are “sufficiently deep” ⇒ (weak) convergence to 
some point in Z 

Z 

{ }
 is affine

( ) 0

( ) 0
( ) 0

k

k k

k

k k

H p p

p p Z
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>

1kp +

kp
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One Way to Use this Idea (Similar to E and Svaiter 2009) 

Here is one possible algorithm, for fixed min max0 c c< ≤  

Starting with an arbitrary 0 0 0
1( , , , )nz w w ∈ :   

1. For 1, ,i n=  , pick any [ ], min max,i kc c c∈  and find the unique 

, ,( , ) Graph( ) :k k k k k k
i i i i i k i i i k ix y T x c y L z c w∈ + = +  (prox operation) 

(Decomposition Step) 

2. Define 1
1

( , , , ) ,
n

k k
k n i i i i

i
z w w L z x y wϕ

=

= − −∑  

3. Compute 1 1 1
1( , , , )k k k

nz w w+ + + ∈  by projecting 1( , , , )k k k
nz w w  

onto the halfspace 1( , , , ) 0k nz w wϕ ≤  
(possibly with some overrelaxation)      (Coordination Step) 
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Computing the Projection 

Generic formula for projecting p  onto { },p a p b≤  : 

{ }
2

max , ,0a p b
p p a

a
+

 −
= −   

 
  

In the case of the halfspace { }( ) 0kp pϕ∈ ≤ ⊂  , 

( )11
proj , , ,n k k k

i ni
a y x x

=
= ∑    

• Difference from last talk:  
   There could be problems if proj is difficult to compute 

• But often it is straightforward 

• For example, suppose 0 1 n= = =    the iL  are all identity 
matrices, so the problem is 

1
0 ( )n

ii
T x

=
∈∑ .  Then 

( ) ( ) 1
1 1 1

proj , , , , , , , nk k k k
n n in i

v x x v x x x x x x
=

= − − = ∑ where    
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Making the Method More General 

• At each iteration k, we do not process all the operators 
1, ,i n=  , but just some subset {1, , }kI n⊆   

o For the others, we just recycle 1 1( , ) ( , )k k k k
i i i ix y x y− −=  

• We also consider lags: 

Find ( ) (
,

)( , ) Graph( ) : k kk k k k
i i i i i

d i
k i i i

d i
ix y T x c y L z c w∈ + = +  

where ( )kd i k≤  is some possibly earlier iteration. 

• We also allow errors 
( ) ( )

,( , ) Graph( ) : k kd i d ik k k k
i i i i i k

k
ii i i ix y T x c y L z c w e∈ + ++ =  

• Still have valid cuts for Z because ( , ) Graph( ) 1..k k
i i ix y T i n∈ ∀ ∈  

• But are they sufficiently deep to force convergence to Z ? 
In some cases they might not cut off 1( , , , )k k k

nz w w  at all… 
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Full Algorithm (Still Not as General as Previous Talk) 

For 1,2,k =  

{ }

{ }

( ) ( )
,

1 1

*
1 1 1 1

*
1

1
2

( , ) Graph( ) :
( , ) ( , ) 1.. \

( , , ) proj ( , , ) ( , , ) 0

max , ,0

Find 

,  where 

k kd i d ik k k k k
i i i i i k i i i i i k

k k k k
i i i i k

nk k k k
n n n i ii

nk k
i ii

n k k
i i i ii

k k

x y T x c y L z c w e i I
x y x y i n I

u u x x w w L w

v L y

L z x y w

v
θ

− −

=

=

=

∈ + = + + ∈
= ∈

= = =

=

− −
=

∑

∑
∑

    

2

1

1

1

[ ,2 ]Pick any 

n k
ii

k k k
k k

k k k
i i k k i

u

z z v

w w u i

λ ε ε

λ θ

λ θ

=

+

+

+

∈ −

= −

= − ∀

∑
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Convergence of the More General Method 

The cuts are sufficiently deep (on average) and the method does 
converge (weakly) under the following assumptions:  

• Quasicyclic control: (there is a bound to how long we can 
ignore any given operator) there exists some integer 0M ≥  
such that  

{1, , } 0
M

k
k

I n
+

=

 
= ∀ ≥ 

 





 



  

This control rule borrowed from set intersection methods 

• Bounded lags: there exists an integer 0D ≥  such that 

max{0, } ( ) 0,k kk D d i k k i I− ≤ ≤ ∀ ≥ ∀ ∈  

• Relative error criterion:  there exists 0, [0,1[B σ≥ ∈  such that 

( )
2( ) ( )

2( ) ( )

0, ,

,

k k

k k

d i d ik k k k
k i i i i i i

d i d ik k k
i i i i i

k i I e B e L z x L z x

e y w y w

σ

σ

∀ ≥ ∀ ∈ ≤ − ≥ − −

− ≤ −
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Implications 

This algorithm (and the more general one in the previous talk) 
have some unique features among splitting methods 

• The sets kI  mean that we can adjust the balance between 
effort expended solving subproblems (the prox operations) and 
the effort expended on coordination 

o In most n-way splitting methods, every operator must be 
preocessed before you perform a coordination step 

• Together, the kI  and the lags permit a kind of asynchronous 
parallel operation:  at each iteration, you process some set of 
subproblem calculations that may have been initiated at 
earlier iterations. 

 

If the operation proj is problematic, use the more general 
method of the previous talk instead 
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An Example Application:   
A Non-Random Asynchronous n-Block ADMM-Like Algorithm 

Problem, for 1, , nf f  closed proper convex: 

1

1

min ( )

ST

n
i ii

n
i ii

f t

M t b
=

=
=

∑
∑

 

Dual formulation (assuming standard regularity conditions): 

( ) ( )* * * *

1 1
min , 0 ( )

n n

i i i i ix i i
f M x x b M f M x b

= =

− + ∈ − ∂ − +∑ ∑  

One possible way to apply our algorithm: for any 1 nb b b+ + = , 

( )* *( ) ( )i i i i iT x M f M x b i= − ∂ − + ∀  

We then use the framework above with Id 1..iL i n= ∀ ∈  and 0k
ie ≡   
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A Non-Random Asynchronous ADMM-Like Algorithm 

Workers’ loop: ( i ib w−  is the “target” value for i iM t ) 

Wait to receive command ( , , , )iz i w µ  from “controller” 

{ }
( )

2
2Arg min ( ) , ( )

( )

i i i i i i
t

i i i i i i i i i

t f t z M t M t b w

x z M t b w y b M t

µ

µ

∈ + + − −

= + − − = −
 

Send ( , , , )i i ii x y t  back to controller 

• Looks like augmented Lagrangian iteration with multiplier z, 
penalty µ , and constraint i i i iM t b w= − , and like ADMM 
subproblem 

• Many workers operating in parallel, asynchronously 

Controller starts with 

• 1 1
, , : 0n

n ii
z w w w

=
=∑   

• A set max1..ωΩ =  of available workers  
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A Non-Random Asynchronous ADMM-Like Algorithm: Controller 

“Controller” loop (leaving out iteration indices for simplicity): 

While Ω nonempty 
 Pick {1, , }i n∈    and remove some ω  from Ω     (*) 
 Pick [ ]min max,µ µ µ∈  and send ( , , , )iz i w µ  to ω  
Wait for at least one worker to complete a task 
For each worker ω  with a completed task 
 Receive ( , , , )i i ii x y t  from ω  
 Insert ω  into Ω 

{ }

1
1 1 1

22

1
[ , 2 ]

max 0, ,

( / )
( / )

arbitrary choice

n n n
i i i i i ini i i

n
ii

i i i

i i i

v y b M t x x u x x i

d v u

z x y w

x x d v
w w d u i

λ ε ε

θ λ

θ
θ

= = =

=

← = − ← ← − ∀

← + ← ∈ −

← − −

← −
← − ∀

∑ ∑ ∑
∑
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More about the Algorithm, Parallel Implementation 

• 2v  measures the constraint violation and 2

1

n
ii

u
=∑  measures 

the “disagreement” about the dual variables 
 

• The controller algorithm description above assumes a global 
memory space 

• There is a more general version of the controller that accounts 
for partitioned memory: some subsystems i can only be 
processed on certain processors 

o Details too complicated to show here, but conceptually 
similar 

• The implementation style is aimed at multicore or HPC 
hardware rather than distributed sensor networks etc. on 
graphs 

• The controller should not have to be a serial bottleneck – the 
controller functions may also be distributed 
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Convergence Result 

Proposition:  In the ADMM-like algorithm above, suppose  

• There is a bound on the ratio of the longest to shortest 
possible subproblem solution time. 

• Once in every 0M >  executions of line (*), each possible value 
of i is selected at least once 

Then z converges to an optimal dual solution and the it  are 
asymptotically optimal for the primal: 

1

n
i ii

M t b
=

→∑      and      ( ) opt1
limsup ( )n

i ii
f t f

=
≤∑  

 



September 2017        18 of 40 

Commentary 

Several asynchronous ADMM-like methods have been suggested for 
an arbitrary number of blocks n.  However, they each have some 
combination of the following features: 

• They require randomness in the activation of blocks and 
convergence is in expectation (not along every sample path?) 

• Convergence is ergodic (in the long-term average of the 
iterates) 

• They require restrictive assumptions about the problem 

This new method has “plain” convergence and does not require 
randomness or restrictive assumptions (only some standard 
convex-analytic regularity) 

• We also have huge freedom in choosing the proximal 
parameters (stepsizes) inherited from the projective splitting 
framework – can vary by both iteration and block 
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A Related Application: Convex Stochastic Programming 

• Consider a standard stochastic programming scenario tree: 
 

 
• iπ  is the probability of last-stage scenario i  

• Will use “scenario” as a shorthand for “last-stage scenario” 

Last-stage scenarios i = 1, … , n 

Stages 
s = 1,…,T 
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Convex Stochastic Programming 

 
• System walks randomly from the root to some leaf 

• At each node there are decision variables, for example 

o How much of an investment to buy or sell 

o How much to run a power generator, etc...  

• ... and constraints that depend on earlier decisions 

• Model alternates decisions and uncertainty resolution 

Stages 
s = 1,…,T 
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

 

 

isx  
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

• i  is the space of all variables pertaining to scenario i; 
elements are 1( , , )i i iTx x x=   

 

i ix ∈  

isx  
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

• i  is the space of all variables for scenario i; elements are 
   1( , , )i i iTx x x=   

• 1 n= × ×    is space of all decision variables; elements are 
   ( )1 11 1 1( , , ) ( , , ), , ( , , )n T n nTx x x x x x x= =     

x∈  

i ix ∈  

isx  
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Problem Formulation and Notation 

 
• i  is i  without the last stage; elements 1 , 1( , , )i i i Tz z z −=   

• 1 n= × ×   is the space of all variables except the last 
stage: elements ( )1 11 1, 1 1 , 1( , , ) ( , , ), , ( , , )n T n n Tz z z z z z z− −= =      

z∈  

i iz ∈  
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Nonanticipativity Subspace 

• ⊂   is the subspace of   meeting the nonanticipativity 
constraints that is jsz z=  whenever scenarios i and j are 
indistinguishable at stage s 
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Projecting onto the Nonanticipativity Space 

• Following Rockafeller and Wets (1991), we use the following 
probability-weighted inner product on  : 

1 1 1
( , , ), ( , , ) ,n

n n i i ii
z z q q z qπ

=
=∑   

• With this inner product, the projection map proj : →    is 
given by 

( )
1 1

( , )
( , )

proj ( ) ,
1 1, , , 1, , 1

  where

k k
is j js

j S i sjj S i s

q z

z q i n s Tπ
π

+ +

∈
∈

=

= = = −∑
∑



 

 

and ( , )S i s  is the set of scenarios indistinguishable from 
scenario i at time s. 
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Formulation Continued 

• : { }i ih → ∪ +∞   is the cost function for scenario i 

o Includes all constraints within scenario i 
(infeasible points have ( )i ih x = +∞) 

o Assume that ih  is convex 

• :i i iM →   is the linear map 1 1 , 1( , , ) ( , , )i iT i i Tx x x x −    
(just drops last stage from scenario i) 

• :M →   takes 1 1 1( , , ) ( , , )n n nx x M x M x    
(just drops last stage from full decision vector) 

 
We may formulate a convex stochastic program as 

1
min ( )

ST

n
i i iix
h x

Mx

π
=

∈

∑

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Formulation Continued 

Further define : { }f → ∪ +∞   and : { }g → ∪ +∞   by 

• 
1

( ) ( )n
i i ii

f x h xπ
=

=∑  

• 
0,

( )
,

z
g z

z
∈

= +∞ ∉




    (the convex indicator function of  ) 

 
Then our stochastic program is just 

min ( ) ( )
x

f x g Mx
∈

+

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Progressive Hedging (Rockafellar and Wets 1991) 

• Apply the ADMM (alternating direction method of multipliers) 
and obtain, with iterates { } ,{ } ,{ }k k kx z w ⊥⊂ ⊂ ⊂   ,  

21

1 1

1 1 1

Arg min ( ) , 1, ,
2

proj ( )
( )

i

k k k
i i i i i i i i

x

k k

k k k k

x h x M x w M x z i n

z Mx
w w Mx z

ρ

ρ

+

+ +

+ + +

 ∈ + + − = 
 

=
= + −





 

• Minimize each scenario separately, but with a linear-quadratic 
perturbation on all variables except the last stage 

• Average the results into a nonanticipative z 

• Update Lagrange multiplier estimates w and repeat 
 

• Note: Rockafellar and Wets present a derivation from first 
principles, but it is also an application of the ADMM 
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Progressive Hedging is Naturally Parallel… 

• The minimization step (subproblem) naturally decomposes by 
scenario 

• The remaining calculations take comparatively little time and 
may also be parallelized (only communication is for the 
summations required by proj , and is simple/efficient) 

…But Also Naturally Synchronous 

• If some scenarios take longer than others, the algorithm 
cannot proceed until the slowest one completes 

• You must solve all n subproblems between successive 
coordination steps 
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Setup to Apply Asynchronous Splitting Method 

Problem setup for stochastic programming 

• 0 =   (run algorithm in nonanticipativity subspace) 

• i i=  , but with inner product multiplied by iπ   

• :i iL →   selects the subvector relevant to scenario i 

• ( ){ }( ) min ( , )
iT

i i i i i iTx
f x h x xπ=   minimizes scenario i’s cost over the 

last-stage variables 

o Remember, scenario-infeasible points have ( )i ih x = +∞ 

• Then our stochastic program is just 

0
1

min ( )n
i iix

f L x
=∈ ∑

 

• Apply the method from earlier in the talk for *

1
0 ( )

n

i i i
i

L T L x
=

∈∑  

• Conveniently, it turns out that ⊥=  , so ⊥= ×     
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A New, Asynchronous Alternative 

Subproblem:  (many operating in parallel, asynchronously) 

Parameters sent from “controller”: 

• 1..i n∈     : which scenario to solve 
• 1 , 1( , , )i i i Tz z z −=   : scenario i “target” values, except last stage 

• iw      : multipliers (same dimensions as iz ) 

• 0ρ >      : scalar penalty parameter 

2

1.. , , , 0

Arg min ( ) ,
2

( )
, ,

Receive  from controller

Return  to controller

i

i i i

i i i i i i i i i
x

i i i i i

i i i i

i n z w

x h x M x z M x z

y w M x z
i x M x y

ρ
ρ

ρ

∈ ∈ >

 ∈ + + − 
 

= + −






 

Looks like progressive hedging subproblem  
+ part of multiplier update 
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A New, Asynchronous Alternative: “Controller” Setup 

The controller maintains working variables: 
• 1( , , )nz z z= ∈   

• 1( , , )nw w w ⊥= ∈  

• 1( , , )nx x x= ∈  
   (the tildes mean no last-stage variables) 

• 1( , , )ny y y= ∈  

At each iteration we also compute step direction vectors: 
• 1( , , )nu u u ⊥= ∈  

• 1( , , )nv v v= ∈  

Scalar parameters: 
• Primal-dual scaling factor 0γ >  (improves conditioning; fixed?) 
• Subproblem penalty parameters [ , ], 0ρ ρ ρ ρ ρ∈ < ≤  (varying) 

• Overrelaxation factors [ ,2 ]λ ε ε∈ −   (varying) 
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A New, Asynchronous Alternative: “Controller” 

repeat 
 while there is a free worker ω  do 
  Choose a scenario i and [ , ]ρ ρ ρ∈  
  Dispatch , , ,i ii z w ρ  to worker ω  
 wait for at least one worker to complete its task 
 for each worker ω  with a completed task 
  Receive , ,i ii x y  from ω  
 proj ( )u x x← −     
 proj ( )v y←   
 2 22 2

1 1

n n
i i i ii i

u v u vτ γ π γ π
= =

← + = +∑ ∑  

 ( ) ( )1
, n

i i i i ii
z x w y z x w yφ π

=
← − − = − −∑ T

    
 if 0φ >  then 
  Choose some [ ,2 ]λ ε ε∈ −  
  ( / )z z vγλφ τ← +   
  ( / )w w uλφ τ← +  
until termination detected 
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Partial Resemblance to PH 

• Subproblem has recognizable pieces of the PH subproblem 
optimization step and multiplier update 

• Controller has proj  operations 

• But otherwise the controller algorithm comes from our 
splitting framework 
 

• Unlike progressive hedging, the algorithm runs asynchronously 

o Only a single subproblem needs to complete between 
cycles of the controller (more is OK too) 

• In our description, the controller looks centralized/serial, but 
it could be distributed with careful implementation 
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Conclusion / Summary / Ongoing Work 

• A general decomposition method for monotone inclusions 

• Gives freedom to… 

o Strike arbitrary balance between computing and 
coordination 

o Not have to reevaluate every operator between each pair 
of successive coordination steps 

o Implement asynchronously without requiring randomness 

• Numerous possible applications: 

o Asynchronous ADMM-like method without randomness 
(shown above) 

o Asynchronous stochastic programming decomposition  
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Some Early Computational Results from JP Watson 

• Contingency-constrained AC optimal power flow instances 

• Two-stage stochastic programs with n scenarios 

• We run an asynchronous algorithm essentially the same as 
described in this talk (but for stochastic programming) 

• Compared to progressive hedging (PH) 

• Use n processors, one per scenario (≈ an ADMM block) 

• These are very early results, lots left to do 

Problem n PH Time Async Time 

case6ww 11 0:00:02 0:00:02 

case57 79 0:00:12 0:00:09 

case118 117 0:02:03 0:01:40 

case300 322 0:02:54 0:02:19 
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References Part 1 

“The mothership” 

• Patrick L. Combettes and Jonathan Eckstein.  “Asynchronous 
block-iterative primal-dual decomposition methods for 
monotone inclusions”.  Mathematical Programming, online 
July 2016. 
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References Part 2 

• Jonathan Eckstein.  “A simplified form of block-iterative 
operator splitting, and an Asynchronous Algorithm Resembling 
the Multi-Block ADMM”.   

• Convergence analysis for simplified framework in this talk… 

• But weaker initialization conditions than the “mothership” 

• And an asynchronous ADMM-like method generalizing the one 
in this talk 

  

More realistic applications coming “soon”… 
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