
September 2017 1 of 40

Asynchronous Parallel Applications of
Block-Iterative Splitting

Jonathan Eckstein
Rutgers University

Joint work with

Theory: Patrick Combettes
North Carolina State University

Stochastic application: Jean-Paul Watson, David L. Woodruff
Sandia National Laboratories, University of California, Davis

Funded in part by US National
Science Foundation Grants
CCF-1115638, CCF-1617617

September 2017 2 of 40

Simplified Block-Iterative Splitting: Problem Setting

• Hilbert spaces 0 1, , , n  

• Maximal monotone operators : 1..i i iT i n∀ ∈ 

• Continuous linear maps 0: 1..i iL i n→ ∀ ∈ 

Problem: find 0x∈ : *

1
0 ()

n

i i i
i

L T L x
=

∈∑

• As in previous talk, but expressed as a single inclusion
involving only one group of operators

September 2017 3 of 40

Simplified Block-Iterative Splitting

• Define the Kuhn-Tucker set

{ }*
1 1

(, , ,) () 1.. , 0n
n i i i i ii

Z z w w w T L z i n L w
=

= ∈ ∀ ∈ =∑

• Whenever 1(, , ,)nz w w Z∈ , the vector z solves our problem

• Given (,) Graph() 1..i i ix y T i n∈ ∀ ∈ , define

1
1

1 1

(, , ,) ,

(, , ,) 0 (, , ,)

n

n i i i i
i

n n

z w w L z x y w

z w w z w w Z

ϕ

ϕ
=

= − −

⇒ ≤ ∀ ∈

∑

 

(follows from monotonicity of 1, , nT T)

• ()ϕ ⋅ is affine on the linear subspace  given by *
1

0n
i ii

L w
=

=∑

since quadratic terms are *
1 1

, , ,0n n
i i i ii i

L z w z L w z
= =

− = − =∑ ∑

• We will operate our algorithm in  — more restrictive than
previous talk; will require projections onto 

September 2017 4 of 40

Valid Inequalities for Z

Whenever () 1..i i iy T x i n∈ ∀ ∈ ,

1 1
1

(, , ,) , 0 (, , ,)
n

n i i i i n
i

z w w L z x y w z w w Zϕ
=

= − − ≤ ∀ ∈∑ 

But also: these inequalities fully characterize Z within :

Z { }
 is affine

() 0

() 0

H p p

p p Z

ϕ

ϕ

ϕ

= =

≤ ∀ ∈

September 2017 5 of 40

Cutting Off an Arbitrary Point in \ Z

• Take any 1(, , ,)np z w w= ∈

• For each 1..i n∈ , compute the unique proximal decomposition

(,) Graph() :i i i i i i i ix y T x c y L z c w∈ + = + for some 0ic > , hence

1 1

2 2

1 1

(, , ,) ,

1 0

n
n i i i ii

n n
i i i i ii i

i

z w w L z x y w

c y w L z x
c

ϕ
=

= =

= − −

 
= − = − ≥ 

 

∑

∑ ∑



• And if 1(, , ,) 0nz w wϕ = , then i iL z x= and i iw y i= ∀ , so

1(, , ,)nz w w is already in Z since () 1..i i iy T x i n∈ ∀ ∈

Therefore:

• We may strictly separate any 1(, , ,) \np z w w Z= ∈ from Z

• Inequalities of the form 1(, , ,) 0nz w wϕ ≤ fully characterize Z

• Z has to be a closed convex set (can prove in other ways…)

September 2017 6 of 40

Generic Projection Method for a Closed Convex Set Z

This structure suggests that we can use the following general
recipe for finding a point in a closed convex set Z:

• Given kp ∈, find separating hyperplane kH between kp and Z

• Project kp onto nH , possibly with an overrelaxation factor
[,2]kλ ε ε∈ − , giving 1kp + , and repeat…

• Fejér monotone: non-increasing distance to all points in Z

• Separators are “sufficiently deep” ⇒ (weak) convergence to
some point in Z

Z

{ }
 is affine

() 0

() 0
() 0

k

k k

k

k k

H p p

p p Z
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>

1kp +

kp

September 2017 7 of 40

One Way to Use this Idea (Similar to E and Svaiter 2009)

Here is one possible algorithm, for fixed min max0 c c< ≤

Starting with an arbitrary 0 0 0
1(, , ,)nz w w ∈ :

1. For 1, ,i n=  , pick any [], min max,i kc c c∈ and find the unique

, ,(,) Graph() :k k k k k k
i i i i i k i i i k ix y T x c y L z c w∈ + = + (prox operation)

(Decomposition Step)

2. Define 1
1

(, , ,) ,
n

k k
k n i i i i

i
z w w L z x y wϕ

=

= − −∑

3. Compute 1 1 1
1(, , ,)k k k

nz w w+ + + ∈ by projecting 1(, , ,)k k k
nz w w

onto the halfspace 1(, , ,) 0k nz w wϕ ≤
(possibly with some overrelaxation) (Coordination Step)

September 2017 8 of 40

Computing the Projection

Generic formula for projecting p onto { },p a p b≤ :

{ }
2

max , ,0a p b
p p a

a
+

 −
= −   

 

In the case of the halfspace { }() 0kp pϕ∈ ≤ ⊂  ,

()11
proj , , ,n k k k

i ni
a y x x

=
= ∑ 

• Difference from last talk:
 There could be problems if proj is difficult to compute

• But often it is straightforward

• For example, suppose 0 1 n= = =   the iL are all identity
matrices, so the problem is

1
0 ()n

ii
T x

=
∈∑ . Then

() () 1
1 1 1

proj , , , , , , , nk k k k
n n in i

v x x v x x x x x x
=

= − − = ∑ where  

September 2017 9 of 40

Making the Method More General

• At each iteration k, we do not process all the operators
1, ,i n=  , but just some subset {1, , }kI n⊆ 

o For the others, we just recycle 1 1(,) (,)k k k k
i i i ix y x y− −=

• We also consider lags:

Find () (
,

)(,) Graph() : k kk k k k
i i i i i

d i
k i i i

d i
ix y T x c y L z c w∈ + = +

where ()kd i k≤ is some possibly earlier iteration.

• We also allow errors
() ()

,(,) Graph() : k kd i d ik k k k
i i i i i k

k
ii i i ix y T x c y L z c w e∈ + ++ =

• Still have valid cuts for Z because (,) Graph() 1..k k
i i ix y T i n∈ ∀ ∈

• But are they sufficiently deep to force convergence to Z ?
In some cases they might not cut off 1(, , ,)k k k

nz w w at all…

September 2017 10 of 40

Full Algorithm (Still Not as General as Previous Talk)

For 1,2,k = 

{ }

{ }

() ()
,

1 1

*
1 1 1 1

*
1

1
2

(,) Graph() :
(,) (,) 1.. \

(, ,) proj (, ,) (, ,) 0

max , ,0

Find

, where

k kd i d ik k k k k
i i i i i k i i i i i k

k k k k
i i i i k

nk k k k
n n n i ii

nk k
i ii

n k k
i i i ii

k k

x y T x c y L z c w e i I
x y x y i n I

u u x x w w L w

v L y

L z x y w

v
θ

− −

=

=

=

∈ + = + + ∈
= ∈

= = =

=

− −
=

∑

∑
∑

    

2

1

1

1

[,2]Pick any

n k
ii

k k k
k k

k k k
i i k k i

u

z z v

w w u i

λ ε ε

λ θ

λ θ

=

+

+

+

∈ −

= −

= − ∀

∑

September 2017 11 of 40

Convergence of the More General Method

The cuts are sufficiently deep (on average) and the method does
converge (weakly) under the following assumptions:

• Quasicyclic control: (there is a bound to how long we can
ignore any given operator) there exists some integer 0M ≥
such that

{1, , } 0
M

k
k

I n
+

=

 
= ∀ ≥ 

 





 



This control rule borrowed from set intersection methods

• Bounded lags: there exists an integer 0D ≥ such that

max{0, } () 0,k kk D d i k k i I− ≤ ≤ ∀ ≥ ∀ ∈

• Relative error criterion: there exists 0, [0,1[B σ≥ ∈ such that

()
2() ()

2() ()

0, ,

,

k k

k k

d i d ik k k k
k i i i i i i

d i d ik k k
i i i i i

k i I e B e L z x L z x

e y w y w

σ

σ

∀ ≥ ∀ ∈ ≤ − ≥ − −

− ≤ −

September 2017 12 of 40

Implications

This algorithm (and the more general one in the previous talk)
have some unique features among splitting methods

• The sets kI mean that we can adjust the balance between
effort expended solving subproblems (the prox operations) and
the effort expended on coordination

o In most n-way splitting methods, every operator must be
preocessed before you perform a coordination step

• Together, the kI and the lags permit a kind of asynchronous
parallel operation: at each iteration, you process some set of
subproblem calculations that may have been initiated at
earlier iterations.

If the operation proj is problematic, use the more general
method of the previous talk instead

September 2017 13 of 40

An Example Application:
A Non-Random Asynchronous n-Block ADMM-Like Algorithm

Problem, for 1, , nf f closed proper convex:

1

1

min ()

ST

n
i ii

n
i ii

f t

M t b
=

=
=

∑
∑

Dual formulation (assuming standard regularity conditions):

() ()* * * *

1 1
min , 0 ()

n n

i i i i ix i i
f M x x b M f M x b

= =

− + ∈ − ∂ − +∑ ∑

One possible way to apply our algorithm: for any 1 nb b b+ + = ,

()* *() ()i i i i iT x M f M x b i= − ∂ − + ∀

We then use the framework above with Id 1..iL i n= ∀ ∈ and 0k
ie ≡

September 2017 14 of 40

A Non-Random Asynchronous ADMM-Like Algorithm

Workers’ loop: (i ib w− is the “target” value for i iM t)

Wait to receive command (, , ,)iz i w µ from “controller”

{ }
()

2
2Arg min () , ()

()

i i i i i i
t

i i i i i i i i i

t f t z M t M t b w

x z M t b w y b M t

µ

µ

∈ + + − −

= + − − = −

Send (, , ,)i i ii x y t back to controller

• Looks like augmented Lagrangian iteration with multiplier z,
penalty µ , and constraint i i i iM t b w= − , and like ADMM
subproblem

• Many workers operating in parallel, asynchronously

Controller starts with

• 1 1
, , : 0n

n ii
z w w w

=
=∑

• A set max1..ωΩ = of available workers

September 2017 15 of 40

A Non-Random Asynchronous ADMM-Like Algorithm: Controller

“Controller” loop (leaving out iteration indices for simplicity):

While Ω nonempty
 Pick {1, , }i n∈  and remove some ω from Ω (*)
 Pick []min max,µ µ µ∈ and send (, , ,)iz i w µ to ω
Wait for at least one worker to complete a task
For each worker ω with a completed task
 Receive (, , ,)i i ii x y t from ω
 Insert ω into Ω

{ }

1
1 1 1

22

1
[, 2]

max 0, ,

(/)
(/)

arbitrary choice

n n n
i i i i i ini i i

n
ii

i i i

i i i

v y b M t x x u x x i

d v u

z x y w

x x d v
w w d u i

λ ε ε

θ λ

θ
θ

= = =

=

← = − ← ← − ∀

← + ← ∈ −

← − −

← −
← − ∀

∑ ∑ ∑
∑

September 2017 16 of 40

More about the Algorithm, Parallel Implementation

• 2v measures the constraint violation and 2

1

n
ii

u
=∑ measures

the “disagreement” about the dual variables

• The controller algorithm description above assumes a global
memory space

• There is a more general version of the controller that accounts
for partitioned memory: some subsystems i can only be
processed on certain processors

o Details too complicated to show here, but conceptually
similar

• The implementation style is aimed at multicore or HPC
hardware rather than distributed sensor networks etc. on
graphs

• The controller should not have to be a serial bottleneck – the
controller functions may also be distributed

September 2017 17 of 40

Convergence Result

Proposition: In the ADMM-like algorithm above, suppose

• There is a bound on the ratio of the longest to shortest
possible subproblem solution time.

• Once in every 0M > executions of line (*), each possible value
of i is selected at least once

Then z converges to an optimal dual solution and the it are
asymptotically optimal for the primal:

1

n
i ii

M t b
=

→∑ and () opt1
limsup ()n

i ii
f t f

=
≤∑

September 2017 18 of 40

Commentary

Several asynchronous ADMM-like methods have been suggested for
an arbitrary number of blocks n. However, they each have some
combination of the following features:

• They require randomness in the activation of blocks and
convergence is in expectation (not along every sample path?)

• Convergence is ergodic (in the long-term average of the
iterates)

• They require restrictive assumptions about the problem

This new method has “plain” convergence and does not require
randomness or restrictive assumptions (only some standard
convex-analytic regularity)

• We also have huge freedom in choosing the proximal
parameters (stepsizes) inherited from the projective splitting
framework – can vary by both iteration and block

September 2017 19 of 40

A Related Application: Convex Stochastic Programming

• Consider a standard stochastic programming scenario tree:

• iπ is the probability of last-stage scenario i

• Will use “scenario” as a shorthand for “last-stage scenario”

Last-stage scenarios i = 1, … , n

Stages
s = 1,…,T

September 2017 20 of 40

Convex Stochastic Programming

• System walks randomly from the root to some leaf

• At each node there are decision variables, for example

o How much of an investment to buy or sell

o How much to run a power generator, etc...

• ... and constraints that depend on earlier decisions

• Model alternates decisions and uncertainty resolution

Stages
s = 1,…,T

September 2017 21 of 40

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

September 2017 22 of 40

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

isx

September 2017 23 of 40

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

• i is the space of all variables pertaining to scenario i;
elements are 1(, ,)i i iTx x x= 

i ix ∈

isx

September 2017 24 of 40

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

• i is the space of all variables for scenario i; elements are
 1(, ,)i i iTx x x= 

• 1 n= × ×   is space of all decision variables; elements are
 ()1 11 1 1(, ,) (, ,), , (, ,)n T n nTx x x x x x x= =   

x∈

i ix ∈

isx

September 2017 25 of 40

Problem Formulation and Notation

• i is i without the last stage; elements 1 , 1(, ,)i i i Tz z z −= 

• 1 n= × ×  is the space of all variables except the last
stage: elements ()1 11 1, 1 1 , 1(, ,) (, ,), , (, ,)n T n n Tz z z z z z z− −= =   

z∈

i iz ∈

September 2017 26 of 40

Nonanticipativity Subspace

• ⊂  is the subspace of  meeting the nonanticipativity
constraints that is jsz z= whenever scenarios i and j are
indistinguishable at stage s

September 2017 27 of 40

Projecting onto the Nonanticipativity Space

• Following Rockafeller and Wets (1991), we use the following
probability-weighted inner product on  :

1 1 1
(, ,), (, ,) ,n

n n i i ii
z z q q z qπ

=
=∑ 

• With this inner product, the projection map proj : →   is
given by

()
1 1

(,)
(,)

proj () ,
1 1, , , 1, , 1

 where

k k
is j js

j S i sjj S i s

q z

z q i n s Tπ
π

+ +

∈
∈

=

= = = −∑
∑



 

and (,)S i s is the set of scenarios indistinguishable from
scenario i at time s.

September 2017 28 of 40

Formulation Continued

• : { }i ih → ∪ +∞  is the cost function for scenario i

o Includes all constraints within scenario i
(infeasible points have ()i ih x = +∞)

o Assume that ih is convex

• :i i iM →  is the linear map 1 1 , 1(, ,) (, ,)i iT i i Tx x x x −  
(just drops last stage from scenario i)

• :M →  takes 1 1 1(, ,) (, ,)n n nx x M x M x  
(just drops last stage from full decision vector)

We may formulate a convex stochastic program as

1
min ()

ST

n
i i iix
h x

Mx

π
=

∈

∑


September 2017 29 of 40

Formulation Continued

Further define : { }f → ∪ +∞  and : { }g → ∪ +∞  by

•
1

() ()n
i i ii

f x h xπ
=

=∑

•
0,

()
,

z
g z

z
∈

= +∞ ∉




 (the convex indicator function of )

Then our stochastic program is just

min () ()
x

f x g Mx
∈

+


September 2017 30 of 40

Progressive Hedging (Rockafellar and Wets 1991)

• Apply the ADMM (alternating direction method of multipliers)
and obtain, with iterates { } ,{ } ,{ }k k kx z w ⊥⊂ ⊂ ⊂   ,

21

1 1

1 1 1

Arg min () , 1, ,
2

proj ()
()

i

k k k
i i i i i i i i

x

k k

k k k k

x h x M x w M x z i n

z Mx
w w Mx z

ρ

ρ

+

+ +

+ + +

 ∈ + + − = 
 

=
= + −





• Minimize each scenario separately, but with a linear-quadratic
perturbation on all variables except the last stage

• Average the results into a nonanticipative z

• Update Lagrange multiplier estimates w and repeat

• Note: Rockafellar and Wets present a derivation from first
principles, but it is also an application of the ADMM

September 2017 31 of 40

Progressive Hedging is Naturally Parallel…

• The minimization step (subproblem) naturally decomposes by
scenario

• The remaining calculations take comparatively little time and
may also be parallelized (only communication is for the
summations required by proj , and is simple/efficient)

…But Also Naturally Synchronous

• If some scenarios take longer than others, the algorithm
cannot proceed until the slowest one completes

• You must solve all n subproblems between successive
coordination steps

September 2017 32 of 40

Setup to Apply Asynchronous Splitting Method

Problem setup for stochastic programming

• 0 =  (run algorithm in nonanticipativity subspace)

• i i=  , but with inner product multiplied by iπ

• :i iL →  selects the subvector relevant to scenario i

• (){ }() min (,)
iT

i i i i i iTx
f x h x xπ=  minimizes scenario i’s cost over the

last-stage variables

o Remember, scenario-infeasible points have ()i ih x = +∞

• Then our stochastic program is just

0
1

min ()n
i iix

f L x
=∈ ∑

• Apply the method from earlier in the talk for *

1
0 ()

n

i i i
i

L T L x
=

∈∑

• Conveniently, it turns out that ⊥=  , so ⊥= ×  

September 2017 33 of 40

A New, Asynchronous Alternative

Subproblem: (many operating in parallel, asynchronously)

Parameters sent from “controller”:

• 1..i n∈ : which scenario to solve
• 1 , 1(, ,)i i i Tz z z −=  : scenario i “target” values, except last stage

• iw : multipliers (same dimensions as iz)

• 0ρ > : scalar penalty parameter

2

1.. , , , 0

Arg min () ,
2

()
, ,

Receive from controller

Return to controller

i

i i i

i i i i i i i i i
x

i i i i i

i i i i

i n z w

x h x M x z M x z

y w M x z
i x M x y

ρ
ρ

ρ

∈ ∈ >

 ∈ + + − 
 

= + −






Looks like progressive hedging subproblem
+ part of multiplier update

September 2017 34 of 40

A New, Asynchronous Alternative: “Controller” Setup

The controller maintains working variables:
• 1(, ,)nz z z= ∈

• 1(, ,)nw w w ⊥= ∈

• 1(, ,)nx x x= ∈  
 (the tildes mean no last-stage variables)

• 1(, ,)ny y y= ∈

At each iteration we also compute step direction vectors:
• 1(, ,)nu u u ⊥= ∈

• 1(, ,)nv v v= ∈

Scalar parameters:
• Primal-dual scaling factor 0γ > (improves conditioning; fixed?)
• Subproblem penalty parameters [,], 0ρ ρ ρ ρ ρ∈ < ≤ (varying)

• Overrelaxation factors [,2]λ ε ε∈ − (varying)

September 2017 35 of 40

A New, Asynchronous Alternative: “Controller”

repeat
 while there is a free worker ω do
 Choose a scenario i and [,]ρ ρ ρ∈
 Dispatch , , ,i ii z w ρ to worker ω
 wait for at least one worker to complete its task
 for each worker ω with a completed task
 Receive , ,i ii x y from ω
 proj ()u x x← −  
 proj ()v y← 
 2 22 2

1 1

n n
i i i ii i

u v u vτ γ π γ π
= =

← + = +∑ ∑

 () ()1
, n

i i i i ii
z x w y z x w yφ π

=
← − − = − −∑ T

 
 if 0φ > then
 Choose some [,2]λ ε ε∈ −
 (/)z z vγλφ τ← +
 (/)w w uλφ τ← +
until termination detected

September 2017 36 of 40

Partial Resemblance to PH

• Subproblem has recognizable pieces of the PH subproblem
optimization step and multiplier update

• Controller has proj operations

• But otherwise the controller algorithm comes from our
splitting framework

• Unlike progressive hedging, the algorithm runs asynchronously

o Only a single subproblem needs to complete between
cycles of the controller (more is OK too)

• In our description, the controller looks centralized/serial, but
it could be distributed with careful implementation

September 2017 37 of 40

Conclusion / Summary / Ongoing Work

• A general decomposition method for monotone inclusions

• Gives freedom to…

o Strike arbitrary balance between computing and
coordination

o Not have to reevaluate every operator between each pair
of successive coordination steps

o Implement asynchronously without requiring randomness

• Numerous possible applications:

o Asynchronous ADMM-like method without randomness
(shown above)

o Asynchronous stochastic programming decomposition

September 2017 38 of 40

Some Early Computational Results from JP Watson

• Contingency-constrained AC optimal power flow instances

• Two-stage stochastic programs with n scenarios

• We run an asynchronous algorithm essentially the same as
described in this talk (but for stochastic programming)

• Compared to progressive hedging (PH)

• Use n processors, one per scenario (≈ an ADMM block)

• These are very early results, lots left to do

Problem n PH Time Async Time

case6ww 11 0:00:02 0:00:02

case57 79 0:00:12 0:00:09

case118 117 0:02:03 0:01:40

case300 322 0:02:54 0:02:19

September 2017 39 of 40

References Part 1

“The mothership”

• Patrick L. Combettes and Jonathan Eckstein. “Asynchronous
block-iterative primal-dual decomposition methods for
monotone inclusions”. Mathematical Programming, online
July 2016.

September 2017 40 of 40

References Part 2

• Jonathan Eckstein. “A simplified form of block-iterative
operator splitting, and an Asynchronous Algorithm Resembling
the Multi-Block ADMM”.

• Convergence analysis for simplified framework in this talk…

• But weaker initialization conditions than the “mothership”

• And an asynchronous ADMM-like method generalizing the one
in this talk

More realistic applications coming “soon”…

	Asynchronous Parallel Applications of Block-Iterative Splitting

