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Hi Jon,

I’m on sabbatical at Stanford and have
been talking with Stephen Boyd.

Do you have any experience with a skewed 
version of the reflect-reflect-average 
algorithm?

x’ = (1-beta) x + beta R_A(R_B(x))

Having beta<1/2 appears to really help
in some problems.

-Veit

Dear Veit.  
Do send my best to Steve. 
In general for projection and reflection methods, especially in 
the convex case, under-relaxation can improve convergence 
theory while slowing things down. 

I would be interested in knowing more about your examples where 
it is helping? 

Cheers, Jon

May 14, 2015



Outline 

• RRR and hard problems 
• first evidence: bit retrieval 
• flow limit 
• more evidence: latin squares 
• interpretation



reflect-reflect-relax (RRR)

x 7! (1� �/2)x+ (�/2)R2(R1(x))

R1(x) : reflect x through constraint set 1

R2(x) : reflect x through constraint set 2

x 7! x+ � (P2(2P1(x)� x)� P1(x))

P2(x) : project x to constraint set 2

P1(x) : project x to constraint set 1

� = 1 : Douglas-Rachford



RRR on hard feasibility problems

• at least one constraint set is non-convex, often discrete 

• use RRR to generate samples 

• not interested in convergence in usual sense 

• can round to discrete set to verify solutions 

• comparison group: combinatorial sampling/search algorithms

Does RRR sampling offer advantages  
over standard methods?



bit retrieval:  
reconstruct a binary sequence from its periodic autocorrelations

first application

binary (two-valued) sequence: + 1 � 1 � 1 + 1 � 1

periodic autocorrelations: + 5 � 3 + 1 + 1 � 3

ai =
N�1X

j=0

sjsj�i



medium difficulty instance
ai :

520964398733896867126337878104465216436493073798791761571444565192819298905650746097664
fastest known algorithm: first factor this integer

completely defeated by noise: ai ! ai ± 2



complexity of retrieving N bits

• complexity class unknown 

• circumstantially hard: basis of crypto schemes 

• best noise-free algorithm needs to factor (N log N)-bit integer 

• minimal noise, preserves solution uniqueness: 

• best algorithms for noisy bit retrieval: complexity 

ai ! ai ± 2

2cN

c
branch 

& 
bound

RRR

average 
case 0.36 0.21

worst 
case 0.56 0.50

V. Elser, The complexity of bit retrieval, IEEE Trans. Info. Theory, to appear 
arXiv:1601.03428  



bit retrieval with RRR

P1 : projection to sequence of signs

P2 : projection to real sequence with given autocorrelation

x random initial sequence

iterate: x RRR(x)

terminate: P1(x) has given autocorrelation



experimental results

• 100% success rate 

• exponential-decay distribution of iteration counts

hard N = 43 instance



interpretation

infeasible case:
The sequence x0, x1, x2, … of RRR 
iterates samples a probability density 
on       , independent of the initial point.RN

attractor



interpretation

feasible case:
The size of the fixed-point basin 
determines the expected number 
of RRR iterations.



mixing dynamics: 
• few (ideally one) attractors

optimize algorithm: 
• decrease size* of attractor 
• increase size of fixed-point basin

We have one parameter: �

* Kolmogorov-Sinai entropy



⇠ ��1

iter ⇥ �

iter ⇥ � = ‘time’ elapsed to find solution when ‘timestep’ is �

more experimental results



flow limit

ẋ = P2(2P1(x)� x)� P1(x)

�� ! 0 :
xn+1 � xn

��

! ẋ(�)

xn+1 = xn +�� (P2(2P1(xn)� xn)� P1(xn))

RHS = flow field



special case:  
• discrete constraint sets 
• piecewise-constant flow field

Can devise, in principle, iteration scheme 
based on Voronoi cells of constraint sets.



more evidence: latin square completion
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d c b a

binary encoding: 
exactly one 1 in every stack 
in all three dimensions



divide and concur formulation

three blocks of n3 numbers for independent (divided) constraints

block 1: x-stacks 
block 2: y-stacks 
block 3: z-stacks 

divide constraint: 
•  single 1 in each x-stack of block 1 
• single 1 in each y-stack of block 2 
• single 1 in each z-stack of block 3

concur constraint: 
•  block 1 = block 2 = block 3 
• all elements 0 or 1

both constraints are discrete



three instances

latin square completion results

same behavior as bit retrieval

‘time-step’ :

‘solution time’ :

25 x 25, 65% complete



1. Is RRR doing something special in the flow limit? 

2. How does the special behavior improve RRR search?

two questions



flow limit behavior in bit retrieval

facet attraction mechanism

= fixed point

15%

search vector components concentrated at zero

�� = 0.01

flow is confined to Voronoi facets
of all-signs constraint set 



flow limit behavior in latin square completion
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A working hypothesis: 
The flow limit improves search because the 
entropy of the RRR attractor is reduced.

� = 1� ! 0


