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The last message from Jon

Jon Borwein jon.borwein@gmail.com via umich.edu
6/24/16
to Asen,

Hi, here is a question I need your help with.

Let T be tangent to ellipse E at f , show that for p in as
neighbourhood of f ,

||PE (p)− PT (p)|| = o(||p − f ||).

That is; PT is the linearisation of PE at f and

||PE (p)− PT (p)||/||p − f || → 0, as p → f .

Since projection onto a line L is linear this will let us show that the
D-R operator .....



The theorems

The Hildebrand-Graves theorem (1927)

The (Lyusternik-) Graves theorem (1950)

The Bartle-Graves theorem (1952)

Lawrence Murry Graves (1896–1973)



Hildebrand–Graves inverse function theorem (1927)

Lipschitz modulus

lip(f ; x̄) := lim sup
x′,x→x̄,
x 6=x′

‖f (x ′)− f (x)‖
‖x ′ − x‖

.

Theorem (Hildebrand–Graves, TAMS 29: 127–153).

Let X be a Banach space and consider a function f : X → X and a
linear bounded mapping A : X → X which is invertible. Suppose
that

lip(f − A; x̄) · ‖A−1‖ < 1.

Then f is strongly regular at x̄ for f (x̄).

Strong regularity: A mapping F : X →→ X is said to be strongly
regular at x̄ for ȳ when (x̄ , ȳ) ∈ gphF and F−1 has a
single-valued localization around ȳ for x̄ which is Lipschitz
continuous.



The H-G IFT implies the classical (Dini) IFT

f is strictly differentiable at x̄ ⇐⇒ lip(f − Df (x̄); x̄) = 0.

The classical (Dini) IFT

Let f : IRn → IRn be strictly differentiable at x̄ . Then f is strongly
regular at x̄ if and only if the derivative Df (x̄) is nonsingular.



Clarke’s IFT (1976)

Clarke’s generalized Jacobian ∂f (x)

Theorem (F. Clarke, Pac. J. Math. 64:97–102).

Consider a function f : IRn → IRn which is Lipschitz continuous
around x̄ and suppose that all matrices in ∂f (x̄) are nonsingular.
Then f is strongly regular at x̄ .



Robinson’s inverse function theorem (1980)

Theorem (S. M. Robinson, MOR 5:43–62).

Let X be a Banach spaces and consider a function f : X → X
which is strictly differentiable at x̄ and any set-valued mapping
F : X →→ X . Let ȳ ∈ f (x̄) + F (x̄). Then f + F is strongly regular
at x̄ for ȳ if and only if the mapping

y 7→ (f (x̄) + Df (x̄)(· − x̄) + F (·))−1(y)

has the same property.



Izmailov IFT (2014) = Clarke + Robinson

Theorem (A. Izmailov, MP (A) 147:581–590).

Let f : IRn → IRn be Lipschitz continuous around x̄ , let
F : IRn →→ IRn, and let ȳ ∈ f (x̄) + F (x̄). Suppose that for every
A ∈ ∂f (x̄) the mapping f (x̄) + A(· − x̄) + F (·)) is strongly regular
at x̄ for ȳ . Then (f + F ) has the same property.

Proof and extension to Banach spaces: AD and R. Cibulka,
MP (A) 156: 257–270, 2016.



Lyusternik-Graves theorem (1934-1950)

Theorem.

Let X ,Y be Banach spaces and onsider a function f : X → Y and
a point x̄ ∈ int dom f along with a bounded linear mapping
A : X → Y which is surjective, such that

lip(f − A; x̄) · ‖A−1‖− < 1,

where the inner “norm” of A is defined as

‖A−1‖− := sup
‖y‖≤1

inf
x∈A−1(y)

‖x‖.

Then f is metrically regular at x̄ for f (x̄).



Metric Regularity

A mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ
when ȳ ∈ F (x̄), gphF is locally closed at (x̄ , ȳ) and there is a
constant τ ≥ 0 together with neighborhoods U of x̄ and V of ȳ
such that

d
(
x ,F−1(y)

)
≤ τd

(
y ,F (x)

)
for every (x , y) ∈ U × V .

The infimum of all constants τ ≥ 0 for which this inequality holds
is the regularity modulus of F at x̄ for ȳ denoted by reg(F ; x̄ | ȳ).

Euivalent to the Aubin property of the inverse:

F−1(x) ∩ V ⊂ F−1(x ′) + τρ(x , x ′)IB



Extended [Robinson] (Lyusternik)-Graves theorem

Theorem.

Let X be a complete metric space, Y be a linear metric space with
shift-invariant metric. Consider a mapping F : X →→ Y and a
function f : X → Y such that there exist nonnegative scalars κ
and µ with

κµ < 1, reg(F ; x̄ | ȳ) ≤ κ and lip(f ; x̄) ≤ µ.

Then f + F is [strongly] metrically regular at x̄ for ȳ + g(x̄) with

reg(g + F ; x̄ | ȳ) ≤ (κ−1 − µ)−1.

Open problem. Is there a Lyustenik-Graves theorem in nonlinear
metric spaces?



Nonsmooth L-G theorems

Theorem (Pourciau, JOTA 22,311–351, 1977).

Let f : IRn → IRm be Lipschitz continuous around x̄ , and every
A ∈ ∂f (x̄) is surjective. Then f is metrically regular at x̄ for f (x̄).

Extension to mapping of the form f + F acting in Banach spaces:
R. Cibulka, AD and V. Veliov, (SICON 54: 3273–3296, 2016)



Bartle-Graves theorem (1952)

Bartle-Graves theorem (TAMS 72:400–413).

Let X and Y be Banach spaces and let f : X → Y be a function
which is strictly differentiable at x̄ and such that the derivative
Df (x̄) is surjective. Then there is a neighborhood V of f (x̄) along
with a constant γ > 0 such that f −1 has a continuous selection s
on V with the property

‖s(y)− x̄‖ ≤ γ‖y − f (x̄)‖ for every y ∈ V .



Extended Bartle-Graves theorem

Theorem (AD, JCA 11:81–94, 2004).

Consider a mapping F : X →→ Y and any (x̄ , ȳ) ∈ gphF and
suppose that for some c > 0 the mapping
IBc(ȳ) 3 y 7→ F−1(y) ∩ IBc(x̄) is closed-convex-valued. Consider
also a function f : X → Y with x̄ ∈ int dom f . Let κ and µ be
nonnegative constants such that

κµ < 1, reg(F ; x̄ | ȳ) ≤ κ and lip(f ; x̄) ≤ µ.

Then for every γ > κ/(1− κµ) the mapping (f + F )−1 has a
continuous local selection s around f (x̄) + ȳ for x̄ with the property

‖s(y)− x̄‖ ≤ γ‖y − ȳ‖ for every y ∈ V .



A nonsmooth Bartle-Graves theorem ?

Conjecture.

Consider a function f : IRn → IRm which is Lipschitz continuous
around x̄ and a convex and closed set C ⊂ IRn and suppose that
for all matrices A in ∂f (x̄) the mapping

x 7→ f (x̄) + A(x − x̄) + C

is metrically regular at x̄ for ȳ . Then (f + C )−1 has a continuous
local selection around ȳ for x̄ which is calm at ȳ .



Newton Method for Variational Inequalities

Variational inequality (VI): find x ∈ C such that

f (x) + NC (x) 3 0,

where NC (x) the normal cone to C at x :

NC (x) = {w | 〈w , y − x〉 ≤ 0 for all y ∈ C}

Newton’s method for VI: at each step solve a linear VI:

f (xk) + Df (xk)(xk+1 − xk) + NC (xk+1) 3 0

Josephy (1979): If f + NC is strongly regular at x̄ for 0 then
Then there exists a neighborhood O of x̄ such that for every
x0 ∈ O the method generates a unique in O sequence and this
sequence is superlinearly convergent to x̄ .



Strong Regularity for Newton’s Method

Newton method for a parameterized VI

x0 = a, f (xk) + Df (xk)(xk+1 − xk) + NC (xk+1) 3 p

Consider the mapping

IRn × IRn 3 (a, p) 7→ Ξ(a, p) =

{
{xk} ∈ l∞(IRn)

∣∣∣ x0 = a,

f (xk) + Df (xk)(xk+1 − xk) + NC (xk+1) 3 p, k = 1, 2, . . .

}
Theorem (with RTR (2010) and Aragon et al. (2011)).

Let f (x̄) + NC (x̄) 3 0; then {x̄} ∈ Ξ(x̄ , 0). The mapping Ξ has a
Lipschitz continuous single-valued localization around (x̄ , 0) for
{x̄} each value of which is a superlinearly convergent sequence to
a solution x(p) of f (x) + NC (x) 3 p if and only if f + NC is
strongly regular at x̄ for 0.



Open problem

Conjecture.

Let f be Lipschitz continuous around x̄ for 0 and for each
A ∈ ∂f (x̄) the mapping

x 7→ f (x̄) + A(x − x̄) + NC (x)

is strongly regular at x̄ for 0. Then the mapping
IRn × IRn 3 (a, p) 7→ the set of all sequence {xk} ∈ l∞(IRn) such
that x0 = a, and

f (xk) + A(xk+1 − xk) + NC (xk+1) 3 p

for some A ∈ ∂f (xk) k = 1, 2, . . . , has a Lipschitz continuous
single-valued localization around (x̄ , 0) for {x̄} each value of which
is a superlinearly convergent sequence to a solution x(p) of
f (x) + NC (x) 3 p.



Muchas Gracias!


