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1 Overview of the Field
The study of manifolds of dimensions at least 5 had remarkable success in the 1960’s, with the resolution
of fundamental problems about existence and uniqueness of smooth or PL structures by a mixture of han-
dlebody theory, surgery theory, and homotopy theory. These methods, while they tell us much about lower
dimensional manifolds, do not apply in the same generality in dimensions 3 and 4. Starting in the 1970’s, new
tools were developed, revealing a whole new universe of phenomena that do not appear in higher dimensions.

The study of 3-manifolds, originally based on combinatorial methods, came to be dominated by the
geometric methods introduced by Thurston. His remarkable geometrization program was finally completed
by Perel’man [32, 33, 34] using the analytical machinery of Ricci flow. The study of 4-manifolds has also seen
remarkable progress, although one still hopes for a broad vision comparable to Thurston’s, and classification
comparable to what is achieved via geometrization. A new and unexpected aspect in dimension 4 was the
divergence of the topological and smooth categories, due to almost simultaneous breakthroughs by Freedman
and Donaldson in 1981. Subsequent revolutions in gauge theory, described below, have greatly expanded the
power of these initial insights, leading to diverse applications to topology and geometry in dimension 4.

Based on earlier work of Casson [2], Freedman showed [11] that the tools of high-dimensional topology
could be applied to simply connected topological 4-manifolds, leading to a complete classification in terms
of the intersection form in that case. He subsequently [12] extended these topological results to manifolds
with good fundamental groups, where to say a group G is ‘good’ roughly speaking means that G contains
no non-abelian free group. An important aspect of Freedman’s work, that will reappear in different guise
in the smooth case, is the interaction between 3-manifolds and the 4-manifolds they bound. For instance,
Freedman’s simply connected theory implies that any 3-manifold with the homology of the 3-sphere bounds
a homology ball (in fact a contractible manifold); his non-simply connected results show that certain classes
of knots in the 3-sphere are topologically slice, i.e. bound locally flat disks in the 4-ball. The smooth versions
of these sorts of investigations are connected to classical topics; for instance questions about the structure of
the smooth homology cobordism group (now resolved by Manolescu [28]) were seen to be equivalent to the
problem of existence of triangulations of high-dimensional manifolds.

Months after Freedman announced his results, Donaldson [3] made the amazing discovery that the study
of Yang-Mills moduli spaces leads to restrictions on the intersection form of smooth 4-manifolds. Coupled
with Freedman’s classification and construction results, Donaldson’s theorem was seen to imply the existence
of exotic smooth structures on R4. No such phenomenon occurs in any other dimension: smooth structures
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on Rn are unique for n 6= 4. (Later work of Taubes [35] using manifolds with periodic ends extended this
to give uncountably many smooth structures on R4.) Other applications of Donaldson’s theorem showed
that not every homology 3-sphere bounds a smooth homology ball; a refined version shows that in fact the
homology cobordism group ΘH

3 is infinitely generated [17, 9]. Similarly, Donaldson’s theorem showed a
large gap between the smooth and topological concordance groups (knots modulo smoothly or topologically
slice knots).

Donaldson’s theorem seemed like an isolated result until Donaldson [5, 6] used Yang-Mills theory in
an equally surprising way to give invariants of smooth manifolds, and to establish the non-triviality of these
invariants for complex Kähler surfaces. Donaldson’s invariants were very powerful, leading for instance to the
discovery of infinitely many smooth structures on closed manifolds (again, something that does not happen in
other dimensions), but still rather difficult to calculate even in the case of complex surfaces. In 1994, Seiberg
and Witten [37] introduced a new set of equations that were much easier to work with, leading to many new
examples and to the resolution [22] of the famous Thom conjecture on the genus of an embedded surface in
complex manifolds such as CP 2. The advent of the Seiberg-Witten equations (and the invariants they define)
brought forth an explosion of work in the area. An important aspect of this was that the Seiberg-Witten
equations on symplectic manifolds (whose topological study was also creating great interest around the same
time) could be solved fairly explicitly. Fundamental work of Taubes [36] connected these solutions to the
study of pseudo-holomorphic curves, introduced by Gromov as a bridge between complex and holomorphic
geometry.

The definition of Donaldson’s invariants rested on a detailed analysis of the Uhlenbeck compactification
of the moduli space. That analysis led to further restrictions [4] on the intersection forms of spin 4-manifolds,
yielding the most basic case of the fundamental 11/8 inequality (the ratio between b2(X) and the signature
of X is at least 11/8) for spin manifolds, conjectured in the 1970s by Kas and Kirby. In a fundamental work,
Furuta [16] showed how the stronger compactness properties of the Seiberg-Witten equations could be used
to attack this problem, and established a lower bound of 10/8. His ideas subsequently gave new approaches
to questions about group actions on 4-manifolds, as well as a important reinterpretation of the Seiberg-Witten
invariant as an element of an equivariant stable homotopy group. In recent years this approach has led, in the
hands of Manolescu and others, to new directions in Floer theory and the resolution of many hard problems;
see section 2 for a discussion.

The role of symplectic geometry in 4-manifold theory extends even beyond the work of Taubes. Don-
aldson [7] showed that symplectic manifolds in all dimension admit the structure of a Lefschetz pencil, with
Gompf [18] (building on work of Thurston-Winkelnkemper) providing a converse result. This means that
symplectic 4-manifolds can be studied using the mapping class group of surfaces, a well understood object.
Conjectures from the time suggested that perhaps symplectic manifolds could be the building blocks for all
simply connected manifolds, in the same sense that hyperbolic 3-manifolds are the building blocks in dimen-
sion 3. Work of Szabó and many others shows this to be overly optimistic, but the search for an analog of
Thurston’s geometrization program remains intriguing.

A parallel development to Donaldson’s theory was the development of Floer homology [10], originally
for homology 3-spheres. Formally, Floer homology is the Morse homology associated to the Chern-Simons
functional on the space of connections (modulo automorphisms) on a bundle over 3-manifold. Among other
nice properties, the Donaldson invariants (originally defined for closed manifolds) of a manifold with bound-
ary live in the Floer homology of the boundary [8]. This property, along with gluing theorems generalizing
Donaldson’s connected sum theorem, became a crucial tool in calculating Donaldson invariants. Because the
critical points of the CS functional are representations of the fundamental group of the 3-manifold, one starts
to see connections between gauge theory and the geometric approach to 3-manifolds.

The Seiberg-Witten equations also have good gluing properties, which (among other properties) led to the
rapid rapid progress in the theory. It took some time before the corresponding Floer theory was developed by
Kronheimer and Mrowka [24]. Their monopole homology groups are technically sophisticated and have the
great advantage of applying to arbitrary 3-manifolds. The structure of monopole homology was greatly influ-
enced by the introduction of Heegaard Floer homology groups by Ozsváth-Szabó [29, 30] around 2000. This
remarkable development grew out of an effort to understand Seiberg-Witten theory in a more combinatorial
fashion, and has numerous applications in 3 and 4-dimensional topology, indeed more than we can sensibly
discuss here.

Some of the strongest applications of Heegaard Floer theory in fact occur on that interesting border-
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line between dimensions 3 and 4 alluded to above. For instance, the Ozsváth-Szabó correction terms (or
d-invariants) [31], analogous to similar invariants defined by Frøyshov [13, 14, 15] via Floer theory and
monopole theory, lead to very strong results about rational homology cobordisms. A host of new Heegaard
Floer knot invariants gives a great deal of new information about the smooth concordance groups. For in-
stance, Hom [19, 20] defined such an invariant to produce a Z∞ summand in the kernel of the map between
the smooth and topological concordance groups.

2 Recent Developments and Open Problems
Recent developments in the field include work by many authors. Bauer-Furuta extended the Seiberg-Witten
invairants to a cohomotopy invariant of smooth 4-manifolds that can detect inequivalent smooth structures
on some reducible 4-manifolds. Manolescu developed a verison of Pin(2) Floer theory based on a spectra.
This new version of Floer theory resolved the long-standing triangulation conjecture by showing that there
are topological manifolds in every dimension greater than 4 that are not homeomorphic to any simplicial
complex. Lin developed an alternative approach to the Pin(2) theory based on the monopole version of Floer
theory. This year Feehan and Leness completed the proof at Witten’s conjecture relating the Seiberg-Witten
invariants to the Donaldson polyomial.

Kronheimer-Mrowka resolved Property P using a combination of symplectic topology and gauge theory.
Older techniques in gauge theory are finding new results and applications. Kronheimer-Mrowka used a
version of Instaton theory to show that Khovaov homology detects the unknot. There is a philosophical link
between Floer theories and categorified knot polynomials via a transition from exact triangles in the Floer
theory to skein relations in knot theory. Several researchers are exploring this connection. One of the most
amazing developments is a gauge theory approach to 4-color conjecture by Kronheimer-Mrowka.

Constructions and botany of small 4-manifolds remains an active area of research. Such constructions of
use a combination of techniques (FS knot surgery, Luttinger surgery, fiber sums). More recently, mapping
class group techniques are finding application construction of exotic structures of small manifolds. The same
mapping class group techniques also apply to Lefschetz pencils and symplectic 4-manifolds.

Many results about 4-manifolds generalize to results about surface in 4-manifolds (knotted surfaces).
Wall’s classical result about the stable equivalence of smooth structures on homeomorphic 4-manifolds (first
proved in the simply-connected case and later generalized by Gompf to general fundamental groups) makes
periodic appearances in current research. The analogous questions for surfaces have received a fair amount
of attention in recent years. One large break-through in this area is Gabai’s light bulb theorem. The theory
of corks is also developing. Examples of finite and infinite order corks have been constructed, and the
original cork theorem has been generalized to see that any finite collection of smooth structures on a given
topological 4-manifold are related by a single finite-order cork. In contrast, it has also been shown that for
many manifolds no single cork can generate all smooth structures.

The following are a few of the outstanding open problems in the theory of 4-manifolds.

1. Construct exotic structures on the smallest 4-manifolds (or prove that such structures do not exist).
Examples of interest include: S4, CP 2, S2 × S2, CP 2#C̄P

2 as well as S1 × S3, and T 2 × S2. The
case of S4 is perhaps the most famous question in the field. This is the smooth Poincaré conjecture in
4 dimensions.

2. Do any two homeomorphic, simply-connected 4-manifolds become diffeomorphic after one stabiliza-
tion, i.e., taking connected sum with S2 × S2.

3. Does every smooth 4-manifold with b+2 > 2 have simple type?

4. Does every Z[Z]-homology S1 × S3 admit a homology sphere section?

5. Which contractible manifolds admit a Stein structure?
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3 Presentation Highlights
The first talk of the workshop was given by David Gabai on the 4 dimensional light bulb theorem. This
theorem represents a promising breakthrough in the field. It is interesting because the result and proof only
require much older techniques. It could have been proved using techniques from the early 1970s. In particular
it does not rely on Casson handles, Freedman’s work, or any gauge theory. An antecedent of this theorem
is the 1-stable equivalence result form 2013 of Auckly, Kim, Melvin and Ruberman [1]. The AKMR paper
used the light bulb idea in a specific family of examples.

Roughly (ignoring some hypothesis), the light bulb theorem states that two smooth surfaces with a com-
mon geometric dual sphere are isotopic. The exact statement follows:

Theorem 3.1 Let M be an orientable 4-manifold such that π1(M) has no 2-torsion. Two embedded 2-
spheres with common transverse sphere are homotopic if and only if they are ambiently isotopic via an
isotopy that fixes the transverse sphere pointwise.

The reason this is such an exciting result is that it sheds light on the basic problem of stable topology.
Namely, how many stabilizations are required. The case of pairwise stabilization is an immediate conse-
quence. In other words, if (X,F1) (X,F2) are a pairs of a smooth 4-manifold with embedded surface such
that F1 and F2 are homologous, then (X,F1)#(S2×S2, p×S2) is isotopic to (X,F1)#(S2×S2, p×S2). In-
deed, the two stabilized surfaces have a common geometric dual. Two weeks before the conference, Auckly,
Kim, Melvin, Ruberman, and Schwartz used the light bulb theorem to show that such surfaces become iso-
topic after one external stabilization.

Theorem 3.2 If X is a smooth simply-connected 4-manifold and α ∈ H2(X) is an ordinary class, then any
two closed oriented surfaces F0 and F1 in X of the same genus representing α, both with simply-connected
complement, are smoothly isotopic inX#(S2×S2) (summing away from F0∪F1). When α is characteristic,
the same result holds if one stabilizes by summing with S2×̃S2.

This make one wonder if progress may now be made in the absolute case.
The second talk followed a line of ideas related to exotic smooth structures on small 4-manifolds. After

Donaldson’s original work, Kotchick constructed exotic structures on the projective plane blown up at eight
points. For many years, this was the smallest known closed manifold to admit multiple smooth structures.
Later, it was discovered that by replacing linear configurations of (complex projective) lines by smaller man-
ifolds with the same boundary, exotic smooth structures could be constructed on smaller manifolds. This is
known as the rational blow-down process. More recently, researchers have been considering other configu-
rations of lines that could be surgered out to obtain exotic structures on smaller manifolds. Sumeyra Sakalli
is a Ph.D. student of one of the organizers, Anar Akhmedov. She spoke about exotic structures on small
manifolds obtained by surgering the configuration of all lines passing through four points in the plane.
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Figure: All lines through four points

Their result is

Theorem 3.3 Let M be (2n − 1)CP#(2n − 1)CP for any integer n ≥ 12. Then there exist an infinite
family of non-spin irreducible symplectic 4-manifolds and an infinite family of irreducible non-symplectic
4-manifolds that all are homeomorphic but not diffeomorphic to M .
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We will not review all of the talks from the workshop, but just pick some select highlights. The next talk
we highlight is the one by Kouichi Yasui. There are many 4 manifolds that admit many smooth structures. A
natural question is if there is some set of moves that can generate all smooth structures on a given manifold.
The cork theorem gives one answer to this question. It states that any two smooth structures on simply-
connected 4-manifold are related by a cork twist – remove the interior of a compact contractible piece and
glue the piece back via some diffeomorphism of the boundary. The following figure displays the first cork
that was discovered.

0

0

2 1

0

3 2

0

Figure: The Akbulut Cork

The cork theorem is analogous to Alexander’s theorem on PL manifolds. Alexander’s theorem gives
an infinite list of moves that will transition from any combinatorial triangulation to any other combinatorial
triangulation of the same problem. There are infinitely many contractible compact 4-manifolds and an infinite
number of possible cork twists. Pachner showed that there is a finite set of moves that relate any two PL
triangulations of the same manifold. Thus oe is led to ask if there is a finite set of corks that may be used to
relate any two smooth structures on the same simply-connected 4-manifold. Yasui showed that in the simplest
sense the answer to this question is no. One must use infinitely many corks. Specifically,

Theorem 3.4 For each positive integer n, there exists an infinite family of homeomorphic, simply-connected,
closed 4-manifolds such that, for any pair (X,W ) with b1(W ) < n, the family can not be generated by
twisting W .

Hanna Schwartz showed (joint work with Paul Melvin) that given any finite collection of smooth struc-
tures there is a fixed cork that may be twisted relating all. This generalized a family of examples constructed
by Auckly, Kim, Melvin and Ruberman. In fact, removing the compactness assumption, one may find a
contractible bit that may be removed and twisted to generate all smooth structures. In outline, one consid-
ers a collection of 2-handlebody corks relating each smooth structure in the collection to a given one. By
general position, the cores of the two handles may be taken to only intersect in finite collections of points.
Repeating the proof of the cork theorem, one can find a single compact contractible manifold 2-handlebody
that contains all of these corks. Furthermore the complement may be taken to be simply-connected. Since
any contractible 2-handlebody embeds into R4. Thus one may take copies of the new big contractible bit
in coordinate patches that are disjoint and disjoint from the one large contractible manifold. Twisting one
copy of each of the original corks in one copy of the big contractible, taking an internal boundary sum and a
diffeomorphism of the boundary cycling the factors completes the construction.

Bob Gompf talked about the analogous construction on exotic R4s showing that the diffeotopy groups of
these spaces can be very complicated. At first thought, it may be surprising to hear that one can distinguish
mapping classes of an exotic R4. The extra data in this situation is the action of the diffeomorphism on the
end of the 4-manifold. This is analogous to considering the action of a diffeomorphism on the boundary of
the manifold. Biji Wong demonstrated how Floer theory could be used to establish the non-triviality of the
equivariant corks in the AKMR family.

There is some debate about terminology in this area. It is analogous to replacing one-to-one by the term
injective. Selman Akbulut started his talk with exposition arguing for the importance of requiring corks
to be Stein. This condition was part of the original definition of a cork, and some would call a non-Stein
contractible, compact manifold with boundary mapping classes that do not extend a loose cork, while others
would call such objects corks and the objects with more structure Stein corks. Selman continued with some
very interesting examples that will certainly motivate further study. One such is in the picture from his
lecture listed below. This picture is worth more than one thousand words to explain why small conferences
in 4-manifold like the August 2017 one at Casa Matemática Oaxaca are so valuable. It is very difficult to
write a complete description leading one to consider a Kirby diagram such as the one in the picture below,
but much easier to describe the motivation in person. Right now, the only place researchers can go to learn
this material is the lecture video on the conference website.
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Figure: An interesting small 4-manifold

No matter the terminology, the question of the existence of compact contractible 4-manifolds with no
Stein structure (in either orientation) is interesting. Tom Mark spoke about exactly this question.

Inanc Baykur spoke about applications of relations in the mapping class group to constructing exotic
smooth structures on small 4-manifolds. This technique also yields results about Lefschetz fibrations and is
complementary to the techniques based on configurations of lines. His talk also tied in to the talk of Naoyuki
Monden on signatures of surface bundles.

There is a revival of classical gauge theory techniques. By classical we mean techniques developed prior
to the introduction of the Seiberg-Witten equations. Examples include an approach to the 4-color problem,
and framed instanton homology. One example of this revival is Steven Sivek’s characterization of SU(2)-
cyclic surgeries via analysis of the pillowcase. The pillowcase is the representation space of Z2 into SU(2).
Any representation will take a pair of generators to a pair of elements that commute. It is well known
that any pair of commuting matrices in SU(2) may be simultaneously diagonalized by conjugating. Since
the determinant is equal to one, such a matrix is determined by the (1, 1) entry. By possibly one further
conjugation by the matrix [

0 −1
1 0

]
one may assume that the (1, 1) term of the image of the first generator has argument in [0, π]. The argument
of the image of the second generator will be in [0, 2π] and after identifying points on the boundary of this
rectangle that correspond to the same representations, one sees that it is the (2, 2, 2, 2)-orbifold. This is a
shape that looks like a pillow-case. The same orbifold also appears as the representation space of the free
group on two generators with certain trace restrictions. This is important in further versions of Instanton
homology.

Of course the study of classical gauge theory is now informed by discoveries coming from Seiberg-Witten
theory and Heegaard Floer theory. To first order these are all equivalent theories meaning something found in
one theory is likely to have an analogue in the other theories. However there are differences. For example, the
fundamental group is related to the classical model in a transparent way because the space of flat connections
may be identifies with representations of the fundamental group. When the Seiberg-Witten equations were
introduced, Witten conjectured an exact relation allowing one to compute the Seiberg-Witten invariants from
the Donaldson invariants and vice-versa. While the physical argument connecting these two theories is still
well out of reach, there was a mathematical approach that could (and did) lead to a proof of this conjecture. In
a tour-de-force Paul Feehan and Tom Leness worked through the technical details of a mathematical program
establishing Witten’s conjecture. This work was started in 1994 and was just completed this year. Paul gave
an overview of this body or work. The simple-type version of the result is as follows.
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Theorem 3.5 LetX be a standard four-manifold. IfX has Seiberg-Witten simple type, thenX has Kronheimer-
Mrowka simple type, the Seiberg-Witten and Kronheimer-Mrowka basic classes coincide, and for any w ∈
H2(X;Z) and h ∈ H2(X;R) the Donaldson invariants satisfy

Dw
X(h) = 22−(χh−c21)eQX(h)/2

∑
s∈Spinc(X)

(−1)
1
2 (w

2+c1(s)·w)SWX(s)e〈c1(s),h〉. (1)

The basic gauge theory invariant is computed as the number of solutions to a system of differential
equations. If the expected dimension of the space of solutions is positive, one adds extra conditions to
get a zero dimensional set of solutions that are then counted. When the expected dimension of the space of
solutions is negative one could consider a family of spaces to generate a zero dimensional space of solutions
for the family. The result is an invariant of families. This idea has been noted and used in the past. This past
Spring Hokuto Konno introduced a complex of surfaces in a 4-manifold that is clearly a smooth invariant
of the manifold and then defined cohomology classes of this complex using moduli spaces with expected
negative dimension. This is a wonderful new idea in gauge theory, that is likely to have further applications.
His talk was a very clear exposition of this idea.

It is worth explaining this nice new idea. Let (X, (s)) be a Spinc 4-manifold. Now set

V (X) := {Σ2 ⊂ X | [Σ] · [Σ] = 0, and max(0, 2g − 2) < |c1(s)[Σ]|}.

Let K(X) be the simplicial complex with vertices V (X) such that any set of embedded surfaces in V (X)
that are pairwise disjoint form a simplex. Clearly, this is a smooth invariant of the Spinc 4-manifold X . It is a
massive complex because there are an uncountable number of such embedded surfaces in X . A cohomology
class will associate an integer to each simplex in K(X). Given the surfaces representing a simplex, one may
construct a family of metrics stretching the radius of the tubular neighborhood of each surface independently
out to a long fixed length. When applied to this family, the a moduli space of negative expected dimension
will give a zero-dimensional family of solutions. The signed count of these solutions is the integer one
associates to the simplex. One shows that the result is a well-defined cohomology class independent of any
extra information resulting in what Konno calls the cohomological Seiberg-Witten invariant.

4 Scientific Progress Made
Perhaps the most important benefits of this workshop come from the interactions between the participants.
Stories illustrate this point. Paul Feehan told the organizers that he had very productive discussions about the
slice-ribbon conjecture with Hans Boden. In his talk he described the fact that the perturbations that he and
Tom Leness used in their proof of Witten’s conjecture are distinct from the holonomy perturbations that are
used in other parts of Floer theory. He and Hans Boden discussed Instanton Floer theory with and without
holonomy perturbations. On one hand such discussions could have taken place in the early 1990s because the
underlying mathematics does not require the more recent developments of Seiberg-Witten theory, Heegaard
Floer theory, or symplectic field theory. On the other had, this area of mathematics is undergoing a bit of
a renaissance as seen in recent work of Boden, Daemi, Sivek, Hearld, Hedden, and Kirk. Such discussions
and analysis may lead to new results, especially in framed instanton Floer homology, variants of Khovanov
homology, and interactions between the fundamental group and smooth structures in four dimensions. One
exciting proposal of Kronheimer and Mrowka is a approach to a computer-free proof of the 4-color theorem
based on this old-school gauge theory.

A number of collaborators were present at the workshop. Auckly, Kim, Melvin and Schwartz were all in
attendance and had opportunities to work. Lisa Piccirillo continued a collaboration with Tom Mark. Hans
Boden and Cynthia Curtis were able to continue their long collaboration. Cagri Karakurt and Tom Mark had
a very fruitful discussion discovering an important issue raised in Tom’s talk. John Baldwin, Tom Mark and
Cagri Karakurt were able to have many discussions. Auckly and Gompf discussed multiple nucli in elliptic
surfaces.

Several graduate students and recent Ph.D.s were able to attend and network. These include Sergio
Holguin-Cardona, Vincent Longo, Maggie Miller, Lisa Piccirillo, Katherine Raoux, Sumereyra Sakalli,
Hanna Schwartz, Jonathan Simone and Biji Wong.
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It generally takes about a year for an initial idea in this field to be developed into a result that can appear in
a preprint. Thus, one can not point to breakthroughs that were initiated at this CMO meeting now. However,
it is certain that such results will follow because the participants were all productive researchers in gauge
theory and low dimensional topology. Furthermore, there were constant interactions between participants
exploring various ideas in the field.

5 Outcome of the Meeting
The most immediate outcome of the meeting was the communication of new mathematical ideas to a collec-
tion of mathematical researchers from all over the world. The interaction and collaboration between partici-
pants is probably the most important outcome. Direct interaction is particularly important in 4-dimensional
topology. This is because it is much easier to describe complicated topological constructions and diagrams
in person than it is do do via writing or e-mail. Putting topologists in the same space for an extend period
period of time is the only way to achieve these interactions. Blackboards around the institute were covered
with diagrams similar to the one in the picture in the section on presentation highlights. These blackboard
diagrams were evidence of the deep mathematical discussions taking place at the workshop.

As an international conference, the workshop Low Dimensional Topology and Gauge Theory brought
together researchers from nine different countries to share ideas. This provided participants opportunities
to disseminate scholarly work widely. The workshop engaged students and early career mathematicians in
a small research setting with ample time for in-depth discussions. Conference organizers are aware of the
benefits of broadening participation in the mathematical sciences and kept this in mind when recruiting and
inviting participants to the workshop. Getting the broadest possible participation is a long-term project that
will take many workshops over many years to achieve. Having this as an explicit goal of the workshop
organizers for most workshops is a first step in making this an outcome of the full program of workshops run
over an extended period of time.

Plans for more conferences and small group meetings, as well as possible new collaborations were dis-
cussed. Of course the exchange of ideas, work spent continuing collaborations and developing new collabo-
rations will all lead to new research – research that will hopefully become the topic of a future meeting at the
Banff International Research Station and/or Casa Matemática Oaxaca.

BIRS and CMO have a polished system for arranging the logistics of a math workshop. The smooth
organization is apparent to all participants. Making it so easy to run a quality workshop will encourage
program participants to propose and run future workshops, further disseminating and creating mathematical
research at the very highest levels.
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