Stochastic Modeling of Environmental Velocities

Alan E. Gelfand Duke University Joint work with Erin Schliep

Introduction

- It is well-accepted that the range of plants and animals is changing in response to change in climate
- Large literature on species distribution models, explaining species presence and abundance, introducing notions like habitat models, climate envelopes, range limits, and niches, presence-absence or abundance surfaces.
- Also a large literature attempting to explain how species distribution will change in response to a changing climate scenario, e.g., species distribution models for trees to study climate change impacts on forest biodiversity at regional scales
- Useful in understanding this process is to relate change in climate over time to change in climate over space

A basic idea

- Working with a single climate variable here temperature we can formalize the notion of velocity of climate change
- Informally, this index represents the instantaneous local velocity along the earth's surface needed to maintain constant temperature
- Expressed in km/yr over a large spatial region arising from spatial change in ^oC/km and ^oC/yr
- Taking ratio of latter to former produces a velocity
- Initial work (Loarie et al., 2009) is crude. No explicit modeling of the climate process, deterministic or stochastic; it is purely descriptive.
- ► Fails to incorporate the joint linkage between temperature, time, and space
- ▶ Ad hoc uncertainty arising from variability in the ensemble of climate scenarios rather than from model mis-specification and measurement error.

- Their basic idea:
- ▶ let Temp $\equiv T = f(t)$ where t is time, i.e., a general relationship capturing change in temperature across time, say the past 100 years
- ▶ let Temp $\equiv T = g(y)$ where y is latitude, i.e., a general relationship capturing change in temperature across change in latitude, say continental
- ► Suppose we calculate $\frac{dT}{dt}$ and $\frac{dT}{dy}$.
- ▶ Then the ratio, $\frac{dT}{dt} = \frac{dy}{dt}$ (for a common dT) is defined as the velocity of climate change in this case, in the latitudinal direction at a given t and y

Clarification

We can illuminate this a bit more with finite differences and a simple figure

$$vel = \frac{f(t + \Delta t) - f(t)/\Delta t}{g(y + \Delta y) - g(y)/\Delta y} = \frac{\Delta y}{\Delta t} \frac{f(t + \Delta t) - f(t)}{g(y + \Delta y) - g(y)}$$

- The second fraction in the rightmost term is 1 (common ΔTemp), as the suggestive figure below shows.
- Moreover, with a common "delta" temp and given a starting t along with Δt , aligning with a given y, Δy is determined.
- ▶ So, Δy is the change in lat needed to provide the change in temp that arises from t to $t + \Delta t$.
- ightharpoonup With finite differences, many Δ temperatures are 0 so an arbitrary correction to obtain finite velocities

The basic idea

Our contribution

- We cast the development of velocity in a fully stochastic framework
- We recognize that, at the least, we should write T(x, y, t), i.e., temperature is a function of both location and time.
- ► This legitimizes the idea of instantaneous velocity and $vel = \frac{\partial T/\partial t}{\partial T/\partial y}$
- We view the temperature surface as random, model it coherently, attach uncertainty, obtain full inference
- ▶ We specify a rich model for T(x, y, t), incorporating spatial structure, anticipating that gradients, hence velocities, at close locations should be similar

- We calculate infinitesimal derivatives through a "parametric" specification for E(T(x, y, t)) rather than descriptive finite difference as in GIS calculations (eight neighbor slope and aspect)
- We obtain inference about gradients and velocities as a post-model fitting exercise
- We can obtain a temperature gradient at any time and location; we can obtain a spatial gradient at any time and in any direction
- We can obtain velocity in any direction at any location and also the direction of minimum velocity
- Note that direction of maximum velocity is not meaningful mathematically or ecologically

A temperature model

- Evidently, can build extremely complex temperature models. The one we propose is developed to capture temperature response at high spatial resolution
- ► We model annual average temperature using a linear mixed model with spatially correlated random effects.
- ► The model is inherently a hierarchical model as it combines two sources of data, annual average temperature and elevation.

- Again, T(x, y, t) is the annual average temperature for location (x, y) at time t, x is the easting coordinate, y is the northing coordinate. Further, E(x, y) is elevation at location (x, y).
- We model T(x, y, t) =

$$\beta_0 + \beta_1 t + \beta_2 y + \beta_3 Z(x, y) + \beta_0(x, y) + \beta_1(x, y) t + \epsilon(x, y, t)$$

and

$$E(x, y) = \mu + Z(x, y) + \eta(x, y)$$

- ▶ Here, $\epsilon(x, y, t) \sim N(0, \sigma_T^2)$ and $\eta(x, y) \sim N(0, \sigma_E^2)$.
- ▶ Both $\beta_0(x,y)$ and $\beta_1(x,y)$ are spatial random effects (intercept and slope) that account for the remaining spatial variation in annual average temperature and rate of change in annual temperature over time.
- ▶ The latent process, Z(x,y) provides a spatially differentiable surface in elevation, needed since we want the gradients and velocities to be a function of elevation. So, we model E(x,y) with a Gaussian process that allows explicit differentiability
- ▶ So, Z(x, y) is a smooth centering surface while the E(x, y) surface is not. Hopefully OK over a large spatial scale
- Remarks: Do not need a "longitude" term with coefficient; captured by elevation component
- ▶ Eastings and northings rather than longitude and latitude

A key point

- ▶ Two paths for the three spatial processes, $\beta_0(x,y)$, $\beta_1(x,y)$ and Z(x,y).
- (i) model them as customary Gaussian processes, possibly dependent. Adopt a covariance function such that process realizations are mean square differentiable, e.g. Matérn with $\nu \geq 1$. Calculate spatial gradients (as developed in Banerjee et al. (2003))
- (ii) model them using dimension reduction, i.e., as parametric linear transformations of a finite set of random variables at fixed locations, enabling explicit gradient calculation
- ▶ Adopt the latter approach due to computational necessity (temperature at > 21,000 gridded locations) and use the predictive process for dimension reduction.
- ► Coregionalization to connect slope and intercept processes independent of latent elevation process

The datasets

- ► We apply the multivariate predictive process model to temperature data for the eastern United States.
- ▶ Temperature data is from the Parameter-elevation Regression on Independent Slopes Model (PRISM) average annual temperature (°C) for the period 1963 to 2012. Data is on 2.5 minute resolution, which we aggregate to 7.5 minute, or 1/8 degree resolution (approx 11km boxes).
- Centers of grid boxes as observed locations, average of the annual temperatures as the observations.
- Our dataset consists of 21,202 spatial locations.
- ► ETOPO1 elevation dataset, a 1 arc-minute global model of the earth's surface. Elevation at each of the observed temperature locations.
- ▶ Albers Equal-Area Conic projection to Albers coordinates using parallels of 29.5° and 45°. All distances are Euclidean distances under this projection.

Variability in annual temperature and elevation

The predictive process

- For the spatial process for elevation, let $Z = (Z(x_1, y_1), \dots, Z(x_n, y_n))'$ where (x_i, y_i) , $i = 1, \dots, n$ are the observed locations.
- Let $Z^* = (Z(x_1^*, y_1^*), \dots, Z(x_m^*, y_m^*))'$ where $(x_j, y_j^*), j = 1, \dots, m$ are the knot locations of the predictive processes. Then,

$$\widetilde{\boldsymbol{\mathsf{Z}}} = \mathit{C}'_{\boldsymbol{\mathsf{Z}},\boldsymbol{\mathsf{Z}}^*}(\mathit{C}_{\boldsymbol{\mathsf{Z}}^*})^{-1}\boldsymbol{\mathsf{Z}}^*$$

$$\textbf{Z}^* \sim \textit{GP}(\textbf{0},\textit{C}_{\textbf{Z}^*})$$

where $C_{\mathbf{Z},\mathbf{Z}^*}^{'}$ is an $n \times m$ covariance matrix with (i,j)th element equal to the correlation between $Z(x_i,y_i)$ and $Z(x_j^*,y_j^*)$ and $C_{\mathbf{Z}^*}$ is the $m \times m$ covariance matrix of \mathbf{Z}^* .

- ▶ Correlation between two locations, (x_i, y_i) and (x_j, y_j) , using the Matérn correlation function with smoothness parameter, $\nu = 3/2$, and decay parameter, ϕ_z .
- ▶ That is, the covariance between $Z(x_i, y_i)$ and $Z(x_j, y_j)$ at any two points (x_i, y_i) and (x_j, y_j) is

$$Cov(Z(x_i, y_i), Z(x_j, y_j)) = \tau_z^2 \rho(d_{ij}; \phi_z)$$

= $\tau_z^2 (1 + \phi_z d_{ij}) \exp^{-\phi_z d_{ij}}$

where d_{ij} is the distance between locations (x_i, y_i) and (x_j, y_j) and τ_z^2 is the spatial variance parameter.

Coregionalization

- ▶ The spatial random intercept and slope processes, β_0 and β_1 , are modeled with a bivariate predictive process using a linear model of coregionalization (dependence anticipated).
- ▶ Let β_0 , $n \times 1$, and β_1 , $n \times 1$, be defined as

$$\left[\begin{array}{c}\boldsymbol{\beta}_0\\\boldsymbol{\beta}_1\end{array}\right]=\left[\boldsymbol{A}\otimes\boldsymbol{I}\right]\left[\begin{array}{c}\boldsymbol{W}_0\\\boldsymbol{W}_1\end{array}\right]$$

▶ Here, W_0 and W_1 are independent spatial processes and $A = \begin{pmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{pmatrix}$ is a 2 × 2 lower triangular matrix where a_{11} and a_{22} are non-negative and a_{21} is any real number.

We employ predictive processes on both \boldsymbol{W}_0 and \boldsymbol{W}_1 . Let $\boldsymbol{W}_k = (W_k(x_1,y_1),\ldots,W_k(x_n,y_n))'$ and $\boldsymbol{W}_k^* = (W_k(x_1^*,y_1^*),\ldots,W_k(x_m^*,y_m^*))'$ for k=0,1. Then,

$$\widetilde{\boldsymbol{W}}_k = C_k'(C_k^*)^{-1} \boldsymbol{W}_k^*$$

 $\boldsymbol{W}_k^* \sim GP(\boldsymbol{0}, C_k^*)$

where C'_k is the covariance matrix of \boldsymbol{W}_k and \boldsymbol{W}_k^* and C_k^* is the covariance matrix of \boldsymbol{W}_k^* .

- ▶ Again model correlation using the Matérn correlation function with range parameter ϕ_k and scale parameter τ_k^2 fixed to 1 to identify of A.
- Then, using the predictive processes $\widetilde{\boldsymbol{W}}_0$ and $\widetilde{\boldsymbol{W}}_1$, we obtain $(\widetilde{\boldsymbol{\beta}}_0,\widetilde{\boldsymbol{\beta}}_1)'$ by setting $\begin{bmatrix} \widetilde{\boldsymbol{\beta}}_0\\ \widetilde{\boldsymbol{\beta}}_1 \end{bmatrix} = [A\otimes \boldsymbol{I}] \begin{bmatrix} \widetilde{\boldsymbol{W}}_0\\ \widetilde{\boldsymbol{W}}_1 \end{bmatrix}$.

Adjusting for predictive process bias

- ▶ Predictive process systematically underestimates the variance of the spatial process at any location (x, y).
- We add the adjustment term, $\zeta(x,y)$, such that

$$E(x,y) = \mu + \widetilde{Z}(x,y) + \zeta(x,y) + \widetilde{\eta}(x,y).$$

- ► The $\widetilde{\eta}(x_i, y_i)$'s are indep with mean 0 and variance $(C_{\mathbf{Z}})_{ii} (C'_{\mathbf{Z}, \mathbf{Z}^*}(C_{\mathbf{Z}^*})^{-1}C_{\mathbf{Z}, \mathbf{Z}^*})_{ii}$
- ► Finally, using the predictive processes and the variance adjustment to elevation, we obtain

$$T(x,y,t) = eta_0 + eta_1 t + eta_2 y + eta_3 \widetilde{Z}(x,y) + \widetilde{eta}_0(x,y) + \widetilde{eta}_1(x,y)t + \epsilon(x,y,t)$$
 and

$$E(x,y) = \mu + \widetilde{Z}(x,y) + \zeta(x,y) + \widetilde{\eta}(x,y).$$

Calculating gradients

- ▶ Temporal gradient: for the annual temperature model, the temporal gradient for temperature change is the *expected* change in temperature per year.
- Spatial gradient in an arbitrary direction: for the annual temperature model, the spatial gradient gives the expected change in temperature per kilometer.
- ▶ Can do this using the gradient in the easting direction $(\partial E(T(x,y,t))/\partial x)$, in the northing direction $(\partial E(T(x,y,t))/\partial y)$
- ▶ Let $\nabla E(T(x,y,t)) = \begin{pmatrix} \partial E(T(x,y,t))/\partial x \\ \partial E(T(x,y,t))/\partial y \end{pmatrix}$. Gradient in the direction \mathbf{u} , a unit vector is $\nabla E(T(x,y,t))^T \mathbf{u}$
- ▶ Max gradient direction: $\nabla E(T(x, y, t)) / ||\nabla E(T(x, y, t))||$
- ▶ Magnitude of the max gradient is $||\nabla E(T(x, y, t))||$

Details

- Returning to the predictive processes, let P^* , Q^* , and R^* each be $m \times m$ correlation matrices of Z^* , W_0^* , and W_1^* , respectively, i.e.,
 - $P_{jk}^* = \rho(d_{jk}; \phi_z), Q_{jk}^* = \rho(d_{jk}; \phi_0), R_{jk}^* = \rho(d_{jk}; \phi_1)$
- ϕ_z , ϕ_0 , and ϕ_1 are decay parameters of the Matérn correlation function with $\nu=3/2$ and $j,k=1,\ldots,m$.
- Further, define the $m \times 1$ correlation vectors $\mathbf{p}(x,y)$, $\mathbf{q}(x,y)$, and $\mathbf{r}(x,y)$ where the jth element of $\mathbf{p}(x,y)$ is the correlation between Z(x,y) and $Z^*(x_j^*,y_j^*)$, similarly for $\mathbf{q}(x,y)$ and $\mathbf{r}(x,y)$

- Then, the expected annual average temperature at location (x,y) and time t is $E(T(x,y,t)) = \beta_0 + \beta_1 t + \beta_2 y + \beta_3 \widetilde{Z}(x,y) + \widetilde{\beta}_0(x,y) + \widetilde{\beta}_1(x,y)t = \beta_0 + \beta_1 t + \beta_2 y + \beta_3 \widetilde{Z}(x,y) + [1 \quad t]A \begin{bmatrix} \widetilde{W}_0(x,y) \\ \widetilde{W}_1(x,y) \end{bmatrix}$
- ▶ The spatial and temporal gradients at location (x, y) and time t are computed as the derivative of the E(T(x, y, t)) with respect to x for the eastern direction, y for the northern direction, or t for time.
- ► That is, $\frac{\partial E(T(x,y,t))}{\partial x}$ is the spatial gradient in the x direction, $\frac{\partial E(T(x,y,t))}{\partial y}$ is the spatial gradient in the y direction, and $\frac{\partial E(T(x,y,t))}{\partial t}$ is the gradient through time.

Temporal gradient

▶ The temporal gradient is

$$\frac{\partial E(T(x,y,t))}{\partial t} = \beta_1 + a_{21} \mathbf{q}(x,y)^T Q^{*-1} \mathbf{W}_0^* + a_{22} \mathbf{r}(x,y)^T R^{*-1} \mathbf{W}_1^*$$

► A spatial Gaussian process arising as a sum of two independent predictive processes

Spatial gradients

• Write the derivative of $\mathbf{p}_i(x, y)$ with respect to x as

$$\frac{\partial \mathbf{p}_j(x,y)}{\partial x} = \frac{\partial}{\partial x} \rho((x,y), (x_j^*, y_j^*); \phi_z)$$
$$= -\phi_z^2(x - x_j^*) e^{-\phi_z \sqrt{(x - x_j^*)^2 + (y - y_j^*)^2}}.$$

Similarly, the derivative with respect to y is

$$\frac{\partial \mathbf{p}_j(x,y)}{\partial y} = -\phi_z^2(y-y_j^*)e^{-\phi_z\sqrt{(x-x_j^*)^2+(y-y_j^*)^2}}.$$

► The derivatives $\frac{\partial \mathbf{q}_j(x,y)}{\partial x}$, $\frac{\partial \mathbf{q}_j(x,y)}{\partial y}$, $\frac{\partial \mathbf{r}_j(x,y)}{\partial x}$, and $\frac{\partial \mathbf{r}_j(x,y)}{\partial y}$ can be obtained in the same fashion.

- Then, the spatial gradients $\frac{\partial E(T(x,y,t))}{\partial x}$ and $\frac{\partial E(T(x,y,t))}{\partial y}$ are computed as $\frac{\partial E(T(x,y,t))}{\partial x} = \beta_3 \frac{\partial}{\partial x} \mathbf{p}(x,y)^T P^{*-1} \mathbf{Z}^* + (a_{11} + a_{21}t) \frac{\partial}{\partial x} \mathbf{q}(x,y)^T Q^{*-1} \mathbf{W}_0^* + a_{22}t \frac{\partial}{\partial x} \mathbf{r}(x,y)^T R^{*-1} \mathbf{W}_1^*$ and $\frac{\partial E(T(x,y,t))}{\partial y} = \beta_3 \frac{\partial}{\partial y} \mathbf{p}(x,y)^T P^{*-1} \mathbf{Z}^* + (a_{11} + a_{21}t) \frac{\partial}{\partial y} \mathbf{q}(x,y)^T Q^{*-1} \mathbf{W}_0^* + a_{22}t \frac{\partial}{\partial y} \mathbf{r}(x,y)^T R^{*-1} \mathbf{W}_1^*$
- ► These quantities give the expected change in temperature per unit of distance in the *x* and *y* direction
- We can compute gradients in arbitrary directions from these gradients, as described above
- Again, spatial GP's

Finally, velocities

- A climate velocity for annual temperature is the ratio of the temporal gradient to the spatial gradient and is measured in dist/time, in our case km/yr.
- Velocity in direction **u** is $\frac{\partial E(T(x,y,t))/\partial t}{\nabla T(x,y,t)^T \mathbf{u}} = \frac{\partial E(T(x,y,t))/\partial t}{u_1 \partial E(T(x,y,t))/\partial x + u_2 \partial E(T(x,y,t))/\partial y}$
- A ratio of GP's, a Cauchy process
- Minimum velocity is velocity in direction of max gradient and is $\frac{\partial E(T(x,y,t))/\partial t}{||\nabla E(T(x,y,t))||}$
- We summarize only with minimum velocity (interpret as optimal adaptation), reduces concern regarding "0" denominators

Again, the data

- Temperature data for the eastern United States.
- ► Temperature data is from the Parameter-elevation Regression on Independent Slopes Model (PRISM) average annual temperature (°C) for the period 1963 to 2012.
- ▶ 21,202 spatial locations.
- ETOPO1 elevation dataset at each of the observed temperature locations.
- ► Model: $T(x, y, t) = \beta_0 + \beta_1 t + \beta_2 y + \beta_3 Z(x, y) + \beta_0(x, y) + \beta_1(x, y) t + \epsilon(x, y, t)$ and $E(x, y) = \mu + Z(x, y) + \eta(x, y)$

Parameter estimates

Table: Posterior median and 95% credible intervals

Parameter	Median	95% Credible Interval
β_0	12.72	(12.68, 12.75)
$eta_1(extit{time})$	0.022	(0.019, 0.023)
$eta_2(\mathit{lat})$	-0.862	(-0.866, -0.860)
$\beta_3(\mathit{elev})$	-0.007	(-0.007, -0.007)
μ	105.49	(99.89, 112.73)
σ_T^2	0.457	(0.455, 0.458)
σ_E^2	10	
$ au^{\overline{2}}_{Z}$	31,893	(30,593, 33,143)

Temperature change per year across the eastern US

- Average increase in annual average temperature is 1.6 °C/century
- Temporal gradient is significant at 97.67% of the observed locations

Spatial gradient of temperature across the southeast

- Locations along the Appalachian
 Mountains are seeing temperature changes as much as 0.11 °C per km
- spatial gradient in the eastern direction is significant at 82.47% of locations (39.18% negative)
- spatial gradient in the northern direction is significant at 89.38% of locations (74.33% negative)

Directions of maximum spatial gradient

Velocity of climate across the southeast for 2012

Uncertainty estimates of climate velocity

Time series of velocity with credible intervals

Posterior distribution of directional velocities for 2012

