Stochastic Modeling of Environmental Velocities

Alan E. Gelfand
Duke University
Joint work with Erin Schliep

Introduction

- It is well-accepted that the range of plants and animals is changing in response to change in climate
- Large literature on species distribution models, explaining species presence and abundance, introducing notions like habitat models, climate envelopes, range limits, and niches, presence-absence or abundance surfaces.
- Also a large literature attempting to explain how species distribution will change in response to a changing climate scenario, e.g., species distribution models for trees to study climate change impacts on forest biodiversity at regional scales
- Useful in understanding this process is to relate change in climate over time to change in climate over space

A basic idea

- Working with a single climate variable - here temperature - we can formalize the notion of velocity of climate change
- Informally, this index represents the instantaneous local velocity along the earth's surface needed to maintain constant temperature
- Expressed in km/yr over a large spatial region arising from spatial change in ${ }^{\circ} \mathrm{C} / \mathrm{km}$ and ${ }^{\circ} \mathrm{C} / \mathrm{yr}$
- Taking ratio of latter to former produces a velocity
- Initial work (Loarie et al., 2009) is crude. No explicit modeling of the climate process, deterministic or stochastic; it is purely descriptive.
- Fails to incorporate the joint linkage between temperature, time, and space
- Ad hoc uncertainty arising from variability in the ensemble of climate scenarios rather than from model mis-specification and measurement error.

cont.

- Their basic idea:
- let Temp $\equiv T=f(t)$ where t is time, i.e., a general relationship capturing change in temperature across time, say the past 100 years
- let Temp $\equiv T=g(y)$ where y is latitude, i.e., a general relationship capturing change in temperature across change in latitude, say continental
- Suppose we calculate $\frac{d T}{d t}$ and $\frac{d T}{d y}$.
- Then the ratio, $\frac{\frac{d T}{d t}}{d T}=\frac{d y}{d t}$ (for a common $d T$) is defined as the velocity of climate change in this case, in the latitudinal direction at a given t and y

Clarification

- We can illuminate this a bit more with finite differences and a simple figure

$$
\text { vel }=\frac{f(t+\Delta t)-f(t) / \Delta t}{g(y+\Delta y)-g(y) / \Delta y}=\frac{\Delta y}{\Delta t} \frac{f(t+\Delta t)-f(t)}{g(y+\Delta y)-g(y)}
$$

- The second fraction in the rightmost term is 1 (common Δ Temp), as the suggestive figure below shows.
- Moreover, with a common "delta" temp and given a starting t along with Δt, aligning with a given $y, \Delta y$ is determined.
- So, Δy is the change in lat needed to provide the change in temp that arises from t to $t+\Delta t$.
- With finite differences, many Δ temperatures are 0 so an arbitrary correction to obtain finite velocities

The basic idea

Our contribution

- We cast the development of velocity in a fully stochastic framework
- We recognize that, at the least, we should write $T(x, y, t)$, i.e., temperature is a function of both location and time.
- This legitimizes the idea of instantaneous velocity and $\mathrm{vel}=\frac{\partial T / \partial t}{\partial T / \partial y}$
- We view the temperature surface as random, model it coherently, attach uncertainty, obtain full inference
- We specify a rich model for $T(x, y, t)$, incorporating spatial structure, anticipating that gradients, hence velocities, at close locations should be similar

cont.

- We calculate infinitesimal derivatives through a "parametric" specification for $E(T(x, y, t))$ rather than descriptive finite difference as in GIS calculations (eight neighbor slope and aspect)
- We obtain inference about gradients and velocities as a post-model fitting exercise
- We can obtain a temperature gradient at any time and location; we can obtain a spatial gradient at any time and in any direction
- We can obtain velocity in any direction at any location and also the direction of minimum velocity
- Note that direction of maximum velocity is not meaningful mathematically or ecologically

A temperature model

- Evidently, can build extremely complex temperature models. The one we propose is developed to capture temperature response at high spatial resolution
- We model annual average temperature using a linear mixed model with spatially correlated random effects.
- The model is inherently a hierarchical model as it combines two sources of data, annual average temperature and elevation.

cont.

- Again, $T(x, y, t)$ is the annual average temperature for location (x, y) at time t, x is the easting coordinate, y is the northing coordinate. Further, $E(x, y)$ is elevation at location (x, y).
- We model $T(x, y, t)=$
$\beta_{0}+\beta_{1} t+\beta_{2} y+\beta_{3} Z(x, y)+\beta_{0}(x, y)+\beta_{1}(x, y) t+\epsilon(x, y, t)$
and

$$
E(x, y)=\mu+Z(x, y)+\eta(x, y)
$$

cont.

- Here, $\epsilon(x, y, t) \sim N\left(0, \sigma_{T}^{2}\right)$ and $\eta(x, y) \sim N\left(0, \sigma_{E}^{2}\right)$.
- Both $\beta_{0}(x, y)$ and $\beta_{1}(x, y)$ are spatial random effects (intercept and slope) that account for the remaining spatial variation in annual average temperature and rate of change in annual temperature over time.
- The latent process, $Z(x, y)$ provides a spatially differentiable surface in elevation, needed since we want the gradients and velocities to be a function of elevation. So, we model $E(x, y)$ with a Gaussian process that allows explicit differentiability
- So, $Z(x, y)$ is a smooth centering surface while the $E(x, y)$ surface is not. Hopefully OK over a large spatial scale
- Remarks: Do not need a "longitude" term with coefficient; captured by elevation component
- Eastings and northings rather than longitude and latitude

A key point

- Two paths for the three spatial processes, $\beta_{0}(x, y), \beta_{1}(x, y)$ and $Z(x, y)$.
- (i) model them as customary Gaussian processes, possibly dependent. Adopt a covariance function such that process realizations are mean square differentiable, e.g. Matérn with $\nu \geq 1$. Calculate spatial gradients (as developed in Banerjee et al. (2003))
- (ii) model them using dimension reduction, i.e., as parametric linear transformations of a finite set of random variables at fixed locations, enabling explicit gradient calculation
- Adopt the latter approach due to computational necessity (temperature at $>21,000$ gridded locations) and use the predictive process for dimension reduction.
- Coregionalization to connect slope and intercept processes independent of latent elevation process

The datasets

- We apply the multivariate predictive process model to temperature data for the eastern United States.
- Temperature data is from the Parameter-elevation Regression on Independent Slopes Model (PRISM) - average annual temperature (${ }^{\circ} \mathrm{C}$) for the period 1963 to 2012. Data is on 2.5 minute resolution, which we aggregate to 7.5 minute, or $1 / 8$ degree resolution (approx 11 km boxes).
- Centers of grid boxes as observed locations, average of the annual temperatures as the observations.
- Our dataset consists of 21,202 spatial locations.
- ETOPO1 elevation dataset, a 1 arc-minute global model of the earth's surface. Elevation at each of the observed temperature locations.
- Albers Equal-Area Conic projection to Albers coordinates using parallels of 29.5° and 45°. All distances are Euclidean distances under this projection.

Variability in annual temperature and elevation

The predictive process

- For the spatial process for elevation, let
$\boldsymbol{Z}=\left(Z\left(x_{1}, y_{1}\right), \ldots, Z\left(x_{n}, y_{n}\right)\right)^{\prime}$ where $\left(x_{i}, y_{i}\right), i=1, \ldots, n$ are the observed locations.
- Let $Z^{*}=\left(Z\left(x_{1}^{*}, y_{1}^{*}\right), \ldots, Z\left(x_{m}^{*}, y_{m}^{*}\right)\right)^{\prime}$ where $\left(x_{j}, y_{j}^{*}\right)$, $j=1, \ldots, m$ are the knot locations of the predictive processes. Then,

$$
\begin{gathered}
\widetilde{\mathbf{Z}}=C_{\mathbf{Z}, \mathbf{Z}^{*}}^{\prime}\left(C_{\mathbf{Z}^{*}}\right)^{-1} \mathbf{Z}^{*} \\
\mathbf{Z}^{*} \sim G P\left(\mathbf{0}, C_{\mathbf{Z}^{*}}\right)
\end{gathered}
$$

where $C_{\mathbf{Z}, \mathbf{Z}^{*}}^{\prime}$ is an $n \times m$ covariance matrix with (i, j) th element equal to the correlation between $Z\left(x_{i}, y_{i}\right)$ and $Z\left(x_{j}^{*}, y_{j}^{*}\right)$ and $C_{\mathbf{Z}^{*}}$ is the $m \times m$ covariance matrix of \mathbf{Z}^{*}.

cont.

- Correlation between two locations, $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$, using the Matérn correlation function with smoothness parameter, $\nu=3 / 2$, and decay parameter, ϕ_{z}.
- That is, the covariance between $Z\left(x_{i}, y_{i}\right)$ and $Z\left(x_{j}, y_{j}\right)$ at any two points $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ is

$$
\begin{aligned}
\operatorname{Cov}\left(Z\left(x_{i}, y_{i}\right), Z\left(x_{j}, y_{j}\right)\right) & =\tau_{z}^{2} \rho\left(d_{i j} ; \phi_{z}\right) \\
& =\tau_{z}^{2}\left(1+\phi_{z} d_{i j}\right) \exp ^{-\phi_{z} d_{i j}}
\end{aligned}
$$

where $d_{i j}$ is the distance between locations $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ and τ_{z}^{2} is the spatial variance parameter.

Coregionalization

- The spatial random intercept and slope processes, $\boldsymbol{\beta}_{0}$ and $\boldsymbol{\beta}_{1}$, are modeled with a bivariate predictive process using a linear model of coregionalization (dependence anticipated).
- Let $\boldsymbol{\beta}_{0}, n \times 1$, and $\boldsymbol{\beta}_{1}, n \times 1$, be defined as

$$
\left[\begin{array}{l}
\boldsymbol{\beta}_{0} \\
\boldsymbol{\beta}_{1}
\end{array}\right]=[A \otimes \boldsymbol{I}]\left[\begin{array}{l}
\boldsymbol{W}_{0} \\
\boldsymbol{W}_{1}
\end{array}\right]
$$

- Here, \boldsymbol{W}_{0} and \boldsymbol{W}_{1} are independent spatial processes and $\boldsymbol{A}=\left(\begin{array}{cc}a_{11} & 0 \\ a_{21} & a_{22}\end{array}\right)$ is a 2×2 lower triangular matrix where a_{11} and a_{22} are non-negative and a_{21} is any real number.

cont.

- We employ predictive processes on both \boldsymbol{W} and \boldsymbol{W}_{1}. Let

$$
\begin{aligned}
& \boldsymbol{W}_{k}=\left(W_{k}\left(x_{1}, y_{1}\right), \ldots, W_{k}\left(x_{n}, y_{n}\right)\right)^{\prime} \text { and } \\
& \boldsymbol{W}_{k}^{*}=\left(W_{k}\left(x_{1}^{*}, y_{1}^{*}\right), \ldots, W_{k}\left(x_{m}^{*}, y_{m}^{*}\right)\right)^{\prime} \text { for } k=0,1 . \text { Then, }
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{\boldsymbol{W}}_{k}=C_{k}^{\prime}\left(C_{k}^{*}\right)^{-1} \boldsymbol{W}_{k}^{*} \\
& \boldsymbol{W}_{k}^{*} \sim G P\left(\mathbf{0}, C_{k}^{*}\right)
\end{aligned}
$$

where C_{k}^{\prime} is the covariance matrix of \boldsymbol{W}_{k} and \boldsymbol{W}_{k}^{*} and C_{k}^{*} is the covariance matrix of \boldsymbol{W}_{k}^{*}.

- Again model correlation using the Matérn correlation function with range parameter ϕ_{k} and scale parameter τ_{k}^{2} fixed to 1 to identify of A.
- Then, using the predictive processes $\widetilde{\boldsymbol{W}}_{0}$ and $\widetilde{\boldsymbol{W}}_{1}$, we obtain $\left(\widetilde{\boldsymbol{\beta}}_{0}, \widetilde{\boldsymbol{\beta}}_{1}\right)^{\prime}$ by setting $\left[\begin{array}{c}\widetilde{\boldsymbol{\beta}}_{0} \\ \widetilde{\boldsymbol{\beta}}_{1}\end{array}\right]=[\boldsymbol{A} \otimes \boldsymbol{I}]\left[\begin{array}{l}\widetilde{\boldsymbol{W}}_{0} \\ \widetilde{\boldsymbol{W}}_{1}\end{array}\right]$.

Adjusting for predictive process bias

- Predictive process systematically underestimates the variance of the spatial process at any location (x, y).
- We add the adjustment term, $\zeta(x, y)$, such that

$$
E(x, y)=\mu+\widetilde{Z}(x, y)+\zeta(x, y)+\widetilde{\eta}(x, y)
$$

- The $\widetilde{\eta}\left(x_{i}, y_{i}\right)$'s are indep with mean 0 and variance $\left(C_{\mathbf{Z}}\right)_{i i}-\left(C_{\boldsymbol{Z}, \mathbf{Z}^{*}}^{\prime}\left(C_{\boldsymbol{Z}^{*}}\right)^{-1} C_{\boldsymbol{Z}, \mathbf{Z}^{*}}\right)_{i i}$
- Finally, using the predictive processes and the variance adjustment to elevation, we obtain

$$
\begin{aligned}
& T(x, y, t)= \\
& \beta_{0}+\beta_{1} t+\beta_{2} y+\beta_{3} \widetilde{Z}(x, y)+\widetilde{\beta}_{0}(x, y)+\widetilde{\beta}_{1}(x, y) t+\epsilon(x, y, t) \\
& \text { and } \\
& E(x, y)=\mu+\widetilde{Z}(x, y)+\zeta(x, y)+\widetilde{\eta}(x, y)
\end{aligned}
$$

Calculating gradients

- Temporal gradient: for the annual temperature model, the temporal gradient for temperature change is the expected change in temperature per year.
- Spatial gradient in an arbitrary direction: for the annual temperature model, the spatial gradient gives the expected change in temperature per kilometer.
- Can do this using the gradient in the easting direction $(\partial E(T(x, y, t)) / \partial x)$, in the northing direction $(\partial E(T(x, y, t)) / \partial y)$
- Let $\nabla E(T(x, y, t))=\binom{\partial E(T(x, y, t)) / \partial x}{\partial E(T(x, y, t)) / \partial y}$. Gradient in the direction \mathbf{u}, a unit vector is $\nabla E(T(x, y, t))^{T} \mathbf{u}$
- Max gradient direction: $\nabla E(T(x, y, t)) /\|\nabla E(T(x, y, t))\|$
- Magnitude of the max gradient is $\|\nabla E(T(x, y, t))\|$

Details

- Returning to the predictive processes, let P^{*}, Q^{*}, and R^{*} each be $m \times m$ correlation matrices of $\boldsymbol{Z}^{*}, \boldsymbol{W}_{0}^{*}$, and \boldsymbol{W}_{1}^{*}, respectively, i.e.,

$$
P_{j k}^{*}=\rho\left(d_{j k} ; \phi_{z}\right), Q_{j k}^{*}=\rho\left(d_{j k} ; \phi_{0}\right), R_{j k}^{*}=\rho\left(d_{j k} ; \phi_{1}\right)
$$

- ϕ_{z}, ϕ_{0}, and ϕ_{1} are decay parameters of the Matérn correlation function with $\nu=3 / 2$ and $j, k=1, \ldots, m$.
- Further, define the $m \times 1$ correlation vectors $\mathbf{p}(x, y), \mathbf{q}(x, y)$, and $\mathbf{r}(x, y)$ where the j th element of $\mathbf{p}(x, y)$ is the correlation between $Z(x, y)$ and $Z^{*}\left(x_{j}^{*}, y_{j}^{*}\right)$, similarly for $\mathbf{q}(x, y)$ and $\mathbf{r}(x, y)$

cont.

- Then, the expected annual average temperature at location (x, y) and time t is

$$
\begin{aligned}
& E(T(x, y, t))=\beta_{0}+\beta_{1} t+\beta_{2} y+\beta_{3} \widetilde{Z}(x, y)+\widetilde{\beta}_{0}(x, y)+ \\
& \widetilde{\beta}_{1}(x, y) t=\beta_{0}+\beta_{1} t+\beta_{2} y+\beta_{3} \widetilde{Z}(x, y)+\left[\begin{array}{cc}
1 & t
\end{array}\right] A\left[\begin{array}{|}
W_{0} \\
\widetilde{W}_{1}(x, y) \\
\widetilde{W}_{1}(x)
\end{array}\right]
\end{aligned}
$$

- The spatial and temporal gradients at location (x, y) and time t are computed as the derivative of the $E(T(x, y, t))$ with respect to x for the eastern direction, y for the northern direction, or t for time.
- That is, $\frac{\partial E(T(x, y, t))}{\partial x}$ is the spatial gradient in the x direction, $\frac{\partial E(T(x, y, t))}{\partial y}$ is the spatial gradient in the y direction, and $\frac{\partial E(T(x, y, t))}{\partial t}$ is the gradient through time.

Temporal gradient

- The temporal gradient is

$$
\frac{\partial E(T(x, y, t))}{\partial t}=\beta_{1}+a_{21} \mathbf{q}(x, y)^{T} Q^{*-1} \boldsymbol{W}_{0}^{*}+a_{22} \mathbf{r}(x, y)^{T} R^{*-1} \boldsymbol{W}_{1}^{*}
$$

- A spatial Gaussian process arising as a sum of two independent predictive processes

Spatial gradients

- Write the derivative of $\mathbf{p}_{j}(x, y)$ with respect to x as

$$
\begin{aligned}
\frac{\partial \mathbf{p}_{j}(x, y)}{\partial x} & =\frac{\partial}{\partial x} \rho\left((x, y),\left(x_{j}^{*}, y_{j}^{*}\right) ; \phi_{z}\right) \\
& =-\phi_{z}^{2}\left(x-x_{j}^{*}\right) e^{-\phi_{z} \sqrt{\left(x-x_{j}^{*}\right)^{2}+\left(y-y_{j}^{*}\right)^{2}}}
\end{aligned}
$$

- Similarly, the derivative with respect to y is

$$
\frac{\partial \mathbf{p}_{j}(x, y)}{\partial y}=-\phi_{z}^{2}\left(y-y_{j}^{*}\right) e^{-\phi_{z} \sqrt{\left(x-x_{j}^{*}\right)^{2}+\left(y-y_{j}^{*}\right)^{2}}}
$$

- The derivatives $\frac{\partial \mathbf{q}_{\mathbf{j}}(x, y)}{\partial x}, \frac{\partial \mathbf{q}_{j}(x, y)}{\partial y}, \frac{\partial \mathbf{r}_{j}(x, y)}{\partial x}$, and $\frac{\partial \mathbf{r}_{j}(x, y)}{\partial y}$ can be obtained in the same fashion.

cont.

- Then, the spatial gradients $\frac{\partial E(T(x, y, t))}{\partial x}$ and $\frac{\partial E(T(x, y, t))}{\partial y}$ are computed as

$$
\begin{aligned}
& \frac{\partial E(T(x, y, t))}{\partial x}=\beta_{3} \frac{\partial}{\partial x} \mathbf{p}(x, y)^{T} P^{*-1} \boldsymbol{Z}^{*}+\left(a_{11}+\right. \\
& \left.a_{21} t\right) \frac{\partial}{\partial x} \mathbf{q}(x, y)^{T} Q^{*-1} \boldsymbol{W}_{0}^{*}+a_{22} t \frac{\partial}{\partial x} \mathbf{r}(x, y)^{T} R^{*-1} \boldsymbol{W}_{1}^{*} \\
& \text { and } \\
& \frac{\partial E(T(x, y, t))}{\partial y}=\beta_{3} \frac{\partial}{\partial y} \mathbf{p}(x, y)^{T} P^{*-1} \boldsymbol{Z}^{*}+\left(a_{11}+\right. \\
& \left.a_{21} t\right) \frac{\partial}{\partial y} \mathbf{q}(x, y)^{T} Q^{*-1} \boldsymbol{W}_{0}^{*}+a_{22} t \frac{\partial}{\partial y} \mathbf{r}(x, y)^{T} R^{*-1} \boldsymbol{W}_{1}^{*}
\end{aligned}
$$

- These quantities give the expected change in temperature per unit of distance in the x and y direction
- We can compute gradients in arbitrary directions from these gradients, as described above
- Again, spatial GP's

Finally, velocities

- A climate velocity for annual temperature is the ratio of the temporal gradient to the spatial gradient and is measured in dist/time, in our case km/yr.
- Velocity in direction \mathbf{u} is $\frac{\partial E(T(x, y, t)) / \partial t}{\nabla T(x, y, t)^{T} \mathbf{u}}=\frac{\partial E(T(x, y, t)) / \partial t}{u_{1} \partial E(T(x, y, t)) / \partial x+u_{2} \partial E(T(x, y, t)) / \partial y}$
- A ratio of GP's, a Cauchy process
- Minimum velocity is velocity in direction of max gradient and is $\frac{\partial E(T(x, y, t)) / \partial t}{\|\nabla E(T(x, y, t))\|}$
- We summarize only with minimum velocity (interpret as optimal adaptation), reduces concern regarding " 0 " denominators

Again, the data

- Temperature data for the eastern United States.
- Temperature data is from the Parameter-elevation Regression on Independent Slopes Model (PRISM) - average annual temperature (${ }^{\circ} \mathrm{C}$) for the period 1963 to 2012.
- 21,202 spatial locations.
- ETOPO1 elevation dataset at each of the observed temperature locations.
- Model: $T(x, y, t)=$ $\beta_{0}+\beta_{1} t+\beta_{2} y+\beta_{3} Z(x, y)+\beta_{0}(x, y)+\beta_{1}(x, y) t+\epsilon(x, y, t)$ and

$$
E(x, y)=\mu+Z(x, y)+\eta(x, y)
$$

Parameter estimates

Table: Posterior median and 95% credible intervals

Parameter	Median	95\% Credible Interval
β_{0}	12.72	$(12.68,12.75)$
$\beta_{1}($ time $)$	0.022	$(0.019,0.023)$
$\beta_{2}($ lat $)$	-0.862	$(-0.866,-0.860)$
$\beta_{3}($ elev $)$	-0.007	$(-0.007,-0.007)$
μ	105.49	$(99.89,112.73)$
σ_{T}^{2}	0.457	$(0.455,0.458)$
σ_{E}^{2}	10	
τ_{Z}^{2}	31,893	$(30,593,33,143)$

Temperature change per year across the eastern US

Temporal Gradient

- Average increase in annual average temperature is 1.6 ${ }^{\circ} \mathrm{C} /$ century
- Temporal gradient is significant at 97.67% of the observed locations

Spatial gradient of temperature across the southeast

- Locations along the Appalachian Mountains are seeing temperature changes as much as $0.11^{\circ} \mathrm{C}$ per km
- spatial gradient in the eastern direction is significant at 82.47% of locations (39.18\% negative)
- spatial gradient in the northern direction is significant at 89.38% of locations (74.33\% negative)

Maximum Spatial Gradient

Directions of maximum spatial gradient

Direction of Maximum Spatial Gradient

Velocity of climate across the southeast for 2012

Uncertainty estimates of climate velocity

Width of 95\% Credible Interval of Velocity

Time series of velocity with credible intervals

Posterior distribution of directional velocities for 2012

