Sampling with constraints

Miranda Holmes-Cerfon Courant Institute of Mathematical Sciences Thanks to: Jonathan Goodman Emilio Zappa US Dept of Energy

Zappa, H.-C., Goodman, CPAM 2018

Problem:

Sample density $\rho(x) = Z^{-1}f(x) \,\delta(q(x))$.

 $x \in \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}, q : \mathbb{R}^n \to \mathbb{R}^m$ ("constraints".)

Why do this:

- Freeze out fast, vibrational degrees of freedom of stronglybonded particles (e.g. $q(x) = |x_1-x_2|^2 - d^2$)
- Compute Free Energy / Expectations at certain levels of a reaction coordinate
- Bayesian sampling constraints on parameters (e.g. p₁+p₂+p₃=1)

My interest = Colloids (colloidal particles)

- Colloidal particles: diameters ~ 10⁻⁸-10⁻⁶ m. (» atoms, « scales of humans)
- Building blocks for many materials
- Potential to make new materials (: size ~ wavelength of light)

sand

opal

red blood cells

Schade, H.-C., et al. PRL (2013)

cornstarch

My interest = Colloids (colloidal particles)

- Colloidal particles: diameters ~ 10⁻⁸-10⁻⁶ m. (» atoms, « scales of humans)
- Building blocks for many materials
- Potential to make new materials (: size ~ wavelength of light)

sand

opal

red blood cells

Schade, H.-C., et al. PRL (2013)

cornstarch

Scientific question:

How to design colloids to self-assemble into some desired structure?

Colloids are (sometimes) easy to study experimentally

Schall et al, Nature (2006)

G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)

Colloids are (sometimes) easy to study experimentally

Schall et al, Nature (2006)

G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)

We can even measure dynamics with high accuracy

Rebecca Perry (Manoharan lab)

	888	
112	140	64
138	198	49
63	55	1

R. W. Perry, H.-C., M. P. Brenner, V. N. Manoharan, PRL (2015)

We can even measure dynamics with high accuracy

Rebecca Perry (Manoharan lab)

	888	
112	140	64
138	198	49
63	55	1

R. W. Perry, H.-C., M. P. Brenner, V. N. Manoharan, PRL (2015)

• Energy = pairwise interactions

$$\pi(x) \propto e^{-\beta V(x)}, \qquad V(x) = \sum_{i < j} U(|x_i - x_j|)$$

• Dynamics = overdamped Langevin

$$dX_t = \frac{-\nabla V(x)}{\gamma} dt + \sqrt{2k_B T \gamma^{-1}} dW_t$$

Colloids have short-ranged attractive interactions (unlike atoms)

Depletion

DNA-mediated interactions

N. Seeman, 1982 : Rothemund (2006) : Wang et al, Nat. Comm, (2015)

Common feature = **short-ranged** (c.f. diameter of particles)

- **Numerical** need a very small time step to simulate
- Conceptual theories based on landscape smoothness (local minima, saddle points, etc) don't work as well

Mitigating the challenge

Shrink bonds to zero-range —> they become constraints $\delta(q)$

Need tools to:

- Sample particles with distance (or other) constraints (*this talk*) (to calculate volumes)
- Add & drop constraints via MCMC (*ask me later*) or in a way that is consistent with their dynamics (*work in progress with Nawaf Bou-Rabee*)
- Incorporate hydrodynamics (e.g. Aleks Donev) & DNA-induced dynamics
- Solve inverse problems involving their interactions (??)

Setup for sampling
$$\rho(x) = Z^{-1}\delta(q(x))$$

$$q(x) = (q_1(x), \dots, q_m(x)) : \mathbb{R}^n \to \mathbb{R}^m$$

$$M = \{x \in \mathbb{R}^n : q_1(x) = 0, q_2(x) = 0, \dots, q_m(x) = 0\}$$

Setup for sampling
$$\rho(x) = Z^{-1}\delta(q(x))$$

$$q(x) = (q_1(x), \dots, q_m(x)) : \mathbb{R}^n \to \mathbb{R}^m$$

$$M = \{x \in \mathbb{R}^n : q_1(x) = 0, q_2(x) = 0, \dots, q_m(x) = 0\}$$

Assume

{ $\nabla q_1(x), ..., \nabla q_m(x)$ } linearly independent $\forall x \in M$.

Setup for sampling
$$\rho(x) = Z^{-1}\delta(q(x))$$

 $q(x) = (q_1(x), \dots, q_m(x)) : \mathbb{R}^n \to \mathbb{R}^m$

Strategy: sample measure on constraint manifold $M = \{x \in \mathbb{R}^n : q_1(x) = 0, q_2(x) = 0, ..., q_m(x) = 0\}$ **Assume**

{ $\nabla q_1(x), ..., \nabla q_m(x)$ } linearly independent $\forall x \in M$.

• implies M is a manifold (dimension d=n-m)

Setup for sampling
$$\rho(x) = Z^{-1}\delta(q(x))$$

$$M = \{ x \in \mathbb{R}^n : q_1(x) = 0, q_2(x) = 0, \dots, q_m(x) = 0 \}$$

Assume

{ $\nabla q_1(x), ..., \nabla q_m(x)$ } linearly independent $\forall x \in M$.

- implies M is a manifold (dimension d=n-m)
- doesn't always have to hold!
 (and even when it does, won't necessarily hold ∀x)

 $q(x) = (q_1(x), \dots, q_m(x)) : \mathbb{R}^n \to \mathbb{R}^m$

Setup for sampling
$$\rho(x) = Z^{-1}\delta(q(x))$$

$$M = \{ x \in \mathbb{R}^n : q_1(x) = 0, q_2(x) = 0, \dots, q_m(x) = 0 \}$$

Assume

{ $\nabla q_1(x), ..., \nabla q_m(x)$ } linearly independent $\forall x \in M$.

- implies M is a manifold (dimension d=n-m)
- doesn't always have to hold!
 (and even when it does, won't necessarily hold ∀x)

e.g.

$$q_{1}(x) = |x_{1} - x_{2}|^{2} - d_{12}^{2}$$

$$q_{2}(x) = |x_{2} - x_{3}|^{2} - d_{23}^{2}$$

$$\vdots \qquad \vdots$$

$$q_{N-1}(x) = |x_{N-1} - x_{N}|^{2} - d_{N-1N}^{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{N}$$

 $q(x) = (q_1(x), \dots, q_m(x)) : \mathbb{R}^n \to \mathbb{R}^m$

Setup for sampling
$$\rho(x) = Z^{-1}\delta(q(x))$$

$$M = \{ x \in \mathbb{R}^n : q_1(x) = 0, q_2(x) = 0, \dots, q_m(x) = 0 \}$$

Assume

{ $\nabla q_1(x), ..., \nabla q_m(x)$ } linearly independent $\forall x \in M$.

- implies M is a manifold (dimension d=n-m)
- doesn't always have to hold!
 (and even when it does, won't necessarily hold ∀x)

 $q(x) = (q_1(x), \dots, q_m(x)) : \mathbb{R}^n \to \mathbb{R}^m$

Setup for sampling
$$\rho(x) = Z^{-1}\delta(q(x))$$

$$M = \{ x \in \mathbb{R}^n : q_1(x) = 0, q_2(x) = 0, \dots, q_m(x) = 0 \}$$

Assume

{ $\nabla q_1(x), ..., \nabla q_m(x)$ } linearly independent $\forall x \in M$.

- implies M is a manifold (dimension d=n-m)
- doesn't always have to hold!
 (and even when it does, won't necessarily hold ∀x)

 $q(x) = (q_1(x), \dots, q_m(x)) : \mathbb{R}^n \to \mathbb{R}^m$

Given $\sigma(dx)$ = natural surface measure on *M* (=Hausdorff measure)

Setup for sampling
$$\rho(x) = Z^{-1}\delta(q(x))$$

$$M = \{ x \in \mathbb{R}^n : q_1(x) = 0, q_2(x) = 0, \dots, q_m(x) = 0 \}$$

Assume

{ $\nabla q_1(x), ..., \nabla q_m(x)$ } linearly independent $\forall x \in M$.

- implies M is a manifold (dimension d=n-m)
- doesn't always have to hold!
 (and even when it does, won't necessarily hold ∀x)

 $q(x) = (q_1(x), \dots, q_m(x)) : \mathbb{R}^n \to \mathbb{R}^m$

Given $\sigma(dx) =$ natural surface measure on M (=Hausdorff measure) **Sample density** $\rho(x) = f(x) \sigma(dx)$ s.t $f(x)\sigma(dx) = \delta(q(x))dx$ **Two questions for today:**

- What is f(x) so that $f(x)\sigma(dx) = \delta(q(x))dx$?
- How to sample the measure $\rho(x) = Z^{-1}f(x)\sigma(dx)$?

Then some examples!

What is f(x) so that $f(x)\sigma(dx) = \delta(q(x))dx$?

Fatten constraints by some amount ε :

$$M^{\epsilon} = \{ x \in \mathbb{R}^n : -\epsilon < q_i(x) < \epsilon, \quad i = 1, \dots, m \}$$

Sample M^{ϵ} uniformly —> density $\rho^{\epsilon}(x)$

Then
$$\delta(q(x)) = \lim_{\epsilon \to 0} \rho^{\epsilon}(x)$$
.

Example

$$q(x, y) = y - x^2$$
 $M^{\epsilon} = \{(x, y) : -\epsilon < y - x^2 < \epsilon, y < 1\}$

 $(x(s),y(s)) = arc-length parameterization, \sigma(ds) = ds$

Example

$$q(x, y) = y - x^2$$
 $M^{\epsilon} = \{(x, y) : -\epsilon < y - x^2 < \epsilon, y < 1\}$

 $(x(s),y(s)) = arc-length parameterization, \sigma(ds) = ds$

$$\rho^{\epsilon}(s) \approx (Z^{\epsilon})^{-1} \frac{\epsilon}{|\nabla q(s)|} \implies \rho(s) \propto |\nabla q(s)|^{-1}$$

$$|\nabla q(x)|^{-1}\sigma(dx) = \delta(q(x))dx$$

i.e. $f(x) = |\nabla q(x)|^{-1}$

pseudo-determinant

$$|\nabla q| = |(\nabla q)^T \nabla q|^{1/2}, \quad \nabla q = (\nabla q_1 \ \nabla q_2 \ \cdots \nabla q_m)$$

How to sample the measure $\rho(x) = Z^{-1}f(x)\sigma(dx)$?

- Give simple algorithm here (Zappa, H.-C., Goodman, CPAM 2018) Not necessarily the most efficient. But, the most efficient to program!
- For a Hamiltonian-based method, see e.g. T. Lelievre's talk
 - Lelievre, Rousset, Stoltz, arxiv (2018)
- Also:
 - Diaconis, Holmes, Shashahani, (2013)
 - Byrne, Girolami, Scan. J. Stat. (2013)
 - Cicotti, Vanden-Eijnden, Chem Phys Chem (2006)

- Suppose $X_n = x$.
- Let $T_x =$ Tangent space to M, at x $N_x =$ Normal space to M, at x

 \mathbb{R}^n "=" $T_x \oplus N_x$

- Propose y = x + v + w with
 - $v \in T_x \longrightarrow density p(v;x)$
 - $w \in N_x \longrightarrow solve q(x+v+w) = 0.$

Metropolis-Hastings accept/Reject move:

Acceptance probability mir

 $\min\left(1, \frac{f(y)T(y \to x)}{f(x)T(x \to y)}\right)$

 $T(x \rightarrow y)\sigma(dy) =$ transition density on M

- Suppose $X_n = x$.
- Let $T_x =$ Tangent space to M, at x $N_x =$ Normal space to M, at x

 \mathbb{R}^n "=" $T_x \oplus N_x$

- Propose y = x + v + w with
 - $v \in T_x \longrightarrow density p(v;x)$
 - $w \in N_x \longrightarrow solve q(x+v+w) = 0.$

Metropolis-Hastings accept/Reject move:

Acceptance probability

 $\min\left(1, \frac{f(y)T(y \to x)}{f(x)T(x \to y)}\right)$

 $T(x \rightarrow y)\sigma(dy) =$ transition density on M

Warning! Notation abuse! T_x is also orthonormal matrix

- Suppose $X_n = x$.
- Let $T_x =$ Tangent space to M, at x $N_x =$ Normal space to M, at x

 \mathbb{R}^n "=" $T_x \oplus N_x$

Warning! Notation abuse! T_x is also orthonormal matrix

How to compute: $QR(\nabla q) = (N_x | T_x) R$

- Propose y = x + v + w with
 - $v \in T_x \longrightarrow density p(v;x)$
 - $w \in N_x \longrightarrow solve q(x+v+w) = 0.$

Metropolis-Hastings accept/Reject move:

Acceptance probability

 $\min\left(1, \frac{f(y)T(y \to x)}{f(x)T(x \to y)}\right)$

 $T(x \rightarrow y)\sigma(dy) =$
transition density on M

- Suppose $X_n = x$.
- Let $T_x =$ Tangent space to M, at x $N_x =$ Normal space to M, at x

 \mathbb{R}^n "=" $T_x \oplus N_x$

Warning! Notation abuse! T_x is also orthonormal matrix

How to compute: $QR(\nabla q) = (N_x | T_x) R$

- Propose y = x + v + w with
 - $v \in T_x \longrightarrow density p(v;x)$

•
$$w \in N_x \longrightarrow \text{solve } q(x+v+w) = 0.$$

Solve $q\left(x+v+\sum_{i=1}^m a_i \nabla q_i\right) = 0$ for $a=(a_1,\ldots,a_m).$

Metropolis-Hastings accept/Reject move:

Acceptance probability $\min\left(1, \frac{f(y)T(y \to x)}{f(x)T(x \to y)}\right)$

 $T(x \rightarrow y)\sigma(dy) =$ transition density on M

- Suppose $X_n = x$.
- Let $T_x =$ Tangent space to M, at x $N_x =$ Normal space to M, at x

 \mathbb{R}^n "=" $T_x \oplus N_x$

Warning! Notation abuse! T_x is also orthonormal matrix

How to compute: $QR(\nabla q) = (N_x | T_x) R$

• Propose y = x + v + w with

• $v \in T_x \longrightarrow density p(v;x)$

• $w \in N_x \longrightarrow \text{solve } q(x+v+w) = 0.$ Solve $q(x+v+\sum_{i=1}^m a_i \nabla q_i) = 0$ for $a=(a_1,\ldots,a_m).$

There are other ways to find w! (eg $w \in N_y$.) But this one has a lot of nice properties.

Metropolis-Hastings accept/Reject move:

Acceptance probability

 $\min\left(1, \frac{f(y)T(y \to x)}{f(x)T(x \to y)}\right)$

 $T(x \rightarrow y)\sigma(dy) =$ transition density on M

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

p(v; x) =density of v at x

 $\left|\frac{\partial y}{\partial v}\right| = \text{volume element for transformation } v \to y$

- $A_x = y \in M$ such that y can be reached from x using numerical solver
- ξ_x = probability of numerical solver failing to find *y*, after choosing *v*

$$T(x \to y) = \mathbf{p}(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

density of *v* at *x*

$$T(x \to y) = \mathbf{p}(\mathbf{v}; \mathbf{x}) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

density of *v* at *x*

e.g.
$$p(v;x) = \frac{1}{(2\pi s^2)^{d/2}} e^{-\frac{|v|^2}{2s^2}}$$

$$T(x \to y) = \mathbf{p}(\mathbf{v}; \mathbf{x}) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

density of *v* at *x*

e.g.
$$p(v;x) = \frac{1}{(2\pi s^2)^{d/2}} e^{-\frac{|v|^2}{2s^2}}$$

Reverse density

$$T(x \to y) = \mathbf{p}(\mathbf{v}; \mathbf{x}) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

density of *v* at *x*

e.g.
$$p(v;x) = \frac{1}{(2\pi s^2)^{d/2}} e^{-\frac{|v|^2}{2s^2}}$$

Reverse density

$$T(y \to x) = p(v'; y) \left| \frac{\partial x}{\partial v'} \right|^{-1} \mathbf{1}_{A_y}(x) + \xi_y \,\delta(x - y)$$

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

 $\left|\frac{\partial y}{\partial v}\right|^{-1} = |T_x^T T_y|$

$$\left|\frac{\partial y}{\partial v}\right|^{-1} = |T_x^T T_y|$$

....but...

$$\left|\frac{\partial x}{\partial v'}\right|^{-1} = |T_y^T T_x| = |T_x^T T_y|!$$

Therefore these factors cancel, and we don't need to calculate them. (Not true for stratifications...)

$$\left|\frac{\partial y}{\partial v}\right|^{-1} = |T_x^T T_y|$$

....but...

$$\left|\frac{\partial x}{\partial v'}\right|^{-1} = |T_y^T T_x| = |T_x^T T_y|!$$

Therefore these factors cancel, and we don't need to calculate them. (Not true for stratifications...)

If $w \in N_y$ *, these factors are much more complicated (and don't cancel.)*

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

= 1 if y can be reached from $x = x$ if projection fails

What could go wrong?

using numerical solver

Solution doesn't exist (forward move)

Solution doesn't exist (forward move)

Numerical solver doesn't converge (forward & backward moves)

Numerical solver doesn't converge (forward & backward moves)

Solver converges, but gives a different point $x' \neq x$ (reverse move)

Solver converges, but gives a different point $x' \neq x$ (reverse move)

$$T(x \to y) = p(v; x) \left| \frac{\partial y}{\partial v} \right|^{-1} \mathbf{1}_{A_x}(y) + \xi_x \,\delta(y - x)$$

= 1 if y can be reached from x = x if projection fails using numerical solver

$$T(y \to x) = p(v'; y) \left| \frac{\partial x}{\partial v'} \right|^{-1} \mathbf{1}_{A_y}(x) + \xi_y \,\delta(x - y)$$

= 1 if x can be reached from y = y if projection fails using numerical solver

Given $y \in A_x$, we *don't know* if $x \in A_y$ —> we have to check reverse projection

Check: (i) reverse projection converges, (ii) it converges to x.

Code time!

E

Issues

- $|\nabla q| = 0$ —> then what?
- Is this really worth it? Projections are costly...
- Numerical solver better to be lazy. How lazy?
- Can we sample a density concentrated near, but not exactly on, a manifold, using a similar technique?
- Numerically we are never exactly on the manifold... so why do we get the right measure?
- Inequalities & highly nonconvex spaces (can we treat them like constraints?)