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Problem:
Sample density  p(x) = Z7'f(x) 5(g(x)).

xeR" fFR"> R, g:R" > R" ("constraints".)

Why do this:

* Freeze out fast, vibrational degrees ot freedom of strongly-

bonded particles (e.g. q(x) = [ x1-x212-d2)

e Compute Free Energy / Expectations at certain levels of a
reaction coordinate

* Bayesian sampling — constraints on parameters

(e.g. p1+p2+p3=1)



My interest = Colloids (colloidal particles)

+ Colloidal particles: diameters ~ 10-8-10-¢ m. (> atoms, « scales of humans)

+ Building blocks for many materials

+ Potential to make new materials (- size ~ wavelength of light)
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Scientific question:

How to design colloids to self-assemble into some desired structure?
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Colloids are (sometimes) easy to study experimentally
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We can even measure dynamics with high accuracy

Rebecca Perry
(Manoharan lab)

R. W. Perry, H.-C., M. P. Brenner, V. N. Manoharan, PRL (2015)
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Colloids are a lot like atoms

@ Energy = pairwise INnteractions

ax) x e W, V)= ) Ulx-xl)

i<j

¢ Dynamics = overdamped Langevin

-V Vi
b
e

dt + 1/ g Ty~ aW,



Colloids have short-ranged attractive interactions (unlike atoms)

Depletion DNA-mediated interactions

N. Seeman, 1982

Rothemund (2006)

r Wang et al, Nat. Comm, (2015)

Common feature = short-ranged
(c.f. diameter of particles)



Challenges of very short-ranged interactions
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Challenges of very short-ranged interactions

>

Free Energy
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Challenges:

¢ Numerical — need a very small time step to simulate

¢ Conceptual — theories based on landscape smoothness (local
minima, saddle points, etc) don’t work as well



Mitigating the challenge

Shrink bonds to zero-range —> they become constraints 8(q)
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Free Energy
Free Energy

Need tools to:

e Sample particles with distance (or other) constraints (this talk)
(to calculate volumes)

e Add & drop constraints via MCMC (ask me later) or in a way that is consistent
with their dynamics (work in progress with Nawaf Bou-Rabee)

e Incorporate hydrodynamics (e.g. Aleks Donev) & DNA-induced dynamics

e Solve inverse problems involving their interactions (??)



Setup for sampling p(x) = Z~15(q(x)) du= ), ...q,0) R~ R”

Strategy: sample measure on constraint manifold e.g.

ot 4
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U= |x2—x3|2—d223
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4
M={xeR": () =060 =0,. g0 =0 HO=Ix-xl-d
Assume

{Vqg(x),...,Vq,(x)} linearly independent Vx € M .




Setup for sampling p(x) = Z~15(q(x)) g(x) = (q;(%), ..., q,x) : R" > R™

Strategy: sample measure on constraint manifold e.g.

- 2 2
. GeR =000, .q(=0 99 h- 8l
Assume

{Vqg(x),...,Vq,(x)} linearly independent Vx € M .

e implies M is a manifold (dimension d=n-m)




Setup for sampling p(x) = Z~15(q(x)) g(x) = (q®), ..., g, (x)) : R* - R™
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e doesn’t always have to hold! 0
(and even when it does, won’t necessarily hold Vx)
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V oV ' ' :
{Vg,(x) q,,(X)} linearly independent Vx € M g i) o le2 - d]%,_l N

e implies M is a manifold (dimension d=n-m) X3 :

e doesn’t always have to hold!
(and even when it does, won’t necessarily hold Vx)
o

Given o(dx) = natural surface measure on M (=Hausdorff measure)

Sample density p(x) = f(x) o(dx) st f(x)o(dx) = 6(qg(x))dx



Two questions for today:

e Whatis f(x)sothat f(x)o(dx) = o(q(x))dx ?

¢ How to sample the measure p(x) =72~ 1f (x)o(dx) ?

Then some examples!



What is f(x) sothat  f(x)o(dx) = o(qg(x))dx 2

Fatten constraints by some amount ¢ :
M =i{xeR": e<gn)<e, i=1,._m

Sample M€ uniformly —> density p“(x)

Then o(g(x)) = ling pe(x).



Example
g(x,y) =y — x° Mé={(x,y):—e<y—x*<e y<1}

e =0.2 e =0.1 e =0.05

\v

(x(s),y(s)) = arc-length parameterization, o(ds) = ds



Example
g(x,y) =y — x° Mé={(x,y):—e<y—x*<e y<1}

e =0.2 e =0.1 e =0.05

\/

(x(s),y(s)) = arc-length parameterization, o(ds) = ds

pe(s) ~ (Z6)! W;(S)I = p(s) x | Vg(s)|™




Coarea formula (formal) e.g. Federer, (1959)

| Vg(x) |~ o(dx) = 8(q(x))dx

ie. f(x)=|Vqx)|™"

pseudo-determinant [ Vg | = |(Vq)TVq|1/2, Vg=(Vgq, Vg, ---Vg,)



How to sample the measure p(x) =2~ H(x)o(dx) ?

o Give Simple algorithm here (Zappa, H.-C., Goodman, CPAM 2018)
Not necessarily the most efficient.
But, the most efficient to program!

¢ For a Hamiltonian-based method, see e.g. T. Lelievre’s talk

* Lelievre, Rousset, Stoltz , arxiv (2018)

¢ Also:
® Diaconis, Holmes, Shashahani, (2013)
* Byrne, Girolami, Scan. J. Stat. (2013)
* Cicotti, Vanden-Eijnden, Chem Phys Chem (2006)



Sampling a]gorithm, Generate random variables Xi, X5, ... via a random walk on M.

¢ Suppose Xn = X.
¢ Let T, =Tangent space to M, at x
Nx = Normal space to M, at x

Rn an Tx @ Nx

® Propose y=x+v+w with
e vE Ty —> density p(v;x)

e w& Ny —> solve q(x+v+w) = 0.

¢ Metropolis-Hastings accept/Reject move:

transition density on M

1 f(Y)T()’ e X) > T(x —> y)a(dy) —

Acceptance probability ~ Mmin < )
JOT(x — y)
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Sampling algorithm, Generate random variables X1, X, ... via a random walk on M.

¢ Suppose Xn = X. Warning! Notation abuse!

i Tangent space to M, at x Ty is also orthonormal matrix

Nx = Normal space to M, at x How to compute:

RiVg =(N. | T.R
E QR(V q) = (N | Ty)

® Propose y=x+v+w with
e vE Ty —> density p(v;x)
e w& Ny —> solve q(x+v+w) = 0.
Solve q(x e Z al-Vql) =0 foru—lg; . an)
i=1
¢ Metropolis-Hastings accept/Reject move:

transition density on M

STy — x) ) T(x = y)o(dy) =

Acceptance probability  mMin (
fOT(x = y)



Sampling algorithm, Generate random variables Xj, X, ... via a random walk on M.

¢ Suppose Xn = X. Warning! Notation abuse!

i Tangent space to M, at x Ty is also orthonormal matrix

Nx = Normal space to M, at x How to compute:

RiVg) =N T.) R
nn "T@N Q( C_[) ( )

® Propose y=x+v+w with

 vETx —> density p(v;x) There are other ways to find w! (eg w € Ny.)

e wEN, —> solve q(x+v+w) = 0. But this one has a lot of nice properties.

Solve q(x + v+ 2 al-Vql-> —0 fora—(a, .4,
i=1
¢ Metropolis-Hastings accept/Reject move:

transition density on M

fO)T(y — x) ) T(x = y)o(dy) =

Acceptance probability  mMin <
fOT(x = y)



Proposal Move

q(x)

0



Proposal Move

q(x)

0



Proposal Move

q(x)=0



Proposal densities 1(x — y), T(y — X)

-1

0y
= L) 00 )

I(x = y) = p(v;x) P

p(v; x) = density of v at x
oy

. = volume element for transtormation v — y
2

A, =y € M such that y can be reached from x
using numerical solver

. = probability of numerical solver failing

to find y, after choosing v



Proposal densities 1(x — y), T(y — X)
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e.g. pv;x)= (2]”2)6”26



Proposal densities 1(x — y), T(y — X)

dy -

av

density of v at x

1(x >y = plv:x)

1) & & oy n)

e.g. p(v;x)= (2;z52)d/2e

Reverse density



Proposal densities 1(x — y), T(y — X)

—-1

0y
= 1) ok & 00 )

av

density of v at x

1(x >y = plv:x)

v|2

e.g. p(v;x) = (2]2'52)5”26 252
Reverse density
, 0 [
e e s e RR e e




Proposal Move
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Proposal Move




Proposal Move

V=TT (x—y) => p(;x) is known



Proposal densities 1(x — y), T(y — X)
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Proposal densities 1(x — y), T(y — X)

.
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I(x = y) = p(v;x) -

volume element for transformation v — y

PAy = L Ay

X

y—=Ay => v-o Av =



av

o L
- ‘TxTyl



0y -
— I =TT
ov 1 yl

. but

ox |~
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= |T,T,| = |T[T,|!

Therefore these factors cancel, and we don’t need to calculate them.

(Not true for stratifications...)
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= |T,T,| = |T[T,|!

Therefore these factors cancel, and we don’t need to calculate them.

(Not true for stratifications...)

If w € Ny. these factors are much more complicated (and don't cancel.)



Proposal densities 1(x — y), T(y — X)

-1

oy
I(x = y) = p(v;x) . 1i )+ . 0y = 1)
= 1 if y can be reached from x = = x if projection fails

using numerical solver

What could go wrong?



Solution doesn’t exist (forward move)

q(x)

0



Solution doesn’t exist (forward move)

q(x)

0



Numerical solver doesn’t converge (forward & backward moves)

Vy

q(x)

0



Numerical solver doesn’t converge (forward & backward moves)

Vy

q(x)

0



Solver converges, but gives a different point x’ # x (reverse move)




Solver converges, but gives a different point x’ # x (reverse move)




Proposal densities 1(x — y), T(y — X)

-1

oy
I(x = y) = p(v;x) . 1i )+ . 0y = 1)
= 1 if y can be reached from x = = x if projection fails

using numerical solver

ox |7
o’

= 1 if x can be reached from y

Ity = %) = pviy) I4(x) +

using numerical solver

Giveny € Ay, we don’t know it x € Ay
—> we have to check reverse projection

Check: (i) reverse projection converges, (ii) it converges to x.






Issues

¢ |Vql =0—> then what?
¢ Is this really worth it? Projections are costly...
¢ Numerical solver — better to be lazy. How lazy?

¢ Can we sample a density concentrated near, but not exactly on, a
manifold, using a similar technique?

¢ Numerically we are never exactly on the manifold... so why do we
get the right measure?

¢ Inequalities & highly nonconvex spaces (can we treat them like
constraints?)



