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Problem:

Why do this:

• Freeze out fast, vibrational degrees of freedom of strongly-
bonded particles (e.g. q(x) = |x1-x2|2-d2 )

• Compute Free Energy / Expectations at certain levels of a 
reaction coordinate

• Bayesian sampling — constraints on parameters  
(e.g. p1+p2+p3=1)

Sample density   ρ(x) = Z−1f(x) δ(q(x)) .

x ∈ ℝn, f : ℝn → ℝ, q : ℝn → ℝm ("constraints".)



My interest = Colloids (colloidal particles)

✤ Colloidal particles: diameters ~ 10-8-10-6 m. (≫ atoms, ≪ scales of humans)
✤ Building blocks for many materials
✤ Potential to make new materials (∵ size ~ wavelength of light)
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Scientific question: 

How to design colloids to self-assemble into some desired structure? 

?



Colloids are (sometimes) easy to study experimentally

G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)

bilities of these packings at finite temperature,
which allows us to map the free-energy land-
scape (18, 19, 11). All of the observed cluster
structures agree with the theoretical predictions.
For example, for N < 6, we observed one unique
structure for each N: a dimer for N = 2, trimer for
N = 3, tetrahedron for N = 4, and triangular
dipyramid for N = 5. The optical micrographs in
Fig. 1 show the structures of the smallest clusters.

The first interesting case is N = 6. We ob-
served two structures (Fig. 2 and fig. S2), both
with C = 12 contacts and therefore equivalent
potential energy. The first is the octahedron, a
Platonic solid. The second, we call a “polytetra-
hedron.” It consists of a triangular dipyramid with
a third tetrahedron added to one of the faces. We
observed transitions between the two states on
time scales of minutes, indicating that the system
is at equilibrium (movie S1).

Although these two structures have the same
potential energies, the polytetrahedron occurs
about 20 times more often than the octahedron,
implying a free-energy difference of about 3kBT.
This difference can be attributed only to entropy.
As shown in Fig. 2, the measured probabilities
for the two structures agree well with theoretical
calculations based on standard approximations
for the rotational and vibrational entropies in the
classical limit (14).

The rotational entropy makes the largest con-
tribution to the free-energy difference between
the two structures (fig. S2). The rotational partition
function is related to two geometrical quantities:
the number of orientations, which is proportional
to the moment of inertia, and the rotational sym-
metry of the cluster, or, alternatively, the number
of ways one can assemble the same cluster by
permuting particle labels (20). Formally, the ra-
tio of the permutational degeneracies of two
clusters is inversely proportional to the ratio of
their symmetry numbers (21). This permutation-
al degeneracy accounts for a factor of 12 in the
polytetrahedron:octahedron probability ratio.
The remaining factor of 2 comes from the differ-
ences in the moments of inertia and the vibra-
tional entropies.

This result illustrates a general rule for clus-
ters with short-range attractions: among clusters
with the same potential energy, highly symmetric
structures are extremely unfavorable at equilibri-
um. By contrast, for the longer-ranged Lennard-
Jones 6-12 potential, the octahedron has lower
potential energy than the polytetrahedron does
(17), so that the dominant structure depends on
temperature. The dominance of the polytetrahe-
dron in our system may have consequences for
nucleation; the equilibrium phase of attractive
hard spheres is a face-centered cubic (FCC) crys-
tal (15), which contains octahedral, not polytet-
rahedral, subunits.

At N = 7, the first chiral structures arise. We
observed six cluster structures, two of which are
chiral enantiomers. The experimental measure-
ments agree well with the theoretical values for
the probabilities of each structure (Fig. 2). For

these small clusters, the most pronounced influ-
ence on the probabilities comes from symmetry.
At N = 8, 3 of the 16 different possible sphere
packings never occur in the experiments. These
three structures have the highest symmetry num-
bers, s = 4, 6, and 12.

A few structures differ by such small changes
in particle spacing that we cannot differentiate
between them using our microscope. All of these
are variants of pentagonal dipyramids. In a pen-
tagonal dipyramid of seven spheres, the top and
bottom spheres of the pyramid are separated by a
small gap of ≈ 0.05d, where d is the sphere di-
ameter. If these two spheres are brought togeth-
er, a gap of ≈ 0.09d opens between two of the

spheres on the pentagon. Because we cannot re-
solve this gap in our experiments, we have binned
these structures together at bothN = 7 and N = 8.
The one statistically significant discrepancy be-
tween experiment and theory occurs at N = 8; it
arises because the experimental potential has a
range that is comparable to the gap distance. Al-
though we account for this extra potential energy
in the probability calculations, the probabilities
are sensitive to the magnitude of the potential at
the gap distance. If the interaction energy differs
from our estimated value by only 0.1kBT in the
gap, the theoretical calculation falls within error
of the experimental value. This difference could
be due to polydispersity in either the depletant
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Fig. 2. Comparison of experimental and theoretical (14) cluster probabilities P at N = 6, 7, and 8.
Structures that are difficult to differentiate experimentally have been binned together atN = 7 and 8 to
compare to theory. The calculated probabilities for the individual states are shown as light gray bars, and
binned probabilities are dark gray. Orange dots indicate the experimental measurements, with 95%
confidence intervals given by the error bars (14) (table S1). Renderings and point groups in Schönflies
notation are shown for each structure. The number in the subscript of each symbol indicates the order of
the highest rotational symmetry axis, and the letter indicates the symmetry group. The highest symmetry
structures are those in D, T, and O groups. Structures in C1 and C2 groups occur in chiral pairs.

www.sciencemag.org SCIENCE VOL 327 29 JANUARY 2010 561

REPORTS

 o
n
 J

a
n
u
a
ry

 1
7
, 
2
0
1
1

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f
ro

m
 

Schall et al, Nature (2006)



Colloids are (sometimes) easy to study experimentally

G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)

bilities of these packings at finite temperature,
which allows us to map the free-energy land-
scape (18, 19, 11). All of the observed cluster
structures agree with the theoretical predictions.
For example, for N < 6, we observed one unique
structure for each N: a dimer for N = 2, trimer for
N = 3, tetrahedron for N = 4, and triangular
dipyramid for N = 5. The optical micrographs in
Fig. 1 show the structures of the smallest clusters.

The first interesting case is N = 6. We ob-
served two structures (Fig. 2 and fig. S2), both
with C = 12 contacts and therefore equivalent
potential energy. The first is the octahedron, a
Platonic solid. The second, we call a “polytetra-
hedron.” It consists of a triangular dipyramid with
a third tetrahedron added to one of the faces. We
observed transitions between the two states on
time scales of minutes, indicating that the system
is at equilibrium (movie S1).

Although these two structures have the same
potential energies, the polytetrahedron occurs
about 20 times more often than the octahedron,
implying a free-energy difference of about 3kBT.
This difference can be attributed only to entropy.
As shown in Fig. 2, the measured probabilities
for the two structures agree well with theoretical
calculations based on standard approximations
for the rotational and vibrational entropies in the
classical limit (14).

The rotational entropy makes the largest con-
tribution to the free-energy difference between
the two structures (fig. S2). The rotational partition
function is related to two geometrical quantities:
the number of orientations, which is proportional
to the moment of inertia, and the rotational sym-
metry of the cluster, or, alternatively, the number
of ways one can assemble the same cluster by
permuting particle labels (20). Formally, the ra-
tio of the permutational degeneracies of two
clusters is inversely proportional to the ratio of
their symmetry numbers (21). This permutation-
al degeneracy accounts for a factor of 12 in the
polytetrahedron:octahedron probability ratio.
The remaining factor of 2 comes from the differ-
ences in the moments of inertia and the vibra-
tional entropies.

This result illustrates a general rule for clus-
ters with short-range attractions: among clusters
with the same potential energy, highly symmetric
structures are extremely unfavorable at equilibri-
um. By contrast, for the longer-ranged Lennard-
Jones 6-12 potential, the octahedron has lower
potential energy than the polytetrahedron does
(17), so that the dominant structure depends on
temperature. The dominance of the polytetrahe-
dron in our system may have consequences for
nucleation; the equilibrium phase of attractive
hard spheres is a face-centered cubic (FCC) crys-
tal (15), which contains octahedral, not polytet-
rahedral, subunits.

At N = 7, the first chiral structures arise. We
observed six cluster structures, two of which are
chiral enantiomers. The experimental measure-
ments agree well with the theoretical values for
the probabilities of each structure (Fig. 2). For

these small clusters, the most pronounced influ-
ence on the probabilities comes from symmetry.
At N = 8, 3 of the 16 different possible sphere
packings never occur in the experiments. These
three structures have the highest symmetry num-
bers, s = 4, 6, and 12.

A few structures differ by such small changes
in particle spacing that we cannot differentiate
between them using our microscope. All of these
are variants of pentagonal dipyramids. In a pen-
tagonal dipyramid of seven spheres, the top and
bottom spheres of the pyramid are separated by a
small gap of ≈ 0.05d, where d is the sphere di-
ameter. If these two spheres are brought togeth-
er, a gap of ≈ 0.09d opens between two of the

spheres on the pentagon. Because we cannot re-
solve this gap in our experiments, we have binned
these structures together at bothN = 7 and N = 8.
The one statistically significant discrepancy be-
tween experiment and theory occurs at N = 8; it
arises because the experimental potential has a
range that is comparable to the gap distance. Al-
though we account for this extra potential energy
in the probability calculations, the probabilities
are sensitive to the magnitude of the potential at
the gap distance. If the interaction energy differs
from our estimated value by only 0.1kBT in the
gap, the theoretical calculation falls within error
of the experimental value. This difference could
be due to polydispersity in either the depletant

C Oh

0

20

40

60

80

100

N = 6

C2v D5h C3v C2 C2 C3v

0

5

10

15

20

25

30

35

N= 7

C1 C1 C1 C1 Cs Cs Td Cs Cs C1 C1 C2v C2v D3d Cs D2d
0

10

20

30

40

50

60

70

80

N= 8

P
ro

ba
bi

lit
y 

(%
)

P
ro

ba
bi

lit
y 

(%
)

2v

poly-
tetrahedron

octahedron

Fig. 2. Comparison of experimental and theoretical (14) cluster probabilities P at N = 6, 7, and 8.
Structures that are difficult to differentiate experimentally have been binned together atN = 7 and 8 to
compare to theory. The calculated probabilities for the individual states are shown as light gray bars, and
binned probabilities are dark gray. Orange dots indicate the experimental measurements, with 95%
confidence intervals given by the error bars (14) (table S1). Renderings and point groups in Schönflies
notation are shown for each structure. The number in the subscript of each symbol indicates the order of
the highest rotational symmetry axis, and the letter indicates the symmetry group. The highest symmetry
structures are those in D, T, and O groups. Structures in C1 and C2 groups occur in chiral pairs.

www.sciencemag.org SCIENCE VOL 327 29 JANUARY 2010 561

REPORTS

 o
n
 J

a
n
u
a
ry

 1
7
, 
2
0
1
1

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f
ro

m
 

Schall et al, Nature (2006)



We can even measure dynamics with high accuracy Rebecca Perry  
(Manoharan lab)

R. W. Perry,  H.-C., M. P. Brenner, V. N. Manoharan, PRL (2015)
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Colloids are a lot like atoms

Energy = pairwise interactions 
 
 

Dynamics = overdamped Langevin  

π(x) ∝ e−βV(x), V(x) = ∑
i<j

U( |xi − xj | )

dXt =
−∇V(x)

γ
dt + 2kBTγ−1dWt



Colloids have short-ranged attractive interactions (unlike atoms)

Depletion DNA-mediated interactions

Common feature = short-ranged   
(c.f. diameter of particles) 

The Free-Energy Landscape of
Clusters of Attractive Hard Spheres
Guangnan Meng,1 Natalie Arkus,2 Michael P. Brenner,2 Vinothan N. Manoharan1,2*

The study of clusters has provided a tangible link between local geometry and bulk condensed
matter, but experiments have not yet systematically explored the thermodynamics of the smallest
clusters. Here we present experimental measurements of the structures and free energies of
colloidal clusters in which the particles act as hard spheres with short-range attractions. We found
that highly symmetric clusters are strongly suppressed by rotational entropy, whereas the most
stable clusters have anharmonic vibrational modes or extra bonds. Many of these clusters are
subsets of close-packed lattices. As the number of particles increases from 6 to 10, we observe
the emergence of a complex free-energy landscape with a small number of ground states and many
local minima.

Anisolated system of 10 interacting atoms
or molecules will generally adopt a struc-
ture that differs in symmetry and average

energy from that of a bulk liquid, solid, or even a
system containing 100 particles. Yet the study of
such small clusters has shed light on a wide va-
riety of phenomena that are observed in the fields
of condensed-matter physics and physical chem-
istry. Since Frank first predicted (1) that icosahe-
dral short-range order would be a hallmark of
liquid structure, the study of small-cluster geom-
etry has provided key insights into the frustration
underlying nonequilibrium phenomena such as
nucleation and the glass transition (2–4). Exper-
imental studies (5, 6) have confirmed this ap-
proach through the discovery of local cluster-like
order in bulk liquids and glasses, with recent re-
sults (7) suggesting that structural arrest in con-
densed phases may be related to geometrical
constraints at the scale of a few particles.

There remain many unresolved questions
about cluster geometry and its connection to bulk
behavior. Although experiments and simulations
have determined the minimum potential-energy
clusters for various interactions (8–10), the like-
lihood of observing a particular cluster structure
depends on its free energy (11, 12). What cluster
structures are favored by entropy? How does the
competition between potential energy and entropy
evolve as the number of particles N approaches
the bulk limit? Experiments on atomic clusters
have not systematically explored these questions;
they are limited by short cluster lifetimes, non-
equilibrium conditions, and the difficulties of ob-
taining real-space structures of individual clusters
in free space (13).

Here we report experimental results for the
structures and free energies of small equilibrium
clusters as a function of N, with N ≤ 10. The
experimental system is described in Fig. 1. We
use colloidal particles rather than atoms, because

we can precisely control the interactions and di-
rectly observe the three-dimensional (3D) struc-
tures of the clusters using optical microscopy. To
a good approximation, our particles act as “sticky”
hard spheres, arguably the simplest nontrivial
interaction that leads to clustering. The attraction
arises from a depletion interaction with a range of
about 1.05 times the particle diameter and a depth
of about 4kBT, where kB is Boltzmann’s constant
and T is temperature. Because the pair potential
is short-ranged, the total potential energyU of a
given structure is well approximated by U =
CUm, where C is the number of contacts or de-
pletion bonds and Um is the depth of the pair po-
tential (14). Although these particles form a gel

in bulk, the range and depth of the interaction are
consistent with an equilibrium phase diagram
showing a fluid-to-crystal transition (15).

We created clusters by isolating small numbers
of polystyrene (PS) microspheres in cylindri-
cal microwells filled with water and poly(N-
isopropylacrylamide) (polyNIPAM) nanoparticles,
which cause the depletion interaction. We chem-
ically functionalized the microwells so that par-
ticles could not stick to the surfaces. This allows
3D clusters to form in the middle of the wells,
unaffected by the boundaries. After the clusters
reached equilibrium, we used optical microscopy
to observe the cluster structures, and we collected
statistics by scanning through the microwell plate,
which contains thousands of isolated clusters.
Although the number of particles per well is not
controlled, we generated enough clusters at each
value of N ≤ 10 to measure their occurrence
frequencies. We then determined the free ener-
gies from the ensemble statistics through the
Boltzmann distribution, DF = −kBTlnP, where
P is the probability of observing a given cluster.

We classified our clusters by comparing them
to finite sphere packings. A previous theoretical
study (16) enumerated the mechanically stable
clusters of idealized hard spheres with infini-
tesimally short-ranged interactions, revealing the
minima of the potential-energy landscape as a
function ofN. All of the minima at each value of
N ≤ 9 have the same potential energy, which is
a result not observed with longer-ranged poten-
tials (17). We explored the structures and proba-

1Department of Physics, Harvard University, Cambridge, MA
02138, USA. 2Harvard School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA.

*To whom correspondence should be addressed. E-mail:
vnm@seas.harvard.edu
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Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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Challenges of very short-ranged interactions



Challenges of very short-ranged interactions

1/1 Unnamed Doc (1/1)2017-05-01 17:09:06



Challenges of very short-ranged interactions

1/1 Unnamed Doc (1/1)2017-05-01 17:09:06



Challenges of very short-ranged interactions

1/1 Unnamed Doc (1/1)2017-05-01 17:09:06

Numerical — need a very small time step to simulate
Conceptual — theories based on landscape smoothness (local 
minima, saddle points, etc) don’t work as well 

Challenges:



Mitigating the challenge

Shrink bonds to zero-range —> they become constraints ẟ(q)

Need tools to:

• Sample particles with distance (or other) constraints (this talk)  
(to calculate volumes)

• Add & drop constraints via MCMC (ask me later) or in a way that is consistent 
with their dynamics (work in progress with Nawaf Bou-Rabee)

• Incorporate hydrodynamics (e.g. Aleks Donev) & DNA-induced dynamics

• Solve inverse problems involving their interactions (??) 



Setup for sampling

M = {x ∈ ℝn : q1(x) = 0, q2(x) = 0,…, qm(x) = 0}

ρ(x) = Z−1δ(q(x)) q(x) = (q1(x), …, qm(x)) : ℝn → ℝm

e.g.
q1(x) = |x1 − x2 |2 − d2

12

q2(x) = |x2 − x3 |2 − d2
23

⋮ ⋮
qN−1(x) = |xN−1 − xN |2 − d2

N−1N
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• implies M is a manifold (dimension d=n-m)
• doesn’t always have to hold!  

(and even when it does, won’t necessarily hold ∀x) 

σ(dx) = natural surface measure on M (=Hausdorff measure)Given

Strategy: sample measure on constraint manifold

s.t f(x)σ(dx) = δ(q(x))dxρ(x) = f(x) σ(dx)Sample density



Two questions for today: 

What is f(x) so that                                                             ?

How to sample the measure                                             ? 

f(x)σ(dx) = δ(q(x))dx

ρ(x) = Z−1f(x)σ(dx)

Then some examples!



What is f(x) so that                                                             ? f(x)σ(dx) = δ(q(x))dx

Fatten constraints by some amount ε :

Mϵ = {x ∈ ℝn : − ϵ < qi(x) < ϵ, i = 1,…, m}

Sample        uniformly  —>  density Mϵ ρϵ(x)

Then δ(q(x)) = lim
ϵ→0

ρϵ(x) .



Example

q(x, y) = y − x2 Mϵ = {(x, y) : − ϵ < y − x2 < ϵ, y < 1}

(x(s),y(s)) = arc-length parameterization, σ(ds) = ds



Example

q(x, y) = y − x2 Mϵ = {(x, y) : − ϵ < y − x2 < ϵ, y < 1}

ρϵ(s) ≈ (Zϵ)−1 ϵ
|∇q(s) |

⟹ ρ(s) ∝ |∇q(s) |−1

(x(s),y(s)) = arc-length parameterization, σ(ds) = ds



Coarea formula (formal)

|∇q(x) |−1 σ(dx) = δ(q(x))dx

i.e. f(x) = |∇q(x) |−1

pseudo-determinant |∇q | = | (∇q)T ∇q |1/2 , ∇q = (∇q1 ∇q2 ⋯∇qm)

e.g. Federer, (1959)



How to sample the measure                                            ?  ρ(x) = Z−1f(x)σ(dx)

Give simple algorithm here  (Zappa, H.-C., Goodman, CPAM 2018)  
Not necessarily the most efficient.  
But, the most efficient to program!
For a Hamiltonian-based method, see e.g. T. Lelievre’s talk 
• Lelievre, Rousset, Stoltz , arxiv (2018)

Also: 
• Diaconis, Holmes, Shashahani, (2013)
• Byrne, Girolami, Scan. J. Stat. (2013)
• Cicotti, Vanden-Eijnden, Chem Phys Chem (2006)



Sampling algorithm.

Tx = Tangent space to M, at x

Nx = Normal space to M, at x

ℝn "=" Tx ⊕ Nx

Suppose Xn = x. 
Let

Propose   y = x + v + w   with
• v ∈ Tx    —>  density p(v;x)
• w ∈ Nx   —>  solve q(x+v+w) = 0. 

Generate random variables X1, X2, … via a random walk on M. 

Metropolis-Hastings accept/Reject move: 

Acceptance probability min (1,
f(y)T(y → x)
f(x)T(x → y) ) T(x → y)σ(dy) =

transition density on M



Sampling algorithm.
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transition density on M

Warning! Notation abuse!  
Tx is also orthonormal matrix
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Suppose Xn = x. 
Let
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∑
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Sampling algorithm.

Tx = Tangent space to M, at x

Nx = Normal space to M, at x

ℝn "=" Tx ⊕ Nx

Suppose Xn = x. 
Let

Propose   y = x + v + w   with
• v ∈ Tx    —>  density p(v;x)
• w ∈ Nx   —>  solve q(x+v+w) = 0. 

How to compute:  
QR(∇ q) = (Nx | Tx) R

There are other ways to find w! (eg w ∈ Ny.)  
But this one has a lot of nice properties. 

Generate random variables X1, X2, … via a random walk on M. 

Metropolis-Hastings accept/Reject move: 

Acceptance probability min (1,
f(y)T(y → x)
f(x)T(x → y) ) T(x → y)σ(dy) =

transition density on M

Warning! Notation abuse!  
Tx is also orthonormal matrix

Solve                                               for a=(a1,…,am).q(x + v +
m

∑
i=1

ai ∇qi) = 0



Proposal Move

q(x)=0

x



Proposal Move

q(x)=0

v

x



Proposal Move

q(x)=0

v

x

y

w



Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

p(v; x) = density of v at x
∂y
∂v

= volume element for transformation v → y

Ax = y ∈ M such that y can be reached from x
using numerical solver 

ξx = probability of numerical solver failing
to find y,  after choosing v



density of v at x

Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)



density of v at x

e.g.  p(v; x) =
1

(2πs2)d/2
e− |v |2

2s2

Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)



density of v at x

e.g.  p(v; x) =
1

(2πs2)d/2
e− |v |2

2s2

Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

Reverse density



density of v at x

e.g.  p(v; x) =
1

(2πs2)d/2
e− |v |2

2s2

Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

T(y → x) = p(v′�; y)
∂x
∂v′�

−1
1Ay

(x) + ξy δ(x − y)

Reverse density



Proposal Move

q(x)=0

v

x

y

w



Proposal Move

q(x)=0

v

x

y

w
v’



Proposal Move

q(x)=0

v

x

y

w
v’

w’



Proposal Move

q(x)=0

v

x

y

w
v’

w’

v′� = TyTT
y (x − y) ⟹ p(v′�; x)  is known



Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

volume element for transformation v → y



Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

volume element for transformation v → y

v
y

x



Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

volume element for transformation v → y

v
y

x

Δy
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T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

volume element for transformation v → y
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Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

volume element for transformation v → y

v
y

x

Δy

Δv



Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

volume element for transformation v → y

y → Δy ⇒ v → Δv = PTx
Δy = TxTT

x Δy

v
y

x

Δy

Δv



∂y
∂v

−1
= |TT

x Ty |



∂y
∂v

−1
= |TT

x Ty |

…but…

∂x
∂v′�

−1
= |TT

y Tx | = |TT
x Ty | !

Therefore these factors cancel, and we don’t need to calculate them. 

(Not true for stratifications…)



∂y
∂v

−1
= |TT

x Ty |

…but…

∂x
∂v′�

−1
= |TT

y Tx | = |TT
x Ty | !

Therefore these factors cancel, and we don’t need to calculate them. 

(Not true for stratifications…)

If w ∈ Ny. these factors are much more complicated (and don’t cancel.) 



Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

= 1 if y can be reached from x
using numerical solver 

= x if projection fails 

What could go wrong? 



Solution doesn’t exist (forward move) 

q(x)=0

v

x



Solution doesn’t exist (forward move) 

q(x)=0

v

x

w…



Numerical solver doesn’t converge (forward & backward moves)

q(x)=0

v

x

y

w
v’



Numerical solver doesn’t converge (forward & backward moves)

q(x)=0

v

x

y

w
w’ v’



Solver converges, but gives a different point x’ ≠ x (reverse move)

q(x)=0

v

x

y

w
v’

x’



Solver converges, but gives a different point x’ ≠ x (reverse move)

q(x)=0

v

x

y

w

w’

v’

x’



Proposal densities T(x → y), T(y → x)

T(x → y) = p(v; x)
∂y
∂v

−1
1Ax

(y) + ξx δ(y − x)

= 1 if y can be reached from x
using numerical solver 

= x if projection fails 

T(y → x) = p(v′�; y)
∂x
∂v′ �

−1
1Ay

(x) + ξy δ(x − y)

= 1 if x can be reached from y
using numerical solver 

= y if projection fails 

Given y ∈ Ax, we don’t know if x ∈ Ay  
—> we have to check reverse projection

Check: (i) reverse projection converges, (ii) it converges to x. 



Code time!



Issues

|∇q| = 0 —> then what? 

Is this really worth it? Projections are costly…  
Numerical solver — better to be lazy. How lazy? 
Can we sample a density concentrated near, but not exactly on, a 
manifold, using a similar technique?
Numerically we are never exactly on the manifold… so why do we 
get the right measure? 
Inequalities & highly nonconvex spaces (can we treat them like 
constraints?) 


