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Immersed Boundary Problems

@ Fluid-structure interaction belong to a more general class of fluid
problems with internal boundaries

o p(ug+(u-V)u)— V- (uD(u)) + Vp =F, plus

@ in some cases the internal boundary only represent an obstacle:
boundary conditions

@ in other cases the boundary has some additional physics =
additional laws

@ gas bubbles in fluids
o MHD models for liquid metals
o elasticity, e.g., deformation of red blood cells

@ Typically presented in Eulerian-Lagrangian formulation —
numerically challenging
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Numerical Solvers

o Eulerian-Lagrangian formulation:

o Navier-Stokes solver (more on this later)
e particle method to track interface

e with all challenges included: particles getting too close/far,
different time scales, V - © = 0 constraint, etc.

@ Eulerian formulation (requires reformulation of boundary
physics):

o still needs Navier-Stokes solver
e implicit interface tracking: level set method

o still challenging...
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Elasticity — Lagrangian formulation of F

p(W +(u-V)u)~ V- (uD(w) + Vp=F

F(x,t) = /S2 f(s,t)0(x — X(s,t))ds

S1

f(s,t)— body force density with respect of measure ds

- . . 0 t
s — parametrization of interface satisfying (5,%) =u(X(s,1),t)

0
f(s,t) = s (T'(s,t) 7(s,t)), T — tension, T - unit tangent (Peskin, 1981)
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Elasticity — Eulerian Formulation

Force derived from Energy (Cottet et. al., 2005 - 08):

ate) = [ B(voD ¢ (2) as

where:

@ F - stress-strain relationship: E(r) = A(r — 1), it accounts for the
response of the membrane to a change in area

@ ¢(z,t) - level set function satisfying:

o ¢(x,0) =Ty — initial interface position (¢ < 0 inside, ¢ > 0
outside)

° (bt +u- V(b =0
e interface location I'; = {x € Q : ¢(x) = 0}

e ( cut-off function: \V¢|EC (¢> — =0 as € =0
€\ e
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Elasticity — Eulerian Formulation (cont'd)

This leads to:

d
£EG(¢) = —/QFQ(X,t) -uds

and using the divergence theorem, we arrive at:

Ft) = { VBV - ¥ - BVl | 7 vorec (2)

Remark: Not the only expression for F, it can be written/calculated in
tangential plus normal components showing how curvature acts on
normal direction
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Summary of Eulerian Formulation

pe(®) (u + (u-V)u) = V- (u(¢) D(u)) + Vp =Fo(¢) + Fe(9)
V-u=0
¢t+u-Vo=0

with the elastic and curvature forces

Fa(o) = { VB0V - V- | B(Ve) o | oo Fvole (2).

coupling the two equations, and the density and viscosity convected by
fluid velocity:

pt+u-Vp=0 petu- V=0
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=u(X(s,t),t)

ot +u-Vo=0
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Numerical Solvers — Previous Work

@ Lagrangian formulation: Lee and LeVeque (2008):

o Navier-Stokes: fractional step method with reprojection to
enforce V-u=0

o Interface tracking: particle method with proper parametrization

@ Eulerian Formulation:

o Cottet et. al. (2005 - 08): Navier-Stokes solver with
reprojection + high resolution ENO for level set (include
problems in 3D)

o UCLA group (Fedkiw, Merriman, Osher, mid 90s): high
resolution ENO for level set, and different approaches for NS

(e.g., reprojection, vorticity)... but different physics (e.g., multi
fluid, gas bubbles)
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Our Approach

@ Navier-Stokes: use vorticity formulation...

F
wt—l-u-Vw:ﬁAw—l-Vx ()
p p

V-u=0

@ Level set: semi-discrete central scheme for Hamilton-Jacobi
equations: ¢, + H(V¢) =0

@ Why vorticity formulation?

e note that the vorticity formulation also has the form
w+ H(Vw) = ...

e we can use the same scheme for both equations!!!
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Our Approach — Other Observations

What about:
(1) V-u =07 We use stream function :

Ay = —w
Then, recover u as:

Vi1 — Vik—1

w _Yit1k —Yi—1k
J,k 2 Ay T oA

and v = 7 Am

(central differencing of u; ;, and v; i yield V- u = 0), and
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Our Approach — Other Observations

What about:
(1) V-u =07 We use stream function :

Ay = —w

Then, recover u as:

_Yit1k —Yi—1k
2 Az

wy = Vi kt+1 — Y r-1 and vy =
2 Ay

(central differencing of u; ;, and v; i yield V- u = 0), and

(2) p(¢) and p(p)?... they are not constant!!!
but they remain constant inside and outside the interface
plus we regularize them with the cut-off function:

pe(¢p) =p1+H <¢) (pz—p1)+/\9%C (d)) v obe(@) =m+H <%) (2 —p1)

€ €

where H(r) = [T __((s)ds, and Xg is the surface density in a reference
configuration
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Central Scheme for HJ (Kurganov—Tadmor, 2000)

2nd order semi-discrete Scheme for ¢; + H(V¢) = 0:

doj k

kL [HE,60) + H(6E,07) + Hior,67) + Ho7,07)]

R [0 — o)+ (8 — 6],

where (d):%)j,k and (d);t)]k are non-oscillatory (minmod limiter) reconstruction of the
first derivatives of ¢, and

+ + + +
ajp = max[H2 (65,67 + H3, (63, 67)n
evolved with 2nd order SSP RK scheme, under the CFL condition

min (Az, Ay)
c— =Y

At <
max; k{a;k}

1
c< 3 (provided RHS of HJ is 0!)
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Scheme — Additional Details

@ cut-off functions:

{ L (14cosZX) if |r|<e

(7)) =
otherwise €
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Scheme — Additional Details

@ cut-off functions:

L ( ) 0 if r<—e
s(I4cos ) if |r|<e "
C T 2 € 7 r T+6+Sln€ i ‘T|<E
. 2€ 27
€ 0 otherwise €
1 if r>e€

@ Poisson equation solved with five-point formula using SOR
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Scheme — Additional Details

@ cut-off functions:

L ( ) 0 if r<—e
s(I4cos ) if |r|<e "
C T 2 € 7 T 7‘4,64>sm 6 i ‘T|<E
. 2€ 27
€ 0 otherwise €
1 if r>e€

@ Poisson equation solved with five-point formula using SOR

@ No re-initialization of ¢, better to regularize (Cottet et. al.), replace

1 o3 1 ol
cvele (z) ¢ (e|v¢|>

¢/|V | behaves as distance and carries elasticity information (stretching) that
would be lost with reinitialization
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Elastic Membrane — Re ~ 100

@ massless elastic membrane » = 0.5 immersed in fluid at rest with
p=1.0,p=0.01

@ stretched into elliptical shape with semi-axes a = 0.75, b = 0.5

@ membrane should go back to equilibrium: circle stretched by a
factor of 1.262, » = 0.6124

@ ¢(x,0) — signed distance function to elipse multiplied by stretched
factor

@ Grid size 64 x 64
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Elastic Membrane — Re

Same as before with ps

-~ 1000,t=0

Numerical Schemes
00000

~ 1000

Numerical Results
0000

= 0.001 on a 32 x 32 grid

Interface location Re ~ 1000, t = 0.293608

interface location Re ~ 1000, t = 0.470442
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Coalescence of Two Gas Bubbles — Re-Initialization of
Level Set

with re-initialization without re-initialization
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Conclusions/Future Work

@ Conclusions/Observations/Remarks:

e similar results observed if elipse is stretched along other
directions

e elastic force imposes stricter CFL condition, ¢ < 0.08, yet
much better than the suggested time step for NS projection
solver

e convenient to use same scheme for both equations
@ Future work:

e 2D and 3D full NS solver — vorticity formulation in 3D not as
convenient

e other problems in biomechanics

e incompressible MHD, liquid metals
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Work in Progress

We would like to simulate the deformation of (red blood) cells...

I
® @

@ these are the most abundant cells in the human body

@ they have no nucleus = challenging deformation mechanics
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Thank you very much

Muchas Gracias
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