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Eulerian and Lagrangian frameworks

Ω ⊂ Rd , d = 2, 3
x Eulerian variable in Ω

Bt deformable structure domain
Bt ⊂ Rm, m = d , d − 1
s Lagrangian variable in B
X(·, t) : B → Bt position of the solid

F =
∂X

∂s
deformation gradient

Ω

Bt

B

X

u(x, t) material velocity

u(x, t) =
∂X

∂t
(s, t) where x = X(s, t)
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Model assumptions

Conservation of momenta, in absence of external forces,

ρu̇ = ρ

(
∂u

∂t
+ u ·∇u

)
= divσ in Ω

Mass conservation
ρ̇+ ρdiv u = 0

Structural material with density ρs different from fluid density ρf

ρ =

{
ρf in Ω \ Bt
ρs in Bt

In our case the Cauchy stress tensor has the following form

σ =

{
σf in Ω \ Bt
σs in Bt

page 5



FSI Fictitious domain Saddle point problem analysis Compressible solids

Model assumptions
Thick incompressible solid

I Incompressible fluid: σf = −pf I + νf ∇sym uf

where ∇sym u = ∇u + (∇u)> and pf pressure

I Visco-hyperelastic incompressible material: σs = σf
s + σe

s

with σf
s = −psI + νs ∇sym us (ps Lagrange multiplier associated

with the incompressibility constraint) and σe
s elastic part of the

stress

The Piola–Kirchhoff stress tensor takes into account the change of
variable

P = |F|σe
sF−>

and

P(F) =
∂W

∂F
where W is the potential energy density
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FSI problem (thick incompressible solid)

Ω

Ωf
t

Bt

∂Bt

ρf

(
∂uf

∂t
+ uf ·∇uf

)
= divσf in Ω \ Bt

div uf = 0 in Ω \ Bt

ρs
∂us

∂t
= divs(|F|σf

sF−> + P(F)) in B
divs us = 0 in B
uf = us on ∂Bt
σf nf = −(σf

s + |F|−1PF>)ns on ∂Bt

σf = −pf I + νf ∇sym uf σf
s = −psI + νs ∇sym us us = ∂X

∂t

+ initial and boundary conditions
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FSI problem (thin solid)

Ω

Ωf+
t

Ωf−
t

Bt

ρf

(
∂uf

∂t
+ uf ·∇uf

)
= divσf in Ω \ Bt

div uf = 0 in Ω \ Bt

ρs
∂us

∂t
= divs(P(F)) + f in B

uf = us on Bt
σ+

f n+ + σ−f n− = −f on Bt

σf = −pf I + νf ∇sym uf us = ∂X
∂t

+ initial and boundary conditions
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Variational formulation of IBM

I Navier–Stokes u(t) ∈ H1
0 (Ω)d p ∈ L2

0(Ω)

ρf
d

dt
(u(t), v) + a(u(t), v) + b(u(t),u(t), v) − (div v, p(t))

= 〈d(t), v〉+ 〈FFSI(t), v〉 ∀v ∈ H1
0 (Ω)d

(div u(t), q) = 0 ∀q ∈ L2
0(Ω)

I Excess Lagrangian mass density

〈d(t), v〉 = −δρ
∫
B

∂2X

∂t2
v(X(s, t))ds

I Load

〈FFSI(t), v〉 = −
∫
B
P(F(s, t)) : ∇s v(X(s, t)) ds

I Body motion
∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ B

I Initial conditions
u(x, 0) = u0(x) ∀x ∈ Ω, X(s, 0) = X0(s) ∀s ∈ B.
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Energy estimate

Stability estimate

<Boffi–Cavallini–G. ’11>

ρf
2

d

dt
||u(t)||20 + µ||∇u(t)||20 +

d

dt
E (X(t)) +

1

2
δρ

d

dt

∥∥∥∥∂X

∂t

∥∥∥∥2

B

= 0

where E (X(t)) =

∫
B
W (F(s, t)) ds

<Boffi talk, this morning>
The energy estimate of the time-space discretization requires a CFL
condition.
We extend the fictitious approach used successfully for interface problem.
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Fictitious domain approach
Thick incompressible solid

<Boffi–Cavallini–G. ’15>

I Fluid velocity and pressure are extended into the solid domain

u =

{
uf in Ω \ Bt
us in Bt p =

{
pf in Ω \ Bt
ps in Bt

I Body motion u(x, t) =
∂X

∂t
(s, t) for x = X(s, t)

I We introduce two functional spaces Λ and Z and a bilinear form
c : Λ×Z → R such that

c(µ, z) = 0 ∀µ ∈ Λ ⇒ z = 0

Notation:

a(u, v) = (ν∇sym u,∇sym v) with ν =

{
νf in Ω \ Bt
νs in Bt

b(u, v,w) =
ρf
2

((u ·∇ v,w)− (u ·∇w, v))

δρ = ρs − ρf
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Variational form with Lagrange multiplier

For t ∈ [0,T ], find u(t) ∈ H1
0 (Ω)d , p(t) ∈ L2

0(Ω), X(t) ∈W 1,∞(B)d ,
and λ(t) ∈ Λ such that

ρ
d

dt
(u(t), v) + a(u(t), v) + b(u(t),u(t), v)

− (div v, p(t)) + c(λ(t), v(X(·, t))) = 0 ∀v ∈ H1
0 (Ω)d

(div u(t), q) = 0 ∀q ∈ L2
0(Ω)

δρ

∫
B

∂2X

∂t2
(t)zds +

∫
B
P(F(t))∇s z ds − c(λ(t), z) = 0 ∀z ∈ H1(B)d

c

(
µ,u(X(·, t), t)− ∂X(t)

∂t

)
= 0 ∀µ ∈ Λ

Thin immersed solid
By integration by parts and the introduction of the Lagrange multiplier
λ = f, we obtain the same variational form as before except for δρ = ρs
and the definition of Λ, Z and c.
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Definition of c

Thick immersed solid
The fact that X ∈W 1,∞(B)d implies v(X(·)) ∈ H1(B)d

Case 1 Z = H1(B)d , Λ dual space of H1(B)d , 〈·, ·〉 duality pairing

c(λ, z) = 〈λ, z〉 λ ∈ Λ = (H1(B)d)′, z ∈ H1(B)d

Case 2 Z = H1(B)d , Λ = H1(B)d

c(λ, z) =

∫
B

(∇s λ ·∇s z + λ · z) ds λ ∈ Λ, z ∈ H1(B)d

Thin immersed solid
In this case, v(X(·)) is the trace of v and it belongs to H1/2(B)d .
We set Z = H1/2(B)d , Λ dual space of H1/2(B)d , 〈·, ·〉 duality pairing

c(λ, z) = 〈λ, z〉 λ ∈ Λ = (H1/2(B)d)′, z ∈ H1/2(B)d
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Time semi-discretization (Modified Backward Euler)

Given u0 ∈ H1
0 (Ω)d and X0 ∈W 1,∞(B), for n = 1, . . . ,N find

(un, pn) ∈ H1
0 (Ω)d × L2

0(Ω), Xn ∈ H1(B)d , and λn ∈ Λ, such that

ρf

(
un+1 − un

∆t
, v

)
+ b(un,un+1, v) + a(un+1, v)

− (div v, pn+1) + c(λn+1, v(Xn)) = 0 ∀v ∈ H1
0 (Ω)d

(div un+1, q) = 0 ∀q ∈ L2
0(Ω)

δρ

(
Xn+1 − 2Xn + Xn−1

∆t2
, z

)
B

+ (P(Fn+1),∇s z)B

− c(λn+1, z) = 0 ∀z ∈ H1(B)d

c

(
µ,un+1(Xn)− Xn+1 − Xn

∆t

)
= 0 ∀µ ∈ Λ

u0 = u0, X0 = X0
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Energy estimate

Proposition

We assume that W is a C 1 convex function over the set of second order
tensors, then

ρf
2∆t

(
‖un+1‖2

0 − ‖un‖2
0

)
+ ν‖∇sym un+1‖2

0

+
δρ

2∆t

(∥∥∥∥Xn+1 − Xn

∆t

∥∥∥∥2

0,B
−
∥∥∥∥Xn − Xn−1

∆t

∥∥∥∥2

0,B

)

+
E (Xn+1)− E (Xn)

∆t
≤ 0
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Finite element discretization

We consider

I Background grid Th for the domain Ω (meshsize hx)

I (Vh,Qh) ⊆ H1
0 (Ω)d × L2

0(Ω) stable pair for the Stokes equations

I Grid Sh for B (meshsize hs)

I Sh ⊆ H1(B)d continuous Lagrange elements

Sh = {z ∈ C 0(B; Ω) : z ∈ P1(T ) ∀T ∈ Sh}
I Λh ⊆ Λ continuous Lagrange elements. We consider Λh = Sh

Remark

I If c is the duality pairing between H1(B)d (or H1/2(B)d) and its
dual space, we can represent it by the scalar product in L2(B) when
µ ∈ L2

I Stabilized P1− P1 elements for Stokes could also be used
<Annese, Phd Thesis ’17>
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Fully discrete problem

Given u0h ∈ Vh and X0h ∈ Sh, for n = 0, . . . ,N − 1 find
(un

h, p
n
h) ∈ Vh × Qh, Xn

h ∈ Sh, and λn
h ∈ Λh, such that

ρf

(
un+1
h − un

h

∆t
, v

)
+ b(un

h,u
n+1
h , v) + a(un+1

h , v)

− (div v, pn+1
h ) + c(λn+1

h , v(Xn
h)) = 0 ∀v ∈ Vh

(div un+1
h , q) = 0 ∀q ∈ Qh

δρ

(
Xn+1

h − 2Xn
h + Xn−1

h

∆t2
, z

)
B

+ (P(Fn+1
h ),∇s z)B

− c(λn+1
h , z) = 0 ∀z ∈ Sh

c

(
µ,un+1

h (Xn
h)− Xn+1

h − Xn
h

∆t

)
= 0 ∀µ ∈ Λh

u0
h = u0h, X0

h = X0h

where Fn+1
h = ∇s Xn+1

h .
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Energy estimate

Proposition

We assume that W is a C 1 convex function over the set of second order
tensors, then

ρf
2∆t

(
‖un+1

h ‖2
0 − ‖un

h‖2
0

)
+ ν‖∇sym un+1

h ‖2
0

+
δρ

2∆t

(∥∥∥∥Xn+1
h − Xn

h

∆t

∥∥∥∥2

0,B
−
∥∥∥∥Xn

h − Xn−1
h

∆t

∥∥∥∥2

0,B

)

+
E (Xn+1

h )− E (Xn
h)

∆t
≤ 0
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Numerical experiments
Codimension one structure position snapshots

(a) t = 0.1. (b) t = 2.

The pictures represent the velocity streamlines and the structure position
for the first and final time steps. The streamline color pictures the
velocity magnitude, red is the higher value.
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Numerical experiments
Codimension zero structure position snapshots

(a) t = 0.1. (b) t = 2.

The pictures represent the velocity streamlines and the structure position
for the first and final time steps. The streamline color pictures the
velocity magnitude, red is the higher value.
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Energy ratio for codimension one structure

(a) ∆t = 10−1, hs = 1/8. (b) ∆t = 10−1, hs = 1/16. (c) ∆t = 10−1, hs = 1/32.

(d) ∆t = 5 · 10−2, hs = 1/8. (e) ∆t = 5 · 10−2, hs = 1/16. (f) ∆t = 5 · 10−2, hs = 1/32.

The structure elastic constant κ = 5, hx = 1/32, the fluid viscosity ν = 1,
δρ = 0. The solid line correspond to the dlm-ibm scheme, while the dashed
line marks the energy for the fe-ibm scheme. page 22
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Energy ratio for codimension one structure

(a) ∆t = 10−1, hs = 1/8. (b) ∆t = 10−1, hs = 1/16. (c) ∆t = 10−1, hs = 1/32.

(d) ∆t = 5 · 10−2, hs = 1/8. (e) ∆t = 5 · 10−2, hs = 1/16. (f) ∆t = 5 · 10−2, hs = 1/32.

The structure elastic constant κ = 5, hx = 1/32, the fluid viscosity ν = 1,
δρ = 0.3. The solid line correspond to the dlm-ibm scheme, while the dashed
line marks the energy for the fe-ibm scheme. page 23
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Energy ratio for codimension zero structure

(a) ∆t = 10−1, hx = 1/4. (b) ∆t = 10−1, hx = 1/8. (c) ∆t = 10−1, hx = 1/16.

(d) ∆t = 5 · 10−2, hx = 1/4. (e) ∆t = 5 · 10−2, hx = 1/8. (f) ∆t = 5 · 10−2, hx = 1/16.

The structure elastic constant κ = 1, hs = 1/8, the fluid viscosity ν = 0.05,
δρ = 0.3. The solid line correspond to the dlm-ibm scheme, while the dashed
line marks the energy for the fe-ibm scheme. page 24
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Mass conservation
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(a) fe-ibm
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(b) dlm-ibm

Mass conservation of the fe-ibm (left) and dlm-ibm (right) with higher
order fluid element.
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Stationary problem

At each time step we have to solve a stationary problem.

We consider a linear stress tensor

P(F) = κF = κ∇s X

and set:
u = un+1, p = pn+1, X = Xn+1/∆t, λ = λn+1

f =
ρf
∆t

un

g =
δρ

∆t2

(
2Xn − Xn−1

)
d = − 1

∆t
Xn

α = ρf /∆t, β = δρ/∆t, γ = κ∆t

page 27



FSI Fictitious domain Saddle point problem analysis Compressible solids

Saddle point problem

Problem

Let X ∈W 1,∞(B)d be invertible with Lipschitz inverse and u ∈ L∞(Ω).
Given f ∈ L2(Ω)d , g ∈ L2(B)d , and d ∈ L2(B)d , find u ∈ H1

0 (Ω)d ,
p ∈ L2

0(Ω), X ∈ H1(B)d , and λ ∈ Λ such that

af (u, v)− (div v, p) + c(λ, v(X)) = (f, v) ∀v ∈ H1
0 (Ω)d

(div u, q) = 0 ∀q ∈ L2
0(Ω)

as(X, z)− c(λ, z) = (g, z)B ∀z ∈ H1(B)d

c(µ,u(X)− X) = c(µ,d) ∀µ ∈ Λ

where

af (u, v) = α(u, v) + a(u, v) + b(u,u, v) ∀u, v ∈ H1
0 (Ω)d

as(X, z) = β(X, z)B + γ(∇s X,∇s z)B ∀X, z ∈ H1(B)d
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Discrete saddle point problem

Problem
Find uh ∈ Vh, ph ∈ Qh, Xh ∈ Sh and λh ∈ Λh such that

af (uh, v)− (div v, ph) + c(λh, v(X(·))) = (f, v) ∀v ∈ Vh

(div uh, q) = 0 ∀q ∈ Qh

as(Xh, z)− c(λh, z) = (g, z)B ∀z ∈ Sh

c(µ,uh(X(·))− Xh) = c(µ,d) ∀µ ∈ Λh.
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Operator form of the stationary problem

The stationary problem has the following double saddle point structure
Af B>f 0 C>f
Bf 0 0 0

0 0 As −C>s
Cf 0 −Cs 0




u

p

X

λ




f

0

g

d


In view of the analysis, it is useful to rearrange the variables as follows

Af 0 C>f B>f
0 As −C>s 0

Cf −Cs 0 0

Bf 0 0 0




u

X

λ

p




f

g

d

0

 .

Theoretical results
<B.–Gastaldi ’17>

This problem has been rigorously analyzed both at continuous and
discrete level (existence, uniqueness, stability, and convergence)
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Abstract saddle point formulation
Set: V = H1

0 (Ω)d × H1(B)d × Λ and V = (v, z,λ) ∈ V

A(U,V) = af (u, v) + as(X, z) + c(λ, v(X)− z)− c(µ,u(X)− X)

B(V, q) = (div v, q)

Problem

Find (U, p) ∈ V× L2
0(Ω) such that

A(U,V) + B(V, p) = (f, v) + (g, z)B + c(µ,d) ∀V ∈ V
B(U, q) = 0 ∀q ∈ L2

0(Ω).

and its discretization Set: Vh = Vh × Sh × Λh

Problem

Find (Uh,λh) ∈ Vh × Λh such that

A(Uh,V) + B(V, ph) = (f, v) + (g, z)B + c(µ,d) ∀V ∈ Vh

B(Uh, q) = 0 ∀q ∈ Qh.
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Main steps of the proof
Discrete case

Discrete inf-sup condition for B
Since Vh × Qh is stable for the Stokes equation, there exists a positive
constant βdiv such that for all qh ∈ Qh

sup
Vh∈Vh

B(Vh, qh)

|||Vh|||V
= sup

vh∈Vh

(div vh, qh)

‖vh‖1
≥ βdiv‖qh‖0

The main issue is to show the invertibility of the operator matrix Af 0 C>f
0 As −C>s
Cf −Cs 0


on the discrete kernel of B:

KB,h = {V ∈ Vh : B(V, q) = 0 ∀q ∈ Qh}.

skip
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Main steps of the proof (cont’ed)

Discrete inf-sup for A
There exists κ0 > 0, independent of hx and hs , such that

inf
U∈KB,h

sup
V∈KB,h

A(U,V)

|||U|||V|||V|||V
≥ κ0.

Proposition

There exists α1 > 0 independent of hx and hs such that

af (uh,uh) + as(Xh,Xh) ≥ α1(‖uh‖2
1 + ‖Xh‖2

1,B) ∀(uh,Xh) ∈ V0,h × Sh

where

V0,h = {vh ∈ Vh : (div vh, qh) = 0 ∀qh ∈ Qh}
Kh =

{
(vh, zh) ∈ V0,h × Sh : c(µh, vh(X)− zh) = 0 ∀µh ∈ Λh

}
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Proposition (Thick immersed solid)

There exists a constant β1 > 0 independent of hx and hs such that for all
µh ∈ Λh it holds true

sup
(vh,zh)∈V0,h×Sh

c(µh, vh(X)− zh)

(‖vh‖2
1 + ‖zh‖2

1,B)1/2
≥ β1‖µh‖Λ.

Proposition (Thin immersed solid)

We assume that the domain Ω is convex. If hx/hs is sufficiently small
and the mesh Sh is quasi-uniform, then there exists a constant β1 > 0
independent of hx and hs such that for all µh ∈ Λh it holds true

sup
(vh,zh)∈V0,h×Sh

c(µh, vh(X)− zh)

(‖vh‖2
1 + ‖zh‖2

1,B)1/2
≥ β1‖µh‖Λ.

The proof depends on the choice of c.
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Proof

Thick immersed solid
Case 1 c(µ, z) = 〈µ, z〉 for µ ∈ Λh z ∈ Sh
The above inf-sup condition holds true if the L2-projection onto Sh is
bounded in H1(B)d .
This can be proved by assuming that the mesh in B is quasi-uniform or
satisfies weaker assumptions as in <Bramble–Pasciak–Steinbach ’02>

<Crouzeix–Thomée ’87>
Case 2 c(µ, z) =

∫
B(∇s µ∇s z + µz)ds for µ ∈ Λh z ∈ Sh

The result follows directly from the continuous inf-sup conditition.

Thin immersed solid
We use the continuous inf-sup condition, trace theorem and inverse

inequality ‖ūh(X)− ū(X)‖0,B ≤ Ch
1/2
x ‖ū‖1 and ‖µh‖0,B ≤ Ch

−1/2
s ‖µh‖Λ.

Then

c(µh, ūh(X)) ≥ 1

2c
‖µ‖Λ‖ū‖1 − C‖µh‖0,Bh

1/2
x ‖ū‖1

≥ ‖µ‖Λ‖ū‖1

( 1

2c
− C

(
hx
hs

)1/2 )
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Error estimates

Theorem
The following error estimates hold true

‖u− uh‖H1
0 (Ω)d + ‖p − ph‖L2(Ω) + ‖X− Xh‖H1(B)d + ‖λ− λh‖Λ

≤ C inf
(v,q,z,µ)∈Vh×Qh×Sh×Sh

(
‖u− v‖H1

0 (Ω)d + ‖p − q‖L2(Ω)

+ ‖X− z‖H1(B)d + ‖λ− µ‖Λ

)
Return
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The inflated balloon
Thin solid

u(x, t) = 0 ∀x ∈ Ω, ∀t ∈]0,T [

p(x, t) =

{
κ(1/R − πR), |x| ≤ R
−κπR, |x| > R

∀t ∈]0,T [

Time convergence

∆t ||Xex − Xh||L2 L2-rate ||uex − uh||L2 L2-rate

1·10−1 5.54945e-06 - 1.65152e-05 -

5·10−2 2.73334e-06 1.02 7.92803e-06 1.06

2·10−2 1.05724e-06 1.04 3.01373e-06 1.06

1·10−2 5.00445e-07 1.08 1.41808e-06 1.09
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The inflated balloon

Spatial convergence

hx ||p − ph||L2 L2-rate ||u− uh||L2 L2-rate

1/4 2.96063 - 0.02225 -

1/8 2.10271 0.49 0.01022 1.12

1/16 1.43488 0.55 0.00392 1.38

1/24 1.15722 0.53 0.00212 1.52

1/32 0.97502 0.60 0.00134 1.60

1/40 0.88740 0.42 0.00102 1.22

1/64 0.69442 0.52 0.00052 1.43
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Compressible material

<Boffi-G.-Heltai ’18>

I Mass conservation in Eulerian coordinates

ρ̇s + ρs div us = 0 in Bt
or, equivalently,

div us(x, t) =
J̇(s, t)

J(s, t)
for x = X(s, t)

with J = detF and thanks to ρs(x, t) = ρs0 (s)/J(s, t)

I Body motion u(x, t) =
∂X

∂t
(s, t) for x = X(s, t)

I Fluid velocity and pressure are extended into the solid domain

u =

{
uf in Ω \ Bt
us in Bt p =

{
pf in Ω \ Bt
ps= 0 in Bt

Pressure field has no physical meaning in the solid, it is imposed
weakly to be zero.
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Variational formulation

For almost every t ∈]0,T ], find (u(t), p(t)) ∈ H1
0 (Ω)d × L2

0(Ω),
w(t) ∈ H1(B)d , and λ(t) ∈ Λ such that it holds

ρf (u̇(t), v) + a(u(t), v)− (div v, p(t))

+ c(λ(t), v(X(·, t))) = (f(t), v) + (τ g (t), v)∂ΩN
∀v ∈ H1

0 (Ω)d

− (div u(t), q) + (J q(X(s, t))F−>,∇s ẇ(t))B

− 1

κ
(Jp(t), q)B = 0 ∀q ∈ L2

0(Ω)

(δρẅ(t), z)B + (P(t),∇s z)B

+ (Jp(X(s, t), t)F−>,∇s z)B − c(λ(t), z) = 0 ∀z ∈ H1(B)d

c (µ,u(X(·, t), t)− ẇ(t)) = 0 ∀µ ∈ Λ

X(s, t) = s + w(s, t) for s ∈ B
u(0) = u0 in Ω, X(0) = X0 in B.
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Properties of the solution

Proposition

Let (u, p,w,λ) be a solution of the above problem. We have that

p(t) = 0 in Bt for t ∈]0,T ]

(div u, q)Ω\Bt
= 0 ∀q ∈ L2(Ω \ Bt).

Energy estimate

1

2

d

dt
‖ρ1/2u(t)‖2

0,Ω + ‖ν1/2 ∇sym u(t)‖2
0,Ω +

d

dt

∫
B

W (F(t)) ds

≤ C
(
‖f(t)‖2

0,Ω + ‖τ g (t)‖H−1/2(∂ΩN )

)
.

where

ρ =

{
ρf in Ωf

t

ρs(x, t) in Ωs
t
, ν =

{
νf in Ωf

t

νs in Ωs
t
.

page 42



FSI Fictitious domain Saddle point problem analysis Compressible solids

Operator form of the stationary problem

<B.–Gastaldi–Heltai ’18>
After some manipulations, the matrix form of the stationary problem is as
follows 

A B> 0 C>1

B Mp B>s 0

0 Bs As C>2

C1 0 C2 0




U

P

X

Λ

 =


F

0

G

D


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Preliminary numerical tests

R = 0.125m, l = 1.0m, ρs0 = 0.8 kg/m3, ρf = 1.0 kg/m3, µe = 20Pa,
µs = 2.0Pa·s, µf = 0.01Pa·s
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Influhence of the Poisson ratio

Poisson ratio 0.1
Poisson ratio 0.2
Poisson ratio 0.3
Poisson ratio 0.4
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Conclusions

I The use of the fictitious domain method with Lagrange multiplier
can be successfully extended to FSI problems

I Resulting semi-implicit scheme is unconditionally stable in time

I Analysis of stationary problem provides optimal error estimates

I Compressible solids can be studied with analogous strategy



THANK YOU
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