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Motivation:

@ Fluid structure interaction problems abound.

@ Many computational studies. Fewer studies on analysis/numerical
analysis.

We study the following simple settings:

@ Peskin Problem (with Analise Rodenberg and Dan Spirn): Elastic string
in a 2D Stokes fluid. The full dynamic problem is studied.

@ Slender Body Problem (with Laurel Ohm and Dan Spirn): A thin filament
in a 3D Stokes fluid. The stationary problem is studied.
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Peskin Problem (Jump Formulation)

We consider the Peskin problem.

pAu—Vp=0, V-u=0 for R’\T, u,p
_ n
X |ox| ™!

oX

E(Gﬁ’) - u(X(e,t)vt)'

n : unitnormal on T'.

o : stress tensor, o = u(Vu + (Vu)T) — pI. 6

-] : jump across T".
I T, X(0,1)

RQ ’ ’

@ Stokes equations satisfied in R*\T" (with # — 0 as |x| — oo, p bounded).
Equal viscosity 1 = 1 in/out.

@ No-slip and stress balance boundary conditions on I'. Stress jump given
by elastic filament force, elastic constant K = 1.

@ Parametrization @ € S' is material coordinate; moves with the fluid.
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Immersed Boundary (IB) Formulation

The immersed boundary (IB) formulation
of the Peskin problem.

—Au+Vp=f, V-u=0ink

X
r= [ G ot —Xt0.0)a0.
X (0,0) = u(x(0,0,0)

¢ : Dirac delta function.

RZ

6
I, X(0,t)

@ Stokes equation satisfied in a distributional sense.
@ Interface condition replaced by distributional body force (surface

measure) supported on I'.
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Boundary Integral (Bl) Formulation

The boundary integral (Bl) formulation of
the Peskin problem:

u(x,t):/S] G(x—X(G',t))ge)f(G Hdo’,

1 XQx
G(x) = 7T(—log\x|1—§- H )

A

1 X2 xy))
= — | —loglx|I+ —5 ,

o (e - =00

0.4
B =u(X(0,1),1).

RQ

6

T, X (0,1)

@ G is the Stokeslet tensor, the fundamental solution of Stokes equation

(x = (x,3)").
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Sample Simulation
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@ Approaches circle as t — oo.
@ Computed using boundary integral method.
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Significance and Goals

Siginificance of Peskin problem:
@ Applied Analysis
o Fluid structure interaction (FSI) problems are everywhere.
o Arguably one of the simplest FSI problems.
@ Numerical Analysis
o Numerical analysis for fully dynamic FSI problems is non-existent. (Many
interesting results for the stationary problem and some results for prescribed
dynamic problems.)
@ Jump, IB and Bl formulations basis for important FSI algorithms:
Jump: immersed interface, cartesian embedded boundary,
moving mesh methods (ALE methods).
IB: immersed boundary, front-tracking, cut FEM (?), Lagrange
multiplier methods (?).
Bl: boundary integral methods.
@ Peskin problem could serve as model numerical analysis problem for various
FSI algorithms.

Goals:

@ Well-posedness, regularity: Are all formulations equivalent? Equivalent if
solution sufficiently smooth.

@ Stability of equilibria, global behavior.
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Related Problems/Previous Work

Related problems:

@ Surface tension problem: Solonnikov, Dennisova, Tanaka, Shibata,
Shimizu, Giga, Takahashi, Khéne, Priss, Wilke, Escher, Glnther,
Prokert,. . .. Both Stokes/Navier Stokes fluids.

@ Muskat/Hele Shaw problem: D’arcy flow, gravity and/or surface tension
force at boundary. If no surface tension, the primary linearization is
similar to Peskin problem considered here (Dirichlet-to-Neumann map):
Ambrose, Cheng, Constantin, Cordoba, Escher, Gancedo, Shkoller,
Siegel, Strain, . ..

@ Water wave problem.

Fanghua Lin and Jiajun Tong (2017):

@ Main results: local solution theory in C([0, T]; H*/*(S")), local asymptotic

(exponential) stability of circular equilibria.

@ No regularity results; in particular, solution not classical. No results on
global behavior.
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Reduction to Equation for X only

Bl formulation of the Peskin problem:

u(x,t):/S] G(x—x(a’,t))g(;f(e 1)do’ u,p n
6lw) = - (~tog el + "ﬁz")
_ L _ X Xy
— 4ﬂ_< 10g\x|l+| ‘ (xy yz))’
)¢
5 = 4(X(0.0),1). 0
2 X(0.1)

Reduce the above to an equation for the evolution of X only:

%’f(a,t):/y G(X(e,t)—X(e’,t))‘Zaf(e 0o
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Small Scale Decomposition |

Consider the Bl formulation:

oX = | G(X—-X)o5X'do'.
g]

Integrate by parts in 0':
00X =—pv. | 09G(X —X)0pX'db,
sl

!
—0pG(X-X') = L (Murag, (M)) L AX=X-X.
4r \ |AxX| |AX|

When |0 —0'| < 1, AX =X — X' = 0,X(0 — 0'), so:

AX - 0p X _ |0pXP(0—0) 1

AX]P |0 XP (06 66"

Thus, we may guess that:
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Small Scale Decomposition I

Recall the Hilbert transform on circle:

(Hw)(0) = %p.v. /Sl cot (9 ; 9/) w(0')do'.

We may write:

8X = AX + R(X), AX = —%H(@g){),

o AX-9pX 1 (60

AX @ AX ot
+0p | ———— ) |00 X db".
9( |AX|2 >> 0

@ This is known as the small scale decomposition (SSD). Introduced by
Hou, Lowengrub, Shelley ('94) for Hele-Shaw, water wave problems.

@ In SSD, principal part (AX in above) treated implicitly to remove
numerical stiffness.

@ Hou and Shi (08) used SSD for IB method.
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Integral Equation (Duhamel Formula)

OX = AX + R(X), X(0,0) = Xo(60).
Use the Duhamel formula:
X(1) = ™ Xo + / "TINR(X(s))ds.
0

Strategy: Use fixed point argument to construct solution, viewing R as lower
order perturbation.

@ Standard technique for semilinear parabolic equations. c.f. For reaction
diffusion equations:

Ou = Au+f(u), u(x,0) = uo(x),
1
u=e"uy+ / IR (u)ds,
0
where ¢'“ is the heat kernel.

@ Analysis depends critically on R being “lower order".
@ We shall work in the Hélder spaces C*7(S'),k € {0} UN,0 < vy < 1.
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Linear Semigroup Properties

The operator A can be written as:

Au = —thf*‘ |k| Fu, F : Fourier Transform (Series)
Thus, A behaves like the square-root of the Laplacian and therefore is like
taking one derivative. In fact:

1—7?

A 1 —t/4 o _ ot o' =T a2
oty Ple™,0 = 0)u@)dd', P(r,0) = T

T 2n )y
where P is the Poisson kernel. We have:

C
cB T B«

zA‘
e

[ullca , 0<t< 1L, 0< < B

where, if a > 0, ¢ N, C*(S') = clola=lal(st),
c.f. For the Laplacian:
tA

C
¢ MHCB S o llull o -
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Estimates of R

Recall:
X = AX + R(X),
where
1 AX - 99X 1 0—0
+ 69, <AXL€X> 8(9/X’d0/,
|AX]
Lemma
IfX € c'7(SY), then R(X) € C'(SY). J

@ Proved by a careful estimation of difference quotients. Use "zero
average" property of kernel.

@ R has the effect of taking 1 + v — 2y = 1 — ~ derivatives. Thus, it is
“lower order" than A.

@ The above results come with appropriate estimates.
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Local Existence/Uniqueness |

Duhamel formula:
1
X(1) = ™ Xo + / "TIMR(X(s))ds.
0
Define:

_ e 1X(0) = X(07)]
|X|* - 91;25, |0701|

@ |X|, > 0ifand only if |9sX| > 0 and no self-intersections of curve.

Definition (Mild Solution)

Let T > 0, X(r) € C([0,T]; C7(S")),0 < v < 1. Then, X is a mild solution if X
satisfied the above Duhamel formula and |X|, > 0for 0 <t < T and
lim, 0 X(f) = Xo in C"7(SY).
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Local Existence/Uniqueness |l

Let 1" (S") (little Holder space) be the completion of smooth functions in
C"7(S"). Note that, for any a >, C"*(S") c h"7(SY).

Theorem (M., Rodenberg, Spirn)

Suppose X, € k' (S') and |Xo|, > 0. Then, there is a T > 0 such that X(t) is
a unique mild solution with initial value X, up tot = T. Mild solution is
continuous with respect to initial data in the C*” topology.

Proof.
@ Use linear semigroup estimates with the fact that R is 1 — ~ order.

@ Contraction mapping argument. Bounds as well as Lipschitz estimates
on R needed (this is where all the work is).

O

v

@ Local existence result (almost) optimal in that R only barely lower order
with respect to A when ~ small.
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Regularity

Given the parabolic nature of our problem, it is natural to ask whether we
have immediate smoothing for positive time.

Theorem (M., Rodenberg, Spirn)
A mild solution is in C'([e, T); C"(S")) forany e > 0 andn € N.

Proof.
@ Need to obtain estimates on R for higher order Hélder spaces.
@ This is obtained by commutator estimates on nonlinear kernels.

@ Our regularity results immediately show that a classical solution exists
and is unique.

@ Furthermore, our regularity results establish the equivalence of the jump,
IB and BI formulations of the problem.
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Further Results

@ The only equilibria are circles with uniformly-spaced material points.

@ The circular equilibria are asymptotically stable, and is approached by
exponential rate of —1/4.

@ Define the y-deformation ratio:

1|06 Xl

e Suppose solution ceases to exist at t. < co. Then,

lim o, (X) — oc.

1ty

e Suppose g~ (X) remains bounded for all time. Then, solution is
global and converges to a circle.

@ Instead of F = 9>X /96, consider the more general elasticity law:

FO) =00 (T(00XD 75 ) - TO) > 0.5 >0

We can prove similar local-in-time well-posedness/regularity results.
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Filament in 3D

Consider a (closed) filament . C R®.
Center line T’y given by X(s),0 <s < 1
(length normalized to 1) and of radius
€:

E [e= 026
v, —Au+Vp=0,V-u=0
in Q, = R“;\Z(

!
Y. = {x € R*[dist(x, ) < €}. @ /-

A Stokes fluid fills Q. = R*\ X, (viscosity normalized to 1):
—Au+Vp=0, V-u=0for Q.

We want to understand the dynamics of this filament.

@ Standard method: boundary integrals over the 2D surface I'. = 0%.. Too
computationally expensive (especially if there are many filaments).

@ We thus seek a 1D reduction.

@ The real problem is dynamic (flament moves with time). Here we only
consider stationary problem.
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Slender Body Approximation: First Try

Suppose we are given a force density
f(s),0 <s < 1along the center line. A
candidate velocity field u is:

L o]
—Ali +Vp = /0 f(9)6(x — X(s))ds, @ %
V=0

E [e= 026
~, —Au+Vp=0,V-u=0
in Q, = R:;\Z(

Thus

u(x) = /O lS(x—X(s))f(s)ds, S(x) = 2 ( L, +xxT>

5w ' ¥

This, however, is problematic. There is a strong #-dependence on the velocity
field on I'..

@ If the non-slip boundary condition is to be satisfied, a strong 0
dependence implies that the filament cross-section will deform very
quickly, violating fiber integrity.
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Slender Body Approximation on Straight Line

Suppose we have a straight filament of infinite extent
along z axis, f = const. Let

—

f:ﬁez +fh7 ﬁ:uzez+ﬁh- ZI i
L»

Ju

TN s

Let (r, 0, z) be the cylindrical coordinate system. Then, [y
. = i.(r) and: @@

~ 1 1 (14 cos(20) sin(20)
thn(r,0) = ar <7 log|rify + 2 ( sin(26) 1-— cos(29))fh)

Note that there is a strong 6 at r = ¢, the cylinder surface T'.. To fix this, set:

A

2
~ € ~
uEB =up + —Auy,.
4
This has no 6 dependence. Hence, in this case, a reasonable expression

may be:

B (x) = / h <s + éAs) (x — se.)f (s)ds.

—0o0
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Slender Body Approximation on Straight Line
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Velocity field uy, for straight line. Note 6 Velocity field uS® for straight line. Note
dependence along circle T'c (r = ¢). 0 dependence on I'. is absent.
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Slender Body Approximation

In general, given a (closed) filament
X(s) with radius ¢, the Slender Body
Approximation is, for x € Q. = R)\X.: @0

E Fs = OZF
i, —Au+Vp=0,V-u=0
in Q =R3\Z,

2

1 /1 xx' 1 1 /1 3xx”
S— (L= oo tas— L (L),
8 <\x| e |? 2 8 \|Ix[* |xf
For X(s) non-straight and f(s) non-constant, u only approximately constant in
6 on s cross-sections.

= [ (s+ 5@) (e X(s))f(5)ds,

@ Proposed in the 70’s-80’s by Lighthill, Keller,
Rubinow, Johnson.

@ Widely used in computation of filament dynamics:
Shelley, Tornberg, Lauga, Fauci, Cortez, Zorin ...

@ What is this an approximation to?

Nazockdast et.al.
(2016)
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Slender Body Problem |

We define the Slender Body Problem
to be:

_ i T = 0%,
—Au+Vp=0,V-u=0inQ,, o AR VY= 0.V u=0

ol i g u =

Sk s
u(s,0) =u(s), v‘

— /0..7T onelc(s,0)d0 = f(s).

where n is the outward unit normalon I'. = 9% and

on = (Vu+ (Vu)") = pl, J. = 1 — er(s) cos(f), & : curvature.

@ For every fixed s cross-section, u on T'¢ is constant in 6. This is the fiber
integrity condition (this condition of Dirichlet type).

@ Total stress exerted on each cross section must be equal to the line force
density f(s) (this condition is of Neumann type).

@ f(s) (and center-line coordinates X(s)) is the only given data.
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Slender Body Problem Il

We define the Slender Body Problem
to be:

E [e= 026
L, —Au+Vp=0,V-u=0
in . :Rf;\z(

—Au+Vp=0,V-u=0inR\Z, oAl
OnTl. =0%.: @ . . |
u(s,0) = u(s),

— /027T onele(s,0)d0 = f(s).

where n is the outward unit normalon I'. = 9% and

o= (Vu+ (Vu)") —pl, J. = 1 — ex(s) cos(),  : curvature.

@ Does the Slender Body Problem have a solution?

@ Does the Slender Body Approximation u*® provide a good approximation
to the Slender Body Problem?
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Weak Formulation |

Take a divergence-free test function v that is constant along s cross-sections,
multiply to Stokes equation and integrate by parts:

/ —(V-U)~vdx:/(an)-vdup€+/ o : Vvdx
Q. r Q

€ €

1 2
:/ / (on -v)el.dbds +/ 2Vsu : Vsvdx
o Jo Q

€

1 27
:/ (/ anekd@) ~v(s)ds+/ 2Vsu : Vsvdx

€

/ S(s) - v(s)ds +/ 2Vsu : Vsvdx, where Vsu =
Q

€

5 (Vu+ (Vu)").

Note that, if v = u, we have:

1
/ 2\vsu|2dx:/f-uds.
0

€

@ This has a natural physical interpretation: power equals energy
dissipation per unit time.
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Weak Formulation Il

Let:

H'(Q) = {u € L°(Q)| | Va] 2,y < o0},
Ac = {u € H (Q)|u(s,0) = u(s) on T},
AY = {u € AV -u=0}.

@ Fiber integrity condition (Dirichlet-like) is encoded in definition of function
space (essential b.c.).
A velocity field u € A is a weak solution to the Slender Body Problem if
/ 2Vsu : Vsvdx = / f(s)v(s)ds, forallv e A%,
Qe

Equivalently (requires proof), u € AY, p € L*(Q.) is a weak solution if,

/ (2Vsu : Vsy — pV -v)dx = / f(s)v(s)ds, forallv € A..
Qe
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Existence/Uniqueness

Theorem (M., Ohm., Spirn)

LetX be a C* curve. Givenf € L*(T'), T' = R/Z, there exists a unique weak
solution (u,p) € AY x L*(Q.) with (C does not depend on ¢):

1/2
IVl 20,y + 1Pl 20y < Cllogel” Ifllzm, -

Proof.

1
Blu,v] = / 2Vsu : Vsvdx = / fls)v(s)ds = Fp], u,v € AW
Q 0

e

@ Coercivity of B on A. x A. follows from the Korn inequality:
HVVHLZ(S)e) < Kk HVS"HLZ(Qé) .
@ Continuity of F in A, follows from trace inequality:
Wl < CrllVvle,) -

@ e dependence requires further work. For p, use inequality on right
inverse of divergence operator.
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PDE satisfied by Error

Recall that 8 was the Slender Body Approximation. We seek to estimate
the error u® = u — u5®, p° = p — p°8. We have:

—Au*+Vp =0, V-u"=0inQ,

e

u® = —u"(s,0) + u(s) on I'c for some u(s),
27
— / (c°n)eJedf = f*(s) on T,
0

where

SB_SB SB_ sB
oc°=0—0", 0 =2Vsu> —p’l,
27

u™(s,0) = u®® — u*® (s, 0)do,

27 Jo
2w
0

Fo0s) =f + / (0% n)eJ.db.

@ u™(s,0) is the “non-conforming" residual; 5 ¢ A%,
@ f™(s) is the “conforming residual”.
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Estimation of Residual

Lemma (M., Ohm, Spirn)
Supposef is C', X is in C**,0 < a < 1. Then,
WMo < Cellfllerery s 1], < Cellogel [Ifllcirry

1 Ou™ ou™s
E o6 s . < C|10g6| Hf”cl(?r‘)

"

Loo

where C does not depend on e.

Proof.
@ When X (s) is a straight infinite line and f is constant, f = u™ = 0.
@ C»* curve with C' force can be locally approximated by straight
line/constant force as ¢ — 0.

@ Estimate nearly singular integrals using above observation. Need to
consider “far field" and "near field" residual contributions separately.
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Error Estimate

Theorem (M., Ohm, Spirn)

Givenf in C' and X in C**,0 < « < 1, the difference between (u,p) and its
Slender Body Approximation (us®, p5®) satisfies:

HV(u —u®®)

SB
- < Cello .
L2(Q) T HP p 12(2) — 6‘ ge| “f”cl('ﬂ*l)

where the constant C does not depend on e.

Proof.
@ Proof essentially follows a Lax Equivalence principle type argument.
@ Consistency: Residual estimated as in previous slide.
@ Stability with respect to e — 0: Consider the Korn and trace inequalities:

||vaL2(QE) < Gk ||vSvHL2(Q€) ) ”VHLZ(?II) < Cr va”Lz(QF) :

We must study e dependence of Cx and Cr. We can show Ck
independent of ¢, Cr = O(|loge|'/?). Similar independence of « for the
operator norm of the right inverse of divergence operator.
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Future Directions/Acknowledgments/Funding

Future Directions:
@ Peskin Problem:

o Global well-posedness/singularity formation.

e Variants of the Peskin problem: different viscosity, incompressible elasticity,
3D, etc.

o Numerical analysis of IB and/or Bl methods.

@ Slender Body Theory:

o Computational verification of optimality of error estimates.
e Variants: open filaments, inextensible filaments, twisting filaments, etc.
@ Dynamic problems.
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