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Alfeld Splits

Certain triangulations have advantages in computational PDEs

(structure-preserving, low-order,...)

An Alfeld split/refinement of a simplicial triangulation is obtained by

connecting the barycenter of each n-simplex with its vertices. This is also

known as a barycenter refinement.

Simplicial triangulation (left) and resulting Alfeld split (right).
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Alfeld Splits

Alfeld splits of a simplicial triangulation are useful in several areas of

computational mathematics. For example, it is possible to construct

H2-conforming elements (Clough-Tocher (‘65), Alfeld (‘84))

Cubic Clough-Tocher element (left) and quintic Alfeld element (right).

Applications: Fourth-order problems (biharmonic, Cahn-Hilliard)

Advantages: Relatively low-order
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Alfeld Splits

Alfeld splits of a simplicial triangulation are useful in several areas of

computational mathematics. For example, it is possible to construct

Inf-Sup stable pairs (Arnold-Qin (‘92), Zhang (‘04))

Quadratic Lagrange velocity element (left) and discontinuous linear pressure space (right) form a

stable finite element pair on Alfeld splits.

Applications: Incompressible flow (Stokes/NSE)

Advantages: Strongly imposes the divergence–free constraint, enhanced

stability properties.



Background FEEC Local Results Consequences Global Sequences

Alfeld Splits

Goal

We show that these spaces are connected via an exact sequences of finite

element spaces.

The sequences are a de Rham complexes, but where the finite element spaces

have extra smoothness compared to the canonical Whitney-Nédélec spaces.

We prove results in arbitrary dimension n ≥ 2, and adopt a finite element

exterior calculus (FEEC) framework.

E.g., we identity H2 functions as 0-forms, and the velocity and pressure

functions as (n− 1)-forms and n-forms, respectively.

Previous Work

Christiansen and Hu (‘18) have recently studied discrete smooth de Rham

(Stokes) complexes in any dimension. Their triangulations have different splits,

and they consider the lowest (polynomial) degree case.
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Notation

Let T = [x0, x1, . . . , xn] be an n-dimensional simplex.

Let z = 1
n+1

∑n
i=0 xi be the barycenter of T .

The Alfeld split of T is obtained by subdividing T into (n+ 1) n-simplices by

adjoining the vertices of T with z.

Set Ti = [z, x0, . . . , x̂i, . . . , xn].

Set T z = {T0, . . . , Tn} to be the mesh of the sub-division.

The local mesh in two (left) and three (right) dimensions.
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Notation

Let {λi}ni=0 ⊂ P1(T ) be the barycentric coordinates satisfying λi(xj) = δi,j .

The differential dλi : Rn → R is given by dλi(r) = gradλi · r.

For integer k ∈ [1, n], and 0 ≤ σ(1) < σ(2) < · · · < σ(k) ≤ n, we use the

notation

dλσ := dλσ(1) ∧ dλσ(2) ∧ · · · ∧ dλσ(k).

Define the spaces of differential forms with polynomial coefficients

PrΛ
k(T ) =

{ ∑
σ∈Σ(k,n)

aσdλσ : aσ ∈ Pr(T )
}
,

where Σ(k, n) is the set of increasing maps {1, 2, . . . , n} → {1, 2, . . . , k}.

The analogous piecewise-defined space on the Alfeld split is

PrΛ
k(T z) =

n∏
i=0

PrΛ
k(T i).
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Canonical Finite Element Spaces

One family of canonical (local) finite elements spaces defined on the split is

defined as

V kr (T z) = PrΛ
k(T z) ∩HΛk(T ) = {ω ∈ PrΛ

k(T z) : dω ∈ L2Λk+1(T )},

V̊ kr (T z) = PrΛ(T z) ∩ H̊Λk(T ) = {ω ∈ V kr (T z) : tr∂Tω = 0} (0 ≤ k ≤ n− 1),

V̊ nr (T z) = {ω ∈ V nr (T z) :

∫
T
ω = 0}.

Remark (Proxies)

In three dimensions, we may identity forms in V kr (T z) by scalar/vector proxies.

k = 0 : d ' grad , V 0
r (T z) ' H1 Lagrange finite element space,

k = 1 : d ' curl , V 1
r (T z) ' H(curl) Nedelec finite element space,

k = 2 : d ' div , V 2
r (T z) ' H(div) Nedelec finite element space,

k = 3 : V 3
r (T z) ' Discontinuous finite element space.
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A Well-Known Result (Arnold, Falk, Winther)

An Exact Sequence

0 −−→ V̊ 0
r (T z)

d
−−→ V̊ 1

r−1(T z)
d
−−→ · · ·

d
−−→ V̊ n−1

r−n+1(T z)
d
−−→ V̊ nr−n(T z) −−→ 0.

Exactness means:

ker V̊ kr (T z) = range V̊ k−1
r+1 (T z),

i.e., if ω ∈ V̊ kr (T z) with dω = 0, then ω = dρ for some ρ ∈ V̊ k−1
r+1 (T z).

Remark (Translation)

Let n = 3. Then the exactness of the sequence implies (with an abuse of notation)

If ω ∈ V̊ 0
r (T z) with gradω = 0, then ω = 0.

If ω ∈ V̊ 1
r−1(T z) with curlω = 0, then ω = grad ρ for some ρ ∈ V̊ 0

r (T z).

If ω ∈ V̊ 2
r−2(T z) with divω = 0, then ω = curl ρ for some ρ ∈ V̊ 1

r−1(T z).

If ω ∈ V̊ 3
r−3(T z), then ω = div ρ for some ρ ∈ V̊ 2

r−2(T z).
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Lagrange Finite Element Spaces

We define the (Lagrange) finite element spaces

Lkr (T z) = PrΛ
k(T z) ∩ C0Λk(T ),

L̊kr (T z) = {ω ∈ Lkr (T z) : ω|∂T = 0} ∩ V̊ kr (T z).

Remark (Proxies)

In three dimensions, we may identity forms in Lkr (T z) by scalar/vector proxies.

k = 0 : L0
r(T

z) ' H1 Lagrange finite element space,

k = 1 : L1
r(T

z) ' vector-valued H1 Lagrange finite element space,

k = 2 : L2
r(T

z) ' vector-valued H1 Lagrange finite element space,

k = 3 : L3
r(T

z) ' H1 Lagrange finite element space.
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Smooth Finite Element Spaces

We define the smooth finite element spaces

Skr (T z) = {ω ∈ Lkr (T z) : dω ∈ C0Λk+1(T )},

S̊kr (T z) = {ω ∈ Skr (T z) : ω|∂T = 0, dω|∂T = 0} ∩ V̊ kr (T z).

Remark (Proxies)

In three dimensions, we may identity forms in Skr (T z) by scalar/vector proxies.

k = 0 : S0
r (T z) ' H2 finite element space,

k = 1 : S1
r (T z) ' H1(curl) finite element space,

k = 2 : S2
r (T z) ' H1(div) finite element space,

k = 3 : S3
r (T z) ' H1 Lagrange finite element space.
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Local Results

Theorem

Suppose that ω ∈ V̊ kr (T z) (r ≥ 0) and dω = 0. Then there exists a ρ ∈ L̊k−1
r+1 (T z)

such that ω = dρ; that is,

ker V̊ kr (T z) = range L̊k−1
r+1 (T z).

Theorem (w/o boundary conditions)

Suppose that ω ∈ V kr (T z) (r ≥ 0) and dω = 0. Then there exists a ρ ∈ Lk−1
r+1 (T z)

such that ω = dρ; that is,

kerV kr (T z) = rangeLk−1
r+1 (T z).

Remark

Recall that ker V̊ kr (T z) = range V̊ k−1
r+1 (T z). Therefore,

range V̊ k−1
r+1 (T z) = range L̊k−1

r+1 (T z).
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Local Results

The next two results are immediate due to the inclusion Lkr (T z) ⊂ V kr (T z).

Corollary

Suppose that ω ∈ L̊kr (T z) and dω = 0. Then there exists a ρ ∈ S̊k−1
r+1 (T z) such that

ω = dρ; that is,

ker L̊kr (T z) = range S̊k−1
r+1 (T z).

Corollary

Suppose that ω ∈ S̊kr (T z) and dω = 0. Then there exists a ρ ∈ S̊k−1
r+1 (T z) such that

ω = dρ; that is,

ker S̊kr (T z) = range S̊k−1
r+1 (T z).
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Divergence-free methods for the Stokes/NSE problem
Taking k = n in the theorem yields

Corollary

For any ω ∈ V̊ nr (T z) (r ≥ 0), there exists ρ ∈ L̊n−1
r+1 (T z) such that div ρ = ω.

Remark

This result states that the divergence operator acting on the Lagrange finite

element space is surjective onto the space of discontinuous piecewise polynomials.

This result has been obtained by Arnold-Qin (‘92) in two dimensions and Zhang

(‘04) in three dimensions.

Remark

Using Stenberg’s Macro argument, it can be shown that analogous global results

hold, thus yielding stable and divergence-free yielding methods for Stokes/NSE.
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Divergence-free methods for the Stokes/NSE problem
Taking k = n in the theorem yields

Corollary

For any ω ∈ V̊ nr (T z) (r ≥ 0), there exists ρ ∈ L̊n−1
r+1 (T z) such that div ρ = ω.

Remark

Using this local result, we have developed (global) conforming and divergence-free

yielding finite element pairs for the Stokes/NSE problem in any dimension and

for any polynomial degree (Guzmán & N. (‘18)).
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Exact Sequences

The theorems yield several new exact sequences on Alfeld splits. For example:

Corollary

Let n = 3. Then the following sequences are exact:

0 −−→ L̊0
r(T z)

grad

−−→ V̊ 1
r−1(T z)

curl

−−→ V̊ 2
r−2(T z)

div

−−→ V̊ 3
r−3(T z) −−→ 0,

0 −−→ S̊0
r(T z)

grad

−−→ L̊1
r−1(T z)

curl

−−→ V̊ 2
r−2(T z)

div

−−→ V̊ 3
r−3(T z) −−→ 0,

0 −−→ S̊0
r(T z)

grad

−−→ S̊1
r−1(T z)

curl

−−→ L̊2
r−2(T z)

div

−−→ V̊ 3
r−3(T z) −−→ 0,

0 −−→ S̊0
r(T z)

grad

−−→ S̊1
r−1(T z)

curl

−−→ S̊2
r−2(T z)

div

−−→ L̊3
r−3(T z) −−→ 0.
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Dimension Counts

Corollary

The dimension of Skr (T z) satisfies

dimSkr (T z) = dimLk+1
r−1(T z) + dimLkr (T z)− dimV k+1

r−1 (T z).

Example

Taking k = 0 gives the dimension of local C1 elements on Alfeld splits:

dimS0
r (T z) =

(r + n

n

)
+ n

(r − 1

n

)
.

This dimension count was first established by Kolenikov & Sorokina (‘14) using

different techniques.

Example

Taking n = 3 and k = 1 yields the local dimension of an H1(curl;T ) space

dimS1
r (T z) = r(2r2 − 3r + 13).
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Dimension Counts

Corollary
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Taking n = 3 and k = 1 yields the local dimension of an H1(curl;T ) space

dimS1
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Super-smoothness at vertices

Corollary

Let n = 3. Then any ω ∈ Skr (T z) is C2−k on the vertices of T z.

Example

k = 0: If ω is a C1 piecewise polynomial on T z, then ω is C2 on the vertices

of T z.

k = 1: If ω is a C0 piecewise polynomial and if curlω ∈ C0(T ), then ω is C1

on the vertices of T z.
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The Three Dimensional Case

Recall, that in three dimensions (n = 3), we have four local exact sequences with

varying level of smoothness:

0 −−→ L̊0
r(T

z)
grad

−−→ V̊ 1
r−1(T z)

curl
−−→ V̊ 2

r−2(T z)
div
−−→ V̊ 3

r−3(T z) −−→ 0,

0 −−→ S̊0
r (T z)

grad

−−→ L̊1
r−1(T z)

curl
−−→ V̊ 2

r−2(T z)
div
−−→ V̊ 3

r−3(T z) −−→ 0,

0 −−→ S̊0
r (T z)

grad

−−→ S̊1
r−1(T z)

curl
−−→ L̊2

r−2(T z)
div
−−→ V̊ 3

r−3(T z) −−→ 0,

0 −−→ S̊0
r (T z)

grad

−−→ S̊1
r−1(T z)

curl
−−→ S̊2

r−2(T z)
div
−−→ L̊3

r−3(T z) −−→ 0.

We develop analogous global finite element spaces and sequences.

We focus on the sequence with the highest level of smoothness.
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The Three Dimensional Case
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Set up

Let Ω ⊂ R3 be a polyhedral domain.

Let Th be a regular, simplicial triangulation of Ω.

Let Tzh be the triangulation obtained by performing an Alfeld split to each

T ∈ Th.

For T ∈ Th, ∆`(T ) is the set of `-dimensional simplices of T (vertices, edges,

faces)
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DOFs: C1 element

Lemma

Let r ≥ 5. Then, a function ω ∈ S0
r (T z) is uniquely determined by the following

DOFs:

Dαω(a), ∀|α| ≤ 2, ∀a ∈ ∆0(T ),∫
e
ωσ ds, ∀σ ∈ Pr−6(e), ∀e ∈ ∆1(T ),∫

e

∂ω

∂n±e
σ ds, ∀σ ∈ Pr−5(e), ∀e ∈ ∆1(T ),∫

F
ω σ dA, ∀σ ∈ Pr−6(F ), ∀F ∈ ∆2(T )∫

F

∂ω

∂nF
σ dA, ∀σ ∈ Pr−4(F ), ∀F ∈ ∆2(T ),∫

T
gradω · gradσ dx, ∀σ ∈ S̊0

r (T z).

Here, ne± are two orthonormal normal vectors that are orthogonal to the edge e.
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DOFs: H1(curl) element

Lemma

A function ω ∈ S1
r−1(T z) (r ≥ 5) is uniquely determined by the values

D
α
ω(a) ∀|α| ≤ 1, ∀a ∈ ∆0(T ),∫

e

ω · κ ds ∀κ ∈ [Pr−5(e)]
3
, ∀e ∈ ∆1(T ),∫

e

(curlω) · κ ds ∀κ ∈ [Pr−4(e)]
3
, ∀e ∈ ∆1(T ),∫

f

(ω · nF )κ dA ∀κ ∈ Pr−4(F ), ∀F ∈ ∆2(T ),∫
F

(nF × ω × nF ) · κ dA ∀κ ∈ Dr−5(F ), ∀F ∈ ∆2(T ),∫
F

(curlω × nF ) · κ dA ∀κ ∈ [Pr−5(F )]
3
, ∀F ∈ ∆2(T ),∫

T

ω · κ dx ∀κ ∈ grad S̊
0
r(T

z
),∫

T

curlω · κ dx ∀κ ∈ curl S̊
1
r−1(T

z
),

where Dr−5(F ) = Pr−6(F ) + xFPr−6(F ) is the local Raviart–Thomas space.
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DOFs: H1(div) element

Lemma

A function ω ∈ S2
r−2(T z) (r ≥ 5) is uniquely determined by the values

ω(a), divω(a) ∀a ∈ ∆0(T ),∫
e
ω · κds ∀κ ∈ [Pr−4(e)]3, ∀e ∈ ∆1(T ),∫

e
(divω)κds ∀κ ∈ Pr−5(e), ∀e ∈ ∆1(T ),∫
F
ω · κdA ∀κ ∈ [Pr−5(F )]3, ∀F ∈ ∆2(T ),∫

F
(divω)κ dA ∀κ ∈ Pr−6(F ), ∀F ∈ ∆2(T ),∫

T
ω · κdx ∀κ ∈ curl S̊1

r−1(T z),∫
T

(divω)κdx ∀κ ∈ S̊r−3(T z).
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DOFs: H1 element

Lemma

Any ω ∈ S3
r−3(T z) = L3

r−3(T z) (r ≥ 5) is uniquely determined by the degrees of

freedom

ω(a) ∀a ∈ ∆0(T ),∫
e
ωκds ∀κ ∈ Pr−5(e), ∀e ∈ ∆1(T ),∫

F
ωκdA ∀κ ∈ Pr−6(F ), ∀F ∈ ∆2(T ),∫

T
ω dx,∫

T
ωκdx ∀κ ∈ S̊3

r−3(T z).



Background FEEC Local Results Consequences Global Sequences

Global Finite Element Spaces

The degrees of freedom induce the spaces:

S0
r (Tz

h) : = {ω ∈ H2(Ω) : ω|T ∈ S0
r (T z) ∀T ∈ Th, ω is C2 at vertices},

S1
r−1(Tz

h) : = {ω ∈ H1(curl; Ω) : ω|T ∈ S1
r−1(T z) ∀T ∈ Th, ω is C1 at vertices},

S2
r−2(Tz

h) : = {ω ∈ H1(div; Ω) : ω|T ∈ S2
r−2(T z) ∀T ∈ Th},

S3
r−3(Tz

h) : = {ω ∈ H1(Ω) : ω|T ∈ S3
r−3(T z) ∀T ∈ Th},

and projections

Π0 : C∞(Ω)→ S0
r (Tz

h),

Π1 : [C∞(Ω)]3 → S1
r−1(Tz

h),

Π2 : [C∞(Ω)]3 → S2
r−2(Tz

h),

Π3 : C∞(Ω)→ S3
r−3(Tz

h).
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Commuting Properties

Theorem

For r ≥ 5, the following diagram commutes

C∞(T )
grad

−−−→ [C∞(T )]3
curl

−−−→ [C∞(T )]3
div

−−−→ C∞(T ) −−−→ 0yΠ0

yΠ1

yΠ2

yΠ3

S0
r(Tz

h)
grad

−−−→ S1
r−1(Tz

h)
curl

−−−→ S2
r−2(Tz

h)
div

−−−→ S3
r−3(Tz

h) −−−→ 0.

Specifically, we have

grad Π0p = Π1 grad p, ∀p ∈ C∞(T ),

curl Π1p = Π2 curl p, ∀p ∈ [C∞(T )]3,

div Π2p = Π3 div p, ∀p ∈ [C∞(T )]3.
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Exactness of Global Spaces

Theorem

For r ≥ 5, the following sequence is exact on contractible domains:

S0
r (Tz

h)
grad

−−→ S1
r−1(Tz

h)
curl
−−→ S2

r−2(Tz
h)

div
−−→ S3

r−3(Tz
h) −−→ 0.
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Concluding Remarks

Summary

We have developed several new local, discrete de Rham complexes with

varying level of smoothness on Alfeld splits.

The results lead to characterizations of discrete divergence-free subspaces for

the Stokes problem and formulas for the dimensions of smooth polynomial

spaces.

We have constructed analogous global complexes in three dimensions and

projections that commute with the differential operators.

Open Problems/Future Work

Apply techniques to study different splits (e.g., Worsey-Farin, Powell-Sabin)

Degrees of freedom for global spaces for general dimension n ≥ 2.


