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Introduction to our group



Introduction to our group

U.S. Army Engineer Research and Development Center.
Solve problems for the Army, DoD, civilian agencies and
others [1].
Focus of work [1]:

* Civil and military engineering.
* Geospatial sciences.
* Environmental sciences.
* Water resources: Coastal and Hydraulics Lab (CHL).

[1] https://www.erdc.usace.army.mil



Goal of our group

The goal of our group is to simulate fluid-solid interaction (FSI)
problems with one, two and potentially three fluid phases.
The third phase is composed by granular media.



Riverine Structures: Bluestone Dam

Constructed in 1949, primarily to reduce flood damage along the New, Kanawha,
Ohio, and Mississippi rivers

Designed for 430,000 cfs but now needs to meet probable maximum flood of
1,000,000 cfs

Studied with multiple physical models: 1:65-scale (complete), 1:36-scale and
1:25-scale (sections)

Downstream scour is a major concern



Coastal Structures: Azores Breakwater

Protects critical military refueling station

Retrofit of concrete armoring designed by CHL to withstand larger storms

Experiences waves and flow with with significant viscous, air, and porosity effects that
can move armoring units if not designed properly



Navigation

Need to understand vessel dynamics, particularly in coastal channels and ports

Need to understand bank erosion due to vessel wakes

Need to understand deposition and erosion in navigation channels



Introduction to Proteus

Proteus is a Python package but uses C/C++/Fortran as
needed.
Parallel, unstructured, higher-order, adaptive,...
Includes hybrid LS/VOF formulation with ALE or
immersed/embedded methods for moving solid boundaries.
Released under the MIT license following guidance from US
Defense Digital Service and ERDC counsel.



Introduction to Proteus: current capabilities and development

Existing equation sets: multiphase Navier-Stokes and RANS
formulations (air/water), shallow water equations, diffusive
wave equation, Richards’ equations, two-phase flow in porous
mdiea, elasticity, plasticity,...
Existing methods: Lagrange/Bernstein finite elemenents,
Variational multiscale methods, Discontinuous Galerkin
methods, non-conforming methods.
In development: three-phase RANS, Serre-Green-Naghdi
equations, Entropy Viscosity methods, Schur complement
preconditioners, anisotropic adaptivity,. . .



Introduction to Proteus: Domain with Three Mobile Phases
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Collaborators
Immersed and shifted boundary method

Yong Yang leads this development
within our lab.
Guillermo Scovazzi and Leo
Nouveau from Duke University.
Arnold Song from U.S. Army ERDC
Cold Regions Research and Eng.
Lab. (CRREL).



Collaborators
Applications and engineering cases of study

HR Wallingford (Aggelos Dimakopoulos, Tristan de Lataillade,
Branoc Richards, Pedro Otinar Morillas, Jonathan Simm and
Giovanni Cuomo).

Wave generation, dynamic mooring, wave structure interaction,hydraulic structures,
moving floating structures, turbulence modelling, sediment transport and other real world
applications.



Collaborators
Level-sets/volume of fluids

Dmitri Kuzmin from TU Dortmund, Germany.



Collaborators
Shallow water equations and dispersive corrections

Jean-Luc Guermond, Bojan Popov and Eric Tovar from Texas
A& M University.
Matthew W. Farthing, U.S. Army ERDC-CHL.



Collaborators

h-adaptivity

Onkar Sahni and Alvin Zhang from Rensselaer Polytechnic Institute.

Preconditioners

Andrew Wathen and Nial Bootland from Oxford University.

Vince Ervin, Alistair Bentley from Clemson University.

Absorbing boundary conditions

Jon Chapman and Helen Fletcher from Oxford University.

Vegetation effects on water waves

Jon Chapman and Clint Wong from Oxford University.

Others

Dmitri Kuzmin (TU Dortmund). C0 blending FE spaces and time discretizations.

Haydel J. Collins (U.S. Army Corps of Eng., NOLA District). Applications.



A phase conservative level
set method



Motivation

Model and simulate the interface evolution during incompressible multiphase flows.

Applications
Some applicaitons are:

Water-air interaction.
Multiple phase fluid solid interaction.



Goals
Reformulate/propose a level set and/or volume of fluid like
method for moving interfaces with incompressible flows.
We aim to obtain:

* Phase/volume conservation.
* Natural/easy representation of the interfaces.
* A monolithic model.
* Robust and with few (or no) parameters.
* Suitable for standard finite element discretizations in space.

Conservation
Assume v · n = 0.

∂tV + = ∂t

∫
Ω

Hε(φ)dx = 0



Background: level-set (LS) vs volume of fluid (VOF)

Level-set (LS) method
Proposed by [Osher and Sethian(1988),Sussman et all.(1994)].
Interface is the isosurface of an auxiliary function.
Transport the level-set function.
Easy and natural representation of the interface.
Loss of phase/volume conservation.

Volume of fluid (VOF) method
Proposed by [Hirt and Nichols(1981)].
Characteristic function to identify phases.
Transport the characteristic function.
Requires interface reconstruction.
Phase/volume conservative.



Background: hybrid methods

Hybrid methods: [Enright et al.(2002), Ianniello and Di Mascio(2010), Sussman and

Puckett(2000)].

Conservative level-set method by [Kees et al.(2011)]

Goal: correct a level-set solution to obtain conservation.
Level-set: distance function to the interface.

Stage 1: level-set
∂tφ+ v · ∇φ = 0

Stage 2: redistancing∣∣∣∇φ̂∣∣∣ = 1

Stage 3: volume of fluid

∂t H̃ +∇ ·
[
vHε

(
φ̂
)]

= 0

Stage 4: mass correction

Hε

(
φ̂+ φ′

)
− H̃ − κh∆φ′ = 0



Towards a monolithic level-set method

Consider stages 3 and 4 from [Kees et al.(2011)] (via forward Euler).

Hε(φ
n+1)− Hε(φ

n)

∆t
+∇ ·

[
vHε(φ

n)− κh
∆t
∇
(
φn+1 − φ̂

)]
= 0

Stage 3: volume of fluid
H̃−Hε(φn)

∆t +∇ · [vHε (φn)] = 0

Stage 4: mass correction

Hε

(
φ̂+ φ′

)
− H̃ − κh∆φ′ = 0

φn+1 = φ̂+ φ′



Towards a monolithic level-set method

Consider stages 3 and 4 from [Kees et al.(2011)] (via forward Euler).

∂tHε(φ) +∇ ·
[
vHε(φ)− κh

∆t
∇
(
φ− φ̂

)]
= 0

First ‘ingredient’!

Stage 3: volume of fluid
H̃−Hε(φn)

∆t +∇ · [vHε (φn)] = 0

Stage 4: mass correction

Hε

(
φ̂+ φ′

)
− H̃ − κh∆φ′ = 0

φn+1 = φ̂+ φ′



Redistancing

We still need a process to redistance the level set.

Some alternatives are:
Geometric approaches.
PDE based methods. Impose |∇φ| = 1 and keep
{x ∈ Ω | φ(x) = 0} unchanged.

* Hyperbolic.
* Convective.
* Parabolic.
* Elliptic.



Elliptic redistancing

We consider the elliptic redistancing by [Basting and Kuzmin(2013)].
Based on the parabolic redistancing by [Chunming Li et al(2013)].

min
α

2

∫
Γ(φ̃)

φ̂2ds +
1
2

∫
Ω

(
|∇φ̂| − 1

)2
dx

α

∫
Γ(φ̃)

φ̂wds +

∫
Ω

(
∇φ̂− ∇φ̂

|∇φ̂|

)
· ∇wdx = 0

Second ‘ingredient’!



First monolithic model

Reformulated conservative level-set method

∂tHε(φ) +∇ ·
[
vHε(φ)− λ

(
∇φ−∇φ̂

)]
= 0

Elliptic redistancing

φ̂δ
(

Γ(φ̃)
)
−∇ · 1

α

(
∇φ̂− ∇φ̂

|∇φ̂|

)
= 0

Monolithic conservative level-set model 1

∂tHε(φ) +∇ ·
[
vHε(φ)− λ

(
∇φ− ∇φ

|∇φ|

)]
= 0



First monolithic model: benefits

∂tHε(φ) +∇ ·
[
vHε(φ)− λ

(
∇φ− ∇φ

|∇φ|

)]
= 0

Monolithicity.
Transport: the transport of the interface is embedded.

Conservation: conservation is achieved provided BCs:

n ·
(
∇φ− ∇φ

|∇φ|

)
= 0, ∀x ∈ ∂Ω

Regularization and redistancing: the term λ
(
∇φ− ∇φ

|∇φ|

)
regularizes the equation and penalizes deviations from the distance
function property.



First monolithic model: drawbacks

∂tHε(φ) +∇ ·
[
vHε(φ)− λ

(
∇φ− ∇φ

|∇φ|

)]
= 0

Two main sources of non-linearity with different behavior.
* Due to smoothed Heavisides. Well behaved, we need small tolerances.
* Due to redistancing. Not well behaved, we don’t need small tolerances.

Redistancing problems near peaks.
Not well behaved Jacobian.
Slow convergence of (pseudo) Newton method.
Bad quality at the interface.



Second monolithic model

We borrow an idea from [Chan, Golub and Mulet(1999)].
Do a C0 reconstruction of ∇φ|∇φ| .

Their motivation is to accelerate the nonlinear solver by easing
the nonlinearity due to redistancing.

Monolithic conservative level-set model 2

∂tHε(φ) +∇ · [vHε(φ)− λ (∇φ− q)] = 0, ∀x ∈ Ω√
|∇φ|+ δq = ∇φ, ∀x ∈ Ω

(∇φ− q) · n = 0 ∀x ∈ ∂Ω



Second monolithic model... about parameter λ

The parameter λ scales like speed.

Towards a dimensionless parameter
To make the parameter dimensionless we consider

λ ∼
(

h(x)

∆t

)
λ̃,

h(x)

∆t
= O(1), via a CFL restriction

For consistency
For consistency we further scale the parameter λ as follows:

λ ∼ λ̃
(

h(x)

∆t

)
h(x)

||φ− φ̄||L∞(Ω)



Monolithic conservative level-set model 1 vs model 2

We consider the 2D vortex problem proposed by [Rider and Kothe(1995)].

Model 1

Model 2

Solution at t = 0,2,4,8.



Some details on the numerical discretization

Time discretization
2nd order IMEX prediction correction scheme by [Hundsdorfer and

Verwer(2013)].

Spatial discretization
Standard CG-FEM.
No need of numerical artifacts like: extra stabilization, flux
limiting, artificial compression, mass correction, post
redistancing, etc.
We integrate by parts the flux term.
C0 reconstruction of normal field ∇φ

|∇φ| via a mass lumped L2

projection.



Numerical examples: level-set

2D periodic vortex
Newton tolerance of: 1× 10−12, 1× 10−8 and 1× 10−4.

Solution at t = 0,4,8 Newton iterations

Zalesak’s disk



Numerical examples: level-set

3D solid rotation

LeVeque test



Multiphase flow



Multiphase flow: general strategy.

1 Representation of the air-water interface.
2 Reconstruct density and viscosity fields.
3 Solve the Navier-Stokes (NS) equations to get a velocity field.
4 Use the NS velocity field within monolithic level-set.
5 Repeat until the final time.



Multiphase flow: [1] representation of air-water interface.

We consider level-sets to represent the interface.
The level-set is a distance function to the interface.
The zero countour value represents the interface.
Positive values represent air.
Negative values represent water.

Domain: Ω = (0,1)× (0,2).

Level-set function: φ(x , y).

Interface: Γ := {(x , y) ∈ Ω | φ(x , y) = 0}.



Multiphase flow: [2] reconstruct density and viscosity fields.

Given the level set φ(x , t) we reconstruct the density and viscosity
fields via (smoothed) Heaviside functions.

Smoothed Heaviside function:

Hε(φ) ≈


0, if φ < 0,
0.5, if φ = 0,
1, if φ > 0,

Material parameters:

ρ(x , t) = ρAHε(φ) + ρW (1− Hε(φ)),

µ(x , t) = µAHε(φ) + µW (1− Hε(φ)).



Multiphase flow: [3] solve the Navier-Stokes (NS) equations.

We solve the Navier-Stokes equations to obtain velocity and
pressure fields.

ρ (∂tu + u · ∇u)−∇ · µε(u) +∇p = f,

‘plus’ boundary and initial conditions and other physics such as surface tension.

Numerical methods

Time discretization: projection scheme by [Guermond and
Salgado(2009)].

Space discretization: CG-FEM with P2-P1 spaces.

Stabilization: entropy viscosity by [Cappanera et al.(2017)].

Surface tension: semi implicit approximation by [Hysing(2006)].



Numerical examples: multiphase flow
Rising bubble with surface tension

We follow [Hysing et al.(2009)] and reproduce two benchmarks.

Test case 1: ρW = 1000, ρA = 100, µW = 10, µA = 1, g = 0.98, σ = 24.5.

Test case 2: ρW = 1000, ρA = 1, µW = 10, µA = 0.1, g = 0.98, σ = 1.96.



Numerical examples: multiphase flow
Dambreak with Colagrossi’s setup

See [A. Colagrossi and M. Landrini (2003)].



Multiphase flow: numerical examples.
Filling a 2D tank

t = 0.0 t = 0.25 t = 0.5

t = 0.75 t = 1.0 t = 1.25



Numerical examples: multiphase flow
Buckling flow in 2D and 3D

See for instance [Ville et al.(2011), Tome and McKee(1999), Bonito et al.(2016)].
The material parameters are

ρW = 1800, µW = 500, ρA = 1, µA = 2× 10−5, g = 9.81



Numerical examples: multiphase flow
3D Marin problem

See for instance [Elias and Coutinho(2007), Kleefsman et al.(2005), Kees et

al.(2011)].



Numerical examples: multiphase flow
3D Marin problem



Numerical examples: multiphase flow



Conclusions

What do we have?
Monolithic level-set/volume of fluid model.
Phase conservative model.
No need for interface reconstruction.
Merge of: cons. level-set by [Kees et. al.] and elliptic redistancing
by [Basting and Kuzmin]

What are we missing?
We still have one parameter λ.

Explore use of optimal control theory as in [Basting and Kuzmin(2014)].

Use of smoothed (instead of sharp) Heavisides.
Use advanced adaptive composite quadrature rules as in [Tornberg(2002)].



Thank You!


