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A Two-phase Compaction Model

A sedimentary basin is a
@ fully-saturated granular deforming porous medium
@ consolidating under its own weight + overburden pressure.
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The Spatial and Time Scales in Basin Modeling

@ Depths: kilometers
@ Widths & lengths: 100s of kilometers
@ Geological time scales: 50 Ma

@ Pressures are huge!

Visco-elastic models needed for
@ viscous creep ... shallow & intermediate depths,
@ pressure solution ... about 500 meters and deeper,
@ tectonic subsidence ... below 4 kilometers.
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More on scales and dimensions
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Laboratory Scales

Experiments on fluid driven deformation of
@ soft open-cell polymer foams,
@ visco-elastic granular medium of soft gel particles.
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Experimental results

Figure: MacMinn et al (2015)
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Basin model: variables and assumptions

The variables are

@ porosity ¢(x, ),

o fluid pressure p(x, t).

@ fluid velocity v¢(x, t) and solid velocity vs(x, t),
The assumptions are

@ Shear stress in the sediment matrix negligible:

o effective stress is o(x, )6 = —ps(x, £)d
e ps(x,t)is effective pressure of solid.

@ Overburden pressure P = p + ps = p — o is given.

@ Composite flow v = ¢vs + (1 — ¢)Vs is irrotational.
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Model: conservation of mass

Mass conservation of fluid and solid (Audet & Fowler, 1992)

0
%tqb + V- (provy) = prF, and
8,03((1%— ?) + V- (ps(1 — ¢)vs) = 0.

Divide out the (constant) densities and add the equations:

V-vr = V- (¢vr+ (1 = 9)vs) = F.

Note: vr - n|poundary to be used as a Neumann condition
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Model: derive the porosity-pressure equation

Helmholtz theorem (V x v; = 0) implies

Vr=¢Vi+ (1 — p)Vs = VW

To get w, we solve the Neumann problem

V-Vw=F, VW-Nlpoungary =9, (W=A"TF)

Darcy’s law for the fluid flow

ko).,

¢(Vf—Vs) = — P

Porosity-pressure equation

29

K)oy .
ot~V ((1=9)=ZVp)=V-(1-9)VA 'F
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The Porosity-Stress Equation

From the given overburden pressure P = p — o, we obtain the
porosity-stress equation
k
?;f - V-((1- ¢)(j)v(a +P)=V-(1-¢)VA'F.
Typically k(¢) = ¢™, m > 1 (Carman-Kozeny)

@ It remains to relate the porosity ¢ and the stress o to
characterize the mechanical deformation of solid matrix ....
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Void ratio -2 & effective solid pressure 10

Void ratio

Axial effective stress (kPa)
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Porosity ¢ = (o) & effective stress 0 = —p;

¢ = (o) ... nonlinear elastic compaction

Porosity-stress
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Hysteresis Cycles

compaction

hysteresis
cycles
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Stress 0 = a(¢) & porosity ¢

o = 71 ... the inverse of nonlinear compaction, translation
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Constitutive assumption

Solid matrix is visco-elastic
0
o = a(¢) + -
... visco-elastic departures from the compaction curves
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Model summary

The pseudo-parabolic compaction equation
00 o o k() 9 5\ o g ot
T V-(1-19) . \Y a(¢)+nat+P =V-(1-¢)VA™'F.
Assume

@ «f(-) is continuous and affine bounded,

a(s)] < Ka(ls| + 1)

@ a(-) + Kl is monotone for some K € R,
@ n>0.
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What are pseudo-parabolic PDEs, and why ?

Simple linear -parabolic PDE

ur—nAus— Au=20

v

Nonlocal form

u—A(I—nA)Tu=0

A

Note: pseudo-parabolic ~ parabolic
o —A(l—nA)"" = 1(1—(1-na)~")
@ bounded linear operator with norm O(1)
@ Yosida approximation of parabolic equation

u—Au=0 (n=0)
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Sobolev equation

Ug — V]AUﬁ —Au=0

rotating fluids, n = inertia
@ Sobolev (1954)
@ A.E.H. Love (1940)
@ Poincaré (1885)

General PDE of Sobolev type: implicit evolution equations
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Pseudo-parabolic equation

ur—nAu; — Au=20

@ Milne (1926) ... gas diffusion with delay

@ Coleman-Noll (1960) ... 2"-order fluids

@ Barenblatt (1960) ... dual-porosity porous media flow

@ Chen-Gurtin (1968) ... two-temperature heat conduction

@ Showalter-Ting (1970) ... existence, regularity, ...

@ Carroll-Showalter, Singular & Degenerate Cauchy
Problems (1976) ... 150 references !

Richards’ equation with dynamic capillary pressure

@ M. Hassanizadeh, Celia, Dahle (2002) ... experiments & model
@ M. Peszynska - S. Yi (2008) ... numerical

@ M. Peszynska - RES - S. Yi (2009) ... homogenization

@ A. Mikelic (2010) ... existence - highly degenerate case
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Numerical experiments: Peszynska-Yi (2008)

Dynamic capillary pressure for coarse sand, with grav  Dynamic capillary pressure for coarse sand, with gravity

RCLCELM tau=1e8 nx=64 di=50
RCLCELM tau=1e8 nx=128 di=25
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Dynamic capillary pressure for coarse sand, with gravity  pynamic capillary effects for coarse sand, with gravity
oap oap
0as
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Instabilities arise from advection with some methods.
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The Compaction Model: Theory

For each ¢ € L*°(G), 0 < ¢ < ¢ < 1, define the elliptic operator
k
Ay=-V-(1- gb)('f)V(').

The nonlinear pseudo-parabolic compaction equation takes
the form

S+ s (al0) + 05+ PO) = 0,0, 6(0) = bo.

Rewrite in the function space L?(0, T; L?(G))

TR 1 (@(9)+P) = (I4+nAg) 7 (1 (a(9) +P)+£(9)),  ¢(0) = ¢o.
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Main analysis results (siam Jour math Anal 50 (2018)]

Theorem 1. Let ¢y € L?(G). There exists a solution in
H'(0, T; L2(G)).
It is obtained as a fixed point and satisfies

09/ (1) + a(é(1)) + P(t) € L*(0, T: H3(G)).

Theorem 2. Regularity (both local and global) of initial data is
preserved up to H'(G). That is, for any subdomain Gy C G, if
b € H'(Gy), then ¢(t) € H'(Gy) for t € [0, T].

Theorem 3. Any jump [¢(x, t)] in values along an interior
submanifold I decays according to the ODE

neletl o ([g(x,1)]) = 0, x € T.
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Challenge 1

The Hysteresis Problem

We model the irreversible compaction with the system

% _y. (1- qb)k(j))V(a +P)=V-(1-¢)VA'F,

ot
¢ =H(0),

where H is a hysteresis functional.



Porosity & effective solid pressure
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Hysteresis Cycles

Challenges
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compaction

¢ € H(o)
~
hysteresis
cycles
=
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Compaction model with hysteresis

The hysteresis functional is modeled by the singular ODE

0
6= (), 52 +ele )20,
where c¢(+) is the constraint graph, &: auxiliary variable

c(s)=—mifs<0, ¢(0)=[-m,+o0),

(m > 0: slope of hysteresis cycles)

% _y. (1- qs)k(f)V(o— +P)| =V-(1-¢)VAT'F,

ot
9¢

¢ =B(¢), 57 +c€-0)30.




Challenges
e0

Challenge 2

A Free-Boundary Problem

At the basin surface, there is another problem.

The regions are sediment G = {(x,t) € Gt : o(x,t) < 0},
the pure fluid G% = {(x,t) € Gr : o(x, 1) = 0}, and their
interface S = G$ N GY.

A variational inequality describes the unknown surface S:
@ Sediment can not support any tensile stress: ¢ <0,
@ The surface is given by S = {(x,t) : o(x,t) = 0}, and
@ v;-n = Visthe normal velocity of the surface.

The last condition determines the motion of S.
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Summary

@ Model
Darcy flow & irrotational total fluid & viscoelastic or
hysteretic constituve assumptions

@ Analysis & recent references to pseudo-parabolic PDEs
Eleanor Holland, RES,
"Poro-visco-elastic Compaction in Sedimentary Basins",
SIAM Jour Math Anal (2018)

@ Current work on remaining challenges

Thank you!
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