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Daily closing index of Standard & Poor’s 500 and its log-returns from January 2006 to
December 2009.
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Log-returns and absolute log-returns of Standard & Poor’s 500 daily closing index from
January 2006 to December 2009 and its sample autocorrelations.
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Long Memory Stochastic Volatility model
Stochastic Volatility model: time series X;, j > 1,
Xi=o(Y)e, j=1,
where
— gj,j > 1,isani.i.d. sequence with Ecy = 0;
— o is a non-negative measurable function;

- Y}, j > 1, is a stationary Gaussian long-memory process;

Long Memory:

Yi=> cmk, » =1,
k=1 k=1
for an i.i.d. Gaussian sequence 7;, j € Z, with Eny =0, Varny = 1, and

(k) = Cov(Y], Yiuk) = kL, (K),

where D € (0,1) and L, is slowly varying at co.
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Given observations

Xi=o()ej, Vi=> cmjr, j>1.
k=1

LMSV model: Assume that {¢;,j > 1} and {;,j € Z} are mutually independent.
(Introduced in: Breidt, Crato, de Lima (1998), Harvey (2002).)

Observe that
Cov(Xi, Xk+1) =0, k> 1,
Cov(|Xi], [ Xiy1]) = (Ele1])? Cov(|o(Y1)], [o( Yis1)]),

i.e. the X, j > 1, are uncorrelated, while the absolute values of the variables inherit
the dependence structure from Y}, j > 1.

LMSV model with leverage:Assume that {(¢},7;),j > 1} is a sequence of i.i.d.
vectors.
Then, Y; and ¢; are independent for fixed /, but Y; may not be independent of ¢;, j < i.
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Heavy tails:

sample quantiles

0
normal quantiles

Q-Q plot for the log-returns of Standard & Poor’s 500 daily closing index from January
2006 to December 2009.

Given observations
Xi=o()ej, Vi=> canmjr, j > 1.
k=1
Assumption: P(e > x) = x~“L(x) for some « > 0 and a slowly varying function L.
Breiman’s Lemma: If Ec*™°(Y;) < oo for some § > 0, then

P(Xi > x) ~ Ed®(Y1)P(e1 > x), as x — oo.
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Change-point problem

Given: observations X,

..., Xp and a measurable function v, consider
Zi=y(X),i=1,...n

Testing problem:

Ho:EZ1 =...=EZn
against
*11: E‘ZH =...= E.Zk 7é E.Zk+4 =...= E,Zh
forsome ke {1,...,n—1}.
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Change-point problem

Given: observations X,

..., Xp and a measurable function v, consider
Zi=y(X),i=1,...n

Testing problem:

Ho:EZ1 =...=EZn
against
H1 : EZ1 =...:EZk7éEZk+1 ::EZ,,
forsome ke {1,...,n—1}.
Examples:

@ ¢(x) = x in order to detect changes in the mean;
@ (x) = x2 in order to detect changes in the variance.
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CUSUM-based change-point tests

CUSUM change-point test: rejects for large values of

Ch= \max Cn(k), where Cn(k

Observe that

k n

Colk)=|>_(Z—EZ) - SZ(Z’_EZO"

i=1 i=1
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CUSUM-based change-point tests

CUSUM change-point test: rejects for large values of

Ch= \max Cn(k), where Cn(k

Observe that

k n

Colk)=|>_(Z—EZ) - ZZ(Z’_EZO"

i=1 i=1

= Consider the partial sum process

Lnt]
t)—Z(Z EZ), te[0,1].
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Partial sum process:

Sn(t) ZZZ(Zj_EZ1)7 te[0,1],
Z=v(X), X =o(V)e, Y= Zcmf i1

Theorem (Beran, Feng, Ghosh, Kulik (2013))
Let Fj = o (g, €j—1,&j—2, - - -, Mj, Mj—1, Mj—2, - - .). Suppose X, n € N, is an LMSV time

series and let 1) be a measurable function. Assume that v? = E(Z?) < co. Given the
previous assumptions (+ technical assumptions), under Ho,

— if E(Z1 | ]:o) =0, then
n"28u(t) 2> vBy (1)
— if E(Z1 | ]:0) ;é 0, then

D_q4,-3% D
nz "L 2(n)Sn(t) — Cy.0.0Bu(t)

in D[0, 1], where By denotes a fractional Brownian motion, H =1 — 2, and Cy ,.p is
an unknown constant.

4
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CUSUM change-point test: rejects for large values of

Zz— Zz

Cn= max Cn(k), where Cn(k

Asymptotic distribution of the CUSUM test statistic:

Corollary (B., Kulik (2017))

Suppose X, n € N, is an LMSV time series and let 1) be a measurable function.
Assume that 1? = E(Z12) < oo. Given the previous assumptions (+ technical

assumptions), under Ho,
— ifE(Z | Fo) = 0, then
_1 D
n 2 max_ Ci(k) — 1/021:21 B%(l‘) — tB%(1)
— ifE(Z | Fo) # 0, then

_1
n2="L7%(n) max Ca(K) = [Cyo0| sup |Bu(t)
1<k<n 0<t<1

— tBu(1)] .
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Recall that
Xi=a(Y)e, j>1,

where ¢;, j > 1, is an i.i.d. sequence with Eey =0, Varey =1and Y; = Y2, ckmj—«
for ani.i.d. sequence 7, j € Z and that Fj = o (), €j—1,€j—2, - - ., 1j, Mjm1, Nj—2, - - -)-

= ¢; is independent of F;_; and Y] is F;_i-measurable.

@ Change in mean: y(x) = x = E(¢(Xi)| Fo) = o(Y1)E(e1) = 0.
Then

n"2 max Ca(k) 25 v sup |By(t) — tB; (1) .
1<k<n 0<t<1 2 2

@ Change in variance: ¢)(x) = x* = E()(X1) | Fo) = o?(Y1) E(¢2) # 0.
Then

_1
n?="'L52(n) max Ca(k) 25 |Cy.on| sup |Bu(t) — tBu(1)| .
1<k<n o 0<t<1
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CUSUM change-point test: rejects for large values of

k Kk n
2F-52.2
i=1 i=1
Asymptotic distribution of the CUSUM test statistic:
Corollary (B., Kulik (2017))

Given the asumptions of the previous theorem, under Hy,
— if E(Z1 | ]:0) =0, then

Cnh= Jax Cn(k), where Cn(k) =

1 D i
n 212?i<n0n(k)—>yoit:21 B%(t)—tB%(1) ;

— ifE(Z | Fo) # 0, then

_1
n? 1152 (n) max Ca(k) = [Cucol sup [Ba(t) = Bu(1)] -
1<k<n 0<t<1
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CUSUM change-point test: rejects for large values of

k Kk n
2F-52.2
i=1 i=1
Asymptotic distribution of the CUSUM test statistic:

Corollary (B., Kulik (2017))

Given the asumptions of the previous theorem, under Hy,
— if E(Z1 | ]:0) =0, then

Cn = max Cp(k), where Cn(k) =

1<k<n

1 D i
nz max. Cn(k) — Z/o';l.:21 B%(t) — IB%(1) ;

if E(Z1 | .Fo) ;é 0, then

_1
n? 1152 (n) max Ca(k) = [Cucol sup [Ba(t) = Bu(1)] -
1<k<n 0<t<1

Hurst parameter H/LRD parameter D
slowly varying function L,

coefficients v, Cyo.0
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CUSUM change-point test: rejects for large values of

k Kk n
2. 2-52.%
i=1 i=1
Asymptotic distribution of the CUSUM test statistic:
Corollary (B., Kulik (2017))

Given the asumptions of the previous theorem, under Hy,
— if E(Z1 | ]:0) =0, then

Cnh= Jax Cn(k), where Cn(k) =

1 D )
n-z 12,(3?" Cn(k) — Voil:; B%(t) — IB%(1) ;

if E(Z1 | ]:0) ;é 0, then

_1
n3='15 2 (n) max Ga(K) 2+ [Cyoo| sup |Bu(t) — tBu(1) -
1<k<n T ot

Hurst parameter H/LRD parameter D unknown!
slowly varying function L, unknown!

coefficients v, Cy,-,p unknown!
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Self-normalized CUSUM test statistic (Shao (2011)):
SC, = max_ C(k),

Cx(k) =

Zz

with

1

k H
{ Z 1k+282k+1n)}

t=k+1

where Si(j, k) = 4 (Zn = Zik) s Zik = 5o 2oty 2o

Remark: SC, only depends on the realizations Zi, ..., Z,, i.e. SC, does not
depend on any unknown parameters.
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Asymptotic distribution of the self-normalized CUSUM test statistic:

Corollary (B., Kulik (2017))

Given the asumptions of the previous theorem, under Hy, it follows that
SC, 2, SCy, where

SCy = sup |BH(r)_rBH(1)|
refo.1 {fo w(r;0,0)2 dr + [T (Vi(r';r, 1)) dr'}

[SE

with VH(r; I’1,f2) = BH(I’) BH(f1) = fz r1 {BH(I’Q) BH(I’1)} forr e [f1,l’2],
0<n <r<1,andwith

— H=1ifE(Z | Fo) =0;
- H=1-2ifE(Z/| Fo) #0.

Remark: The limit SCy only depends on the Hurst parameter H, i.e. it does
not depend on the unknown constants Cy , p and v.
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Simulations

Change in volatility:

. 2 1.00-
Z; = (X;) with 9(x) = x os-
Pl— A . :l>> 0.50-
X = a(¥))er £ e ———
0,00 e e e e s e "
where 06 0.7 0.8 0.9
— gj,j > 1,i.i.d. centered Pareto(c, 1) & L00-
distributed with o = 4.5 g ors
=~ 0.50-
- Y, j > 1, is afractional Gaussian Sozs o
. . e
noise sequence with Hurst parameter 0007 o o o oo
H
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Wilcoxon-based change-point tests

Wilcoxon change-point test: rejects for large values of

>y (‘{zfszf} - %)

W = max Wa(k), where Wa(k) =
<n

1= i=1 j=k+1 '
Observe that
Lnt] n 1 n
> (1{2,»§z,} - §> =\nt] > Fim(Z) - / Fz (x)dFz (x)
i=1 j=|nt]+1 j=Lnt]+1 R

=(n— Lnfj)/RLntJ (F1.1at () = Fz, (X)) dFnty+1.0(X)

+/RF21 (X)d (Fiatj+1.0(x) = Fz(x))

where Fy (x) = Z//‘:k Tz<n

Annika Betken (RUB) CHANGE-POINT TESTS FOR LMSV DATA June 18th, 2018 17/29



Wilcoxon-based change-point tests

Wilcoxon change-point test: rejects for large values of

>y <1{Zi§z/} - %)

i=1 j=k+1

W = max Wa(k), where Wa(k) =
<n

1<k

Observe that
Lnt] n

> (1{2,»§z,}_%> =[nt] > F1,\_ntJ(Zj)—/RFZ1(X)dFZ1(X)

i=1 j=|nt|+1 j=Lnt]+1

=(n-— Lntj)/RLntJ (F1,LntJ (x) — Fz (X)) dF | ntj41,n(X)

+ / Fo ()0 (Finty+1.0(X) — Fz, (X))

where Fic/(x) = Y3/, 1

=k {Z=x}-
= Consider the two-parameter empirical process
Lnt]
[t] (Frioy (00 = F2 () = >_ (1{5.20 = Fa(¥)) , t € 0.1], x € [-o0,oc].

=
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Two-parameter empirical process limit theorems

Lnt]
> <1{Zj§X} - Fz1(X)) , te]0,1], x € [-00,00].

j=1

@ Independent observations
» Miiller (1970), Kiefer (1972).

@ Short-range dependent observations

» Berkes and Philipp (1977): for strong mixing processes.
» Berkes, Hé6rmann and Schauer (2009): for S-mixing processes.

@ Long-range dependent observations

» Dehling and Taqqu (1989): for subordinated Gaussian processes.
» Giraitis and Surgailis (2002): for linear processes.
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A two-parameter empirical process limit theorem for
subordinated LMSV time series

Theorem (B., Kulik (2017))

Suppose Xn, n € N, is an LMSV time series and let i) be a measurable
function. Define Vx(y) := P (¢¥(ye1) < x) and assume that V(y) is
differentiable. Given the previous assumptions (+ technical
assumptions), under Hgp,

L]
nz'L7V2(n) Y (1{w(xf)SX} B FWO(X)) = J (Vily) 0 0) Bu),

J=1

in D ([—o0, o0] x [0, 1]) with By denoting a fractional Brownian motion,
H=1-2 andJ(G) =E(G(Y1)Y1).
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Proof
Recall that

Xi=o(Y)e, Yi=> ok, j>1,
k=1

where ¢j, j > 1, and 7, j € Z are i.i.d. sequences and that

Fi =0 (&,-1s- My Mj=1,---),
such that ¢; is independent of F;_; and Yj is F;_i-measurable.
Consider the decomposition

Lnt]
Z (1 {d;(Xj)gx} - F¢(X1)(X)) = Mn(X, t) + H”(Xv t)v X € [_OO’ OO] ’ te [Oa 1]v

j=1
where
Lnt]

Mn(x, t) == Z (1{1/)()(/_)9} —-E (1 {v0g)<x} | ]—',»,1)) Martingale part,
j=1

Lnt]
Ra(x,t) = > (E (1 Iy fH) - FM)(x)) LRD part.

j=1
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Proof

Martingale part: Aldous’ tightness condition for multiparameter martingales (/vanoff
(1983)) yields

1
5 Malx, 1) = On(1)

in D([—c0, 00] x [0, 1]).
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Proof

Martingale part: Aldous’ tightness condition for multiparameter martingales (/vanoff
(1983)) yields

]
5 Malx, 1) = On(1)

in D([— o0, 00] x [0, 1]).

Long-range dependent part: Define Wx(y) := P (¢¥(ye1) < X).

Lt
D_4,-1% D_4,-1%
n? L F (M Ra(x, 1) = nE TSR () SO(E (14, | Fiet) = Foony(x))
) / (c()ep<x}p 177 »(X1)
=t - : =EWx(o(¥))
=Ui((¥)) i
D
=n2

SR () ] / V() (Finy (v) — E Foogy () .,

where Fi(u) = 172,/-:1 1{g(yj)gu}-
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Long-range dependent part:

81132 () Ra(x, t) = —n® L3 2 (n) ] / WL(y) (Fiay (v) — E FLay () dy

Theorem (Dehling, Tagqu (1989))

sup
te[0,1],x€[—o0,00]

| L]
n?~'L52(n) {LntJ (Floty(¥) = EFoy (¥)) — J(os y)z Y’}

where J(O‘; y) = (= (1 {o(Y1)<y} Y1)

It suffices to consider
Lnt]

- / W(y) (o y)dy 'L ZY,
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Theorem (Taqqu (1975))

Lnt]
1
nE ()3 Y s Bu(t) in D[O.1]
j=1

where By denotes a fractional Brownian motion and H =1 — 2.

As a result,

. L
_/Rw'x(y)J(a;y)dy n%—‘L;f(n)Z Y, 2 —/RJ(a;y)\U'X(y)dy By(t).

=1

=J(Vy(y)oo)

Annika Betken (RUB) CHANGE-POINT TESTS FOR LMSV DATA June 18th, 2018

23/29



Theorem (Taqqu (1975))

Lnt)
1
nETL )Y Y Bu(t) in DO, 1)
=

where By denotes a fractional Brownian motion and H =1 — 2.

As a result,

Lnt)
- [ Wiy nf L0 S 2 [ Seywiy B,

j=1
:J(WX(Y)OU)

Martingale part + Long-range dependent part:
Lnt)

L 2<n>z (1 gwopeny = Fron ()

:ng*%LJ%(n)\% 06 1)+ 08 LS R () Ra(x, 1) 25 J (Wi(y) 0 0) Bu(t).
—o(l) —~—

—on() *)J(W)’((y)oa)BH(t)

|
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Theorem (B., Kulik (2017))

Suppose Xn, n € N, is an LMSV time series and let ) be a measurable function. Given
the previous assumptions (+ technical assumptions), under Ho,

D Lot) D
nz='L512(n) Z (1{w()(j)9} - me)(x)) — J (Vi(¥) 0 o) Bu(t),

in D ([—o0, o0] x [0, 1]) with By denoting a fractional Brownian motion, H =1 — 2.
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Theorem (B., Kulik (2017))

Suppose Xn, n € N, is an LMSV time series and let ) be a measurable function. Given
the previous assumptions (+ technical assumptions), under Ho,

D Lot) D
nz '3 Y (1{w(xj)gx} - Fw(m(x)) — J (Vi(¥) 0 o) Bu(t),

J=1

in D ([—o0, o0] x [0, 1]) with By denoting a fractional Brownian motion, H =1 — 2.

Asymptotic distribution of the Wilcoxon test statistic:

Corollary (B., Kulik (2017))

Given the asumptions of the previous theorem, under Hy,

n?2L>"2(n) max Wa(k) 25 |Cy.o.0| sup |Bu(t) — tBu(1)|.
v 1<k<n T <<

@ Hurst parameter H/LRD parameter D
@ slowly varying function L,
@ coefficient Cy »,0
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Theorem (B., Kulik (2017))

Suppose Xn, n € N, is an LMSV time series and let ) be a measurable function. Given
the previous assumptions (+ technical assumptions), under Ho,

D Lot) D
nz '3 Y (1{w(xj)gx} - Fw(m(x)) — J (Vi(¥) 0 o) Bu(t),

J=1

in D ([—o0, o0] x [0, 1]) with By denoting a fractional Brownian motion, H =1 — 2.

Asymptotic distribution of the Wilcoxon test statistic:

Corollary (B., Kulik (2017))

Given the asumptions of the previous theorem, under Hy,

n?=2L"2(n) max Wo(k) 2> [Cu.p| sup |Bu(t) — tBu(1)].
<k<n ! 0<t<

1<k

@ Hurst parameter H/LRD parameter D unknown!
@ slowly varying function L, unknown!
@ coefficient Cy,»,p unknown!
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Define R; = rank(Z) = 37 1(z<z), Rik = =7 Liy A

Note that
k n
(e =2)| =[5~ 539
=1 j=k+1

Self-normalized Wilcoxon test statistic (Betken (2016)):

SW, = sup W, (k),

1<k<n
>R —*ZRI

i=1

Wa (k) =V, ' (k)

I

with

1

{ Zs, (1 k)+ Z S2(k +1, n)}2

t k+1

where Si(j,k) = 31 (Rn — Rix) . Rk = =7 o R
Remark: SW, only depends on the realizations Xi, ..., Xy, i.e. SW, does not depend
on L, orH.
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Asymptotic distribution of the self-normalized Wilcoxon test statistic

Corollary (B., Kulik (2017))

Given the asumptions of the previous theorem, under Hy, it follows that
SWw, 2, SWy, where

SWy = sup |Br(r) — rBu(1)|
refo.1] {for(V (r;0,r)2dr + [ (Vi(r';r,1))? dr’}

=

with Vi (r; ri, r2) = By(r) — Bu(r) — rz r1 {Bu(r2) — Bu(n)} forr € [, r2],
O<n<n<i.

Remark: The limit SWy only depends on the Hurst parameter H, i.e. it does

not depend on the unknown constant Cy . p.
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Simulations

Change in volatility:
Z = (X)) with (x) = x*
Xj = o(Y))ej,

where

— gj,j > 1,i.i.d. centered Pareto(c, 1)
distributed with oo = 4.5

- Y, j>1,is afractional Gaussian
noise sequence with Hurst parameter
H

- 0(2) = exp(2)

Under H;:

— shiftin 7 = 0.25 of heights h = 0.5
and h=2

1.00-
0.75-

©

3 050~
0.25-
000~

)

IS
S
8

=0.5,

power (h

1.00-

:2)

power (h

0.00-

0.75-
0.50-
0.25-
0.00-

0.75-
0.50-
0.25-

0.6 OT'/ 0.8 0?9
' . ' '
0.6 0.7 0.8 0.9
' 0 ' '
0.6 0.7 0.8 0.9
H

— Wilcoxon = = self-normalized Wilcoxon
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Simulations

a=45 a=6
1.00- 1.00-

level

power

~—— CUSUM — Wilcoxon

Rejection rates of the CUSUM and Wilcoxon tests for LMSV time series of length n =
500 with Hurst parameter H, tail index o and a shift in the variance in = = 0.25 with
height h = 0.5. The calculations are based on 5000 simulation runs.

Annika Betken (RUB) CHANGE-POINT TESTS FOR LMSV D. June 18th, 2018 28/29




References

@ A. BETKEN, R. KULIK (2016). Testing for change in stochastic volatility with long
range dependence. arXiv:1706.06351.

@ A. BETKEN (2016). Testing for change-points in long-range dependent times
series by means of a self-normalized Wilcoxon test. Journal of Time Series
Analysis 37:785 — 809.

@ J. BERAN, Y. FENG, S. GHOSH, R. KULIK (2013). Long-Memory Processes.
Springer.

X. SHAO. (2011) A simple test of changes in mean in the possible presence of
long-range dependence. Journal of Time Series Analysis, 32(6):598 — 606.

R. KULIK, P. SOULIER (2011). The tail empirical process for long memory
stochastic volatility sequences. Stochastic Processes and their Applications,
121:109 - 134.

@ A. C. HARVEY (2002). Long memory in stochastic volatility. /n: Forecasting
Volatility in the Financial Markets, 307-320.

@ F. BREIDT, N. CRATO, AND P. DE LIMA (1998). The detection and estimation of
long memory in stochastic volatility. Journal of Econometrics, 83:325 - 348.

GAIL IVANOFF (1983). Stopping times and tightness in two dimensions.
Technical report, University of Ottawa.

Annika Betken (RUB) CHANGE-POINT TESTS FOR LMSV DATA June 18th, 2018 29/29



