Limit theorems for quadratic functionals of heavy-tailed long-memory processes

Andreas Basse-O'Connor Aarhus University, Denmark

Self-Similarity, Long-Range Dependence and Extremes

CMO, Oaxaca, Mexico, June 17-22, 2018

Joint work with

- R. Lachièze-Rey (University Paris Decartes), M. Podolskij (Aarhus University),
- T. Grønbæk (Aarhus University).

Let $(X_i)_{i\in\mathbb{N}}$ be i.i.d. with $\mathbb{E}[X_1] = 0$ and $\sigma^2 := \mathbb{E}[X_1^2] < \infty$, and set

$$QV_n=\frac{1}{n}\sum_{i=1}^n X_i^2.$$

- 1. QV_n is the standard estimate of σ^2 .
- 2. QV_n is consistent for σ^2 by the LLN, i.e. $QV_n \xrightarrow{\mathbb{P}} \sigma^2$.
- 3. QV_n is asymptotic normal if $\mathbb{E}[X_1^4] < \infty$ by the CLT, i.e. $\sqrt{n}(QV_n \sigma^2) \stackrel{\scriptscriptstyle{W}}{\rightarrow} N(0, \rho^2)$.

The above properties also holds for many other short-range dependence models.

Long-range dependence data

The temperature on earth the last 10,000 years.

Theorem (The Birkhoff-Khinchin theorem)

If $(X_n)_{n\in\mathbb{N}}$ is a stationary sequence such that $\mathbb{E}[|X_1|] < \infty$. Then,

1.

$$\frac{1}{n}\sum_{j=1}^n X_j \stackrel{a.s.}{\longrightarrow} r.v.$$

2. If $(X_n)_{n \in \mathbb{N}}$ is ergodic then

$$\frac{1}{n}\sum_{j=1}^n X_j \stackrel{a.s.}{\longrightarrow} \mathbb{E}[X_1].$$

Gaussian sequences with long-range dependence

If $(X_i)_{i \in \mathbb{N}}$ is a stationary Gaussian sequence with

$$\gamma(n) := \operatorname{Cov}(X_0, X_n) \sim c n^{2(H-1)} \qquad n \to \infty, \qquad H \in (0, 1)$$

- $H < 1/2 \longrightarrow$ short-range dependence,
- $H > 1/2 \longrightarrow$ long-range dependence.

Gaussian sequences with long-range dependence

If $(X_i)_{i \in \mathbb{N}}$ is a stationary Gaussian sequence with

$$\gamma(n) := \operatorname{Cov}(X_0, X_n) \sim cn^{2(H-1)} \qquad n \to \infty, \qquad H \in (0, 1).$$

 $H < 1/2 \longrightarrow$ short-range dependence,

 $H > 1/2 \longrightarrow$ long-range dependence.

 $QV_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ is a consistent estimator for σ^2 by the Birkhoff–Khinchin ergodic theorem.

However, QV_n is not always asymptotic normal:

Theorem (Rosenblatt, Breuer and Major, Taqqu)

1.
$$H < 3/4$$
: $\sqrt{n}(QV_n - \sigma^2) \xrightarrow{w} N(0, \rho^2)$.

2. H > 3/4: $n^{2(1-H)}(QV_n - \sigma^2) \xrightarrow{w} Rosenblatt r.v.$

For H > 3/4, we obtain a slower convergence rate and a non-Gaussian limit.

Quadratic variation of Gaussian processes with long-range dependence \checkmark

Quadratic variation of Gaussian processes with long-range dependence \checkmark

Main question of the talk:

What is the behaviour of the quadratic variation of non-Gaussian (stable) processes with long-range dependence?

Quadratic variation of Gaussian processes with long-range dependence \checkmark

Main question of the talk:

What is the behaviour of the quadratic variation of non-Gaussian (stable) processes with long-range dependence?

First we will review some structural results of stationary processes.

Two subclasses of stationary stable processes

1. (X_n) is called a **moving average** if it is on the form

$$X_n = \int_{\mathbb{R}} \phi(n-s) \, dL_s$$

where (L_s) is a stable Lévy process, and $\phi : \mathbb{R} \to \mathbb{R}$ a deterministic function.

2. (X_n) is called a harmonizable process if it is on the form

$$X_n = \int_{\mathbb{R}} e^{ins} \Lambda(ds),$$

where Λ is a rotational invariant \mathbb{C} -valued stable random measure.

Two subclasses of stationary stable processes

1. (X_n) is called a **moving average** if it is on the form

$$X_n = \int_{\mathbb{R}} \phi(n-s) \, dL_s$$

where (L_s) is a stable Lévy process, and $\phi : \mathbb{R} \to \mathbb{R}$ a deterministic function.

2. (X_n) is called a harmonizable process if it is on the form

$$X_n = \int_{\mathbb{R}} e^{ins} \Lambda(ds),$$

where Λ is a rotational invariant $\mathbb C\text{-valued}$ stable random measure.

Stationary Gaussian processes:

- 1. Any stationary process is harmonizable.
- 2. A stationary process is a moving average if and only if its spectral measure is absolutely continuous.

Two subclasses of stationary stable processes

1. (X_n) is called a **moving average** if it is on the form

$$X_n = \int_{\mathbb{R}} \phi(n-s) \, dL_s$$

where (L_s) is a stable Lévy process, and $\phi : \mathbb{R} \to \mathbb{R}$ a deterministic function.

2. (X_n) is called a harmonizable process if it is on the form

$$X_n = \int_{\mathbb{R}} e^{ins} \Lambda(ds),$$

where Λ is a rotational invariant $\mathbb C\text{-valued}$ stable random measure.

Stationary Gaussian processes:

- 1. Any stationary process is harmonizable.
- A stationary process is a moving average if and only if its spectral measure is absolutely continuous.

Stationary non-Gaussian stable processes:

- 1. The class of moving averages and harmonizable processes are disjoint.
- 2. Moving averages are ergodic, harmonizable processes are not.

A process (Y_t) is **self-similar** if

"scaling of time equals scaling space in distribution", i.e. for some H

$$(Y_{at}) \stackrel{\mathcal{D}}{=} (a^H Y_t)$$
 for all $a > 0$.

The parameter H is called index of self-similarity or Hurst index.

A process (Y_t) is **self-similar** if

"scaling of time equals scaling space in distribution", i.e. for some H

$$(Y_{at}) \stackrel{\mathcal{D}}{=} (a^H Y_t) \quad \text{for all } a > 0.$$

The parameter H is called index of self-similarity or Hurst index.

Gaussian processes: The only self-similar Gaussian processes with stationary increments are the fractional Brownian motions B^H , $H \in (0, 1)$,

$$B_t^H \stackrel{\mathcal{D}}{=} \int_{\mathbb{R}} \{(t-s)_+^{H-1/2} - (-s)_+^{H-1/2}\} dB_s \qquad (\text{``moving average rep.''})$$
$$\stackrel{\mathcal{D}}{=} \int_{\mathbb{R}} \frac{e^{its} - 1}{is} |s|^{1/2 - H} d\tilde{B}_s \qquad (\text{``harmonizable rep.''})$$

where (B_s) is a Brownian motion, and (\tilde{B}_s) is a " \mathbb{C} -valued Brownian motion".

Non-Gaussian stable processes:

The class of self-similar stable processes with stationary increments is huge¹.

Key examples includes:

1. linear fractional stable motion

$$Y_t = \int_{\mathbb{R}} \{ (t-s)_+^{H-1/\alpha} - (-s)_+^{H-1/\alpha} \} \, dL_s$$

where (L_s) is an α -stable Lévy process.

 $^{^1\}text{V}.$ Pipiras and M. Taqqu (2002). The structure of self-similar stable mixed moving averages. Ann. Probab. **30**.

Non-Gaussian stable processes:

The class of self-similar stable processes with stationary increments is huge¹.

Key examples includes:

1. linear fractional stable motion

$$Y_t = \int_{\mathbb{R}} \{ (t-s)_+^{H-1/\alpha} - (-s)_+^{H-1/\alpha} \} \, dL_s$$

where (L_s) is an α -stable Lévy process.

2. harmonizable fractional stable motion

$$Y_t = \int_{\mathbb{R}} \frac{e^{its} - 1}{is} |s|^{1 - H - 1/\alpha} dL_s,$$

where (L_s) is a \mathbb{C} -valued α -stable rotational invariante Lévy process.

 $^{^1\}text{V}.$ Pipiras and M. Taqqu (2002). The structure of self-similar stable mixed moving averages. Ann. Probab. **30**.

Non-Gaussian stable processes:

The class of self-similar stable processes with stationary increments is huge¹.

Key examples includes:

1. linear fractional stable motion

$$Y_t = \int_{\mathbb{R}} \{ (t-s)_+^{H-1/\alpha} - (-s)_+^{H-1/\alpha} \} \, dL_s$$

where (L_s) is an α -stable Lévy process.

2. harmonizable fractional stable motion

$$Y_t = \int_{\mathbb{R}} \frac{e^{its} - 1}{is} |s|^{1 - H - 1/\alpha} \, dL_s,$$

where (L_s) is a \mathbb{C} -valued α -stable rotational invariante Lévy process.

3. Mittag-Leftler fractional stable motion

$$Y_t = \int_{\mathbb{R}\times\Omega'} L_t^{\times}(\omega') \Lambda(dx, d\omega'),$$

where $(L_t^x)_{t \in \mathbb{R}_+, x \in \mathbb{R}}$ is the local time for a symmetric stable Lévy process defined on a *new* probability space $(\Omega', \mathcal{F}', \mathbb{P}')$, and Λ is a symmetric α -stable random measure on $S = \mathbb{R} \times \Omega'$.

 $^{^1}V.$ Pipiras and M. Taqqu (2002). The structure of self-similar stable mixed moving averages. Ann. Probab. **30**.

A stationary sequence (X_n) is called a **fractional noise** if it is on the form

$$X_n = Y_n - Y_{n-1}$$

where (Y_t) is a self-similar process with stationary increments.

Key examples fractional noises:

- 1. The linear fractional stable noise
- 2. The harmonizable fractional stable noise
- 3. The Mittag-Leftler fractional stable noise

The general structure of stationary stable processes

Dynamic system: Flow of the Lorenz ODE

Structure of stationary stable processes.

Moving average

The flows are translations on \mathbb{R} ; $\phi_n : x \mapsto x + n.$ $\lambda =$ Lebesgue measure.

Harmonizable processes

Identify flow on \mathbb{R} ; $\phi_n : x \mapsto x$. All dynamic properties are determined by the co-cycle.

$$QV_n = \frac{1}{n} \sum_{j=1}^n X_j^2$$

Theorem (Gnedenko and Kolmogorov)

Let (X_j) be i.i.d. α -stable r.v. Then as $n \to \infty$,

 $n^{1-2/\alpha} QV_n \stackrel{w}{\to} Z_0,$

where Z_0 is a totally right-skewed $\alpha/2$ -stable r.v.

$$QV_n = \frac{1}{n} \sum_{j=1}^n X_j^2$$

Theorem (Gnedenko and Kolmogorov)

Let (X_j) be i.i.d. α -stable r.v. Then as $n \to \infty$,

 $n^{1-2/\alpha} QV_n \stackrel{w}{\to} Z_0,$

where Z_0 is a totally right-skewed $\alpha/2$ -stable r.v.

Theorem (B., Lachièze-Rey and Podolskij '17*) Let (X_j) be the linear fractional α -stable noise. Then as $n \to \infty$,

 $n^{1-2/\alpha} QV_n \stackrel{w}{\to} Z_0,$

where Z_0 is a totally right-skewed $\alpha/2$ -stable r.v.

Remark:

- 1. The Birkhoff–Khinchin theorem do not apply due to $\mathbb{E}[X_j^2] = \infty$.
- 2. The proof is very different than the Gnedenko and Kolmogorov result, due the dependence.

^{*} Ann. Probab. 2017. Vol. 45

1. The result is proved in the high-frequency setting (by self-similarity)

$$QV_n \stackrel{\mathcal{D}}{=} n^{1-2H} \sum_{j=1}^n (X_{i/n} - X_{(i-1)/n})^2$$

where one can use a more "pathwise approach".

2. Rounding result of Tukey '38:

Let

2.1 Z be an absolutely continuous r.v. 2.2 $\{x\} := x - \lfloor x \rfloor \in [0, 1)$ denote the fractional part of $x \in \mathbb{R}$. Then,

$$\{nZ\} \xrightarrow{w} U \sim \mathcal{U}([0,1])$$

- 1. Assume that *L* has only <u>one jump</u> occurring at a random time T, which has a density on the interval (0, 1).
- 2. Let j_n be the random index satisfying $T \in [(j_n 1)/n, j_n/n)$.
- 3. Observe that

$$X_{l/n} - X_{(l-1)/n} = \begin{cases} 0, & l < j_n \\ \Delta L_T \left(\left(\frac{j_n + l}{n} - T \right)_+^{H-1/\alpha} - \left(\frac{j_n + l-1}{n} - T \right)_+^{H-1/\alpha} \right), & l \ge j_n. \end{cases}$$

4. By Tukey '38 we obtain

$$n^{1/2-H}(X_{(j_n+l)/n}-X_{(j_n+l-1)/n}) \xrightarrow{w} \Delta L_T\left((l+U)_+^{\alpha}-(l-1+U)_+^{\alpha}\right), \qquad l \ge 0.$$

Thus,

$$n^{1-2H}\sum_{j=1}^{n}(X_{j/n}-X_{(j-1)/n})^2 \xrightarrow{w} |\Delta L_{\mathcal{T}}|^p \sum_{l=0}^{\infty} |(l+U)_+^{\alpha}-(l-1+U)_+^{\alpha}|^p.$$

What happens when (L_t) has more than one jump?

For $\alpha \in (0, 1)$ we can do rough estimates to allow (L_t) to jump more.

The $\alpha \in (1,2)$ case is more complicated:

- We need precise conditions for when a stochastic (X_t)_{t∈T} has finite supremum: sup_{t∈T} |X_t| < ∞ a.s.
- 2. A Gaussian process $(X_t)_{t\in T}$ has finite supremum if and only if there exists a majorizing measure for the metric space (T, d) with $d(s, t) = ||X_s - X_t||_{L^2}$, i.e. for each probability measure μ we have $\mathbb{E}\left[\sup_{t\in T} |X_t|\right] \le K \sup_{t\in T} \int_{0}^{D} \sqrt{\log \frac{1}{\mu(B(t, \epsilon))}} d\epsilon.$
- For our proof we use the majorizing measure techniques of Marcus and Rosiński^{*} for infinitely divisible processes to show boundedness of a family of random variables (*R_{i,n}*)_{*i*,*n*∈ℕ}.

^{*}M. Marcus and J. Rosiński (2005). Journal of Theoretical Probability 18.

Structure of stationary stable processes.

Level of memory

What is the quadratic variation of the other extreme?

Infinitely divisible harmonizable processes

Let (X_j) be a Lévy driven harmonizable process of the form

$$X_j = \int_{\mathbb{R}} e^{ijs} g(s) dL_s, \qquad QV_n = \frac{1}{n} \sum_{j=1}^n \|X_j\|^2,$$

where $(L_t)_{t \in \mathbb{R}}$ is a rotational invariant Lévy process indexed by \mathbb{R} .

Infinitely divisible harmonizable processes

Let (X_j) be a Lévy driven harmonizable process of the form

$$X_j = \int_{\mathbb{R}} e^{ijs} g(s) dL_s, \qquad QV_n = rac{1}{n} \sum_{j=1}^n \|X_j\|^2,$$

where $(L_t)_{t \in \mathbb{R}}$ is a rotational invariant Lévy process indexed by \mathbb{R} .

Theorem (B., Podolskij and Grønbæk)

As $n \to \infty$ we have

 $QV_n \stackrel{\mathbb{P}}{\to} U_0$

where U_0 is an infinitely divisible r.v. of the form

$$U_0 = \int_{\mathbb{R}} |g(s)|^2 d([L^1]_s + [L^2]_s).$$

Corollary (B., Podolskij and Grønbæk) Let (X_j) be the harmonizable fractional α -stable noise. Then as $n \to \infty$,

$$QV_n \stackrel{\mathbb{P}}{
ightarrow} U_0$$

where U_0 is a totally right-skewed $\alpha/2$ -stable r.v.

Quadratic variation of α -stable processes: $QV_n = \frac{1}{n} \sum_{j=1}^n X_j^2$

i.i.d.-case and the linear fractional stable noise Normalization factor: $n^{1-2/\alpha}$ Convergence form: in law Limiting distribution: $\alpha/2$ -stable

harmonizable fractional stable noise

Normalization factor: non Convergence form: in probability Limiting distribution: $\alpha/2$ -stable

- 1. The heavy dependence structure of harmonizable processes has great impact, even on the first order asymptotic theory.
- 2. "The harmonizable stable noise behaves as if it was integrable."

Key ideas of the proof:

Let $X_n = \int_{\mathbb{R}} e^{ins} g(s) dL_s$ be a harmonizable process.

Key decomposition:

$$\|X_n\|^2 = U_0 + V_n,$$

where

- 1. U_0 is a positive infinitely divisible r.v. not depending on n
- 2. V_n is a second-order multiple integral of the form

$$V_n = 2\Re \bigg(\int_{\mathbb{R}} \int_{-\infty}^{s-} e^{in(s-u)} g(s) \overline{g(u)} \, d\overline{L_u} \, dL_s \bigg).$$

Let $X_n = \int_{\mathbb{R}} e^{ins} g(s) dL_s$ be a harmonizable process.

Key decomposition:

$$\|X_n\|^2 = U_0 + V_n,$$

where

- 1. U_0 is a positive infinitely divisible r.v. not depending on n
- 2. V_n is a second-order multiple integral of the form

$$V_n = 2\Re \Big(\int_{\mathbb{R}} \int_{-\infty}^{s-} e^{in(s-u)} g(s) \overline{g(u)} \, d\overline{L_u} \, dL_s \Big).$$

Hence,

$$QV_n = U_0 + \frac{1}{n}\sum_{j=1}^n V_j.$$

We show that $\frac{1}{n} \sum_{j=1}^{n} V_j \xrightarrow{\mathbb{P}} 0$, which finish the proof.

The proof uses the Kallenberg and Szulga (1989)^{*} theory for multiple infinitely divisible integrals. (Remark that $V_n \neq 0$ in probability.)

Probab. Theory Related Fields 83(1-2)

Theorem (B., Podolskij and Grønbæk)

Let (X_j) be the harmonizable fractional α -stable noise.

For H > 3/4, we have as $n \to \infty$,

$$n^{2(1-H)}\left(QV_n-U_0\right)\stackrel{w}{
ightarrow} R_{lpha},$$

where

$$R_{\alpha} = 2\Re \Big(\int_{\mathbb{R}^2} \frac{e^{i(s-u)}-1}{i(s-u)} |su|^{\gamma} d\overline{L}_u dL_s \Big).$$

Remark:

- 1. We call R_{α} a stable Rosenblatt r.v., due to its similarities with the spectral representation of the standard Rosenblatt r.v.
- 2. The convergence rate $n^{2(1-H)}$ is the same as in the Gaussian case.

By the "key decomposition" we have

$$\begin{aligned} QV_n - U_0 &= 2\Re \Big(\int_{\mathbb{R}} \int_{-\infty}^{s-} \Big(\frac{1}{n} \sum_{j=1}^n e^{in(s-u)} \Big) |su|^{\gamma} \, d\overline{L_u} \, dL_s \Big) \\ &= 2\Re \Big(\int_{\mathbb{R}} \int_{-\infty}^{s-} \Big(\frac{1 - e^{in(s-u)}}{n(1 - e^{i(s-u)})} \Big) |su|^{\gamma} \, d\overline{L_u} \, dL_s \Big), \end{aligned}$$

which is used to show

$$n^{2(1-H)}\left(QV_n-U_0\right)\stackrel{w}{
ightarrow} R_{lpha}.$$

Theorem (B., Lachièze-Rey and Podolskij '17)

Let (X_i) be the linear fractional α -stable noise. Then as $n \to \infty$,

$$n^{1-2/\alpha} Q V_n \stackrel{\scriptscriptstyle{W}}{\to} Z_0, \tag{1}$$

where Z_0 is a totally right-skewed $\alpha/2$ -stable r.v.

- 1. Since convergence in probability do not hold for (1) we can not obtain a second theory, contrarily to harmonizable processes.
- 2. How can we avoid this situation?

1. For p > 0 consider the power variation

$$V(p)_n = \frac{1}{n} \sum_{j=1}^n |X_j|^p,$$

and note $QV_n = V(2)_n$.

- 2. Since any moving average is ergodic the Birkhoff-Khinchin theorem implies:
- 3. Let (X_i) be the linear fractional stable noise and $p < \alpha$. Then,

$$V(p)_n \xrightarrow{a.s.} \mathbb{E}[|X_1|^p].$$

4. What is the convergence rate for $V(p)_n$?

"Classical" results of the form

$$a_n\sum_{j=1}^n Y_j \stackrel{\mathcal{D}}{
ightarrow} U \qquad n
ightarrow \infty,$$

where $(Y_i)_{i\geq 1}$ is a stationary sequence which satisfies one of the following

- 1. i.i.d.
- 2. martingale difference
- 3. Markov chain
- 4. strongly mixing

are never applicable.

Theorem (Breuer–Major [1], Taqqu [2])

Suppose that X is the fractional Gaussian noise Hurst index $H \in (0, 1)$.

(i) For $H \in (0, 3/4)$,

$$\sqrt{n}\Big(V(p)_n - \mathbb{E}[|X_1|^p]\Big) \stackrel{\scriptscriptstyle{W}}{\rightarrow} \mathcal{N}(0, v_p).$$

(ii) When $H \in (3/4, 1)$ it holds that

$$n^{2(1-H)}\Big(V(p)_n - \mathbb{E}[|X_1|^p]\Big) \stackrel{w}{
ightarrow} ext{Rosenblatt } r.v$$

Remark: The asymptotics for $V(p)_n$ is analogue to that of QV_n .

^[1] Breuer and Major (1983). Journal of Multivariate Analysis 13.

^[2] Taqqu (1979). Z. Wahrsch. Verw. Gebiete 50.

Theorem (B., Lachièze-Rey and Podolskij)

Suppose that (X_j) is the k-order linear fractional stable noise with Hurst index $H \in (1/\alpha, k)$. Let $p < \alpha/2$.

(a): For $H < k - 1/\alpha$, we obtain

$$\sqrt{n}\Big(V(p)_n-\mathbb{E}[|X_1|^p]\Big)\stackrel{w}{\rightarrow}\mathcal{N}(0,v^2).$$

(b): For $H > k - 1/\alpha$, it holds that

$$n^{\frac{(k-H)\alpha}{(k-H)\alpha+1}}\left(V(p)_n-\mathbb{E}[|X_1|^p]\right)\stackrel{w}{\to} S_{(k-H)\alpha+1}$$

where $S_{(k-H)\alpha+1}$ is a totally right skewed $((k - H)\alpha + 1)$ -stable random variable with mean zero.

Theorem (B., Lachièze-Rey and Podolskij)

Suppose that (X_j) is the k-order linear fractional stable noise with Hurst index $H \in (1/\alpha, k)$. Let $p < \alpha/2$.

(a): For $H < k - 1/\alpha$, we obtain

$$\sqrt{n}\Big(V(p)_n-\mathbb{E}[|X_1|^p]\Big)\stackrel{w}{\rightarrow}\mathcal{N}(0,v^2).$$

(b): For $H > k - 1/\alpha$, it holds that

$$n^{\frac{(k-H)\alpha}{(k-H)\alpha+1}}\left(V(p)_n-\mathbb{E}[|X_1|^p]\right)\stackrel{\text{w}}{\to} S_{(k-H)\alpha+1}$$

where $S_{(k-H)\alpha+1}$ is a totally right skewed $((k - H)\alpha + 1)$ -stable random variable with mean zero.

Remark: For $\alpha > 1$, case (a), also follows by

V. Pipiras and M. Taqqu, and P. Abry (2007). Bernoulli 13.

Stochastic fluctiation of the power variation of the k-order linear fractional stable noise

Thank you for your attention!