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Estimation of variance: short-range dependence

Let (Xi )i∈N be i.i.d. with E[X1] = 0 and σ2 := E[X 2
1 ] <∞, and set

QVn = 1
n

n∑
i=1

X 2
i .

1. QVn is the standard estimate of σ2.

2. QVn is consistent for σ2 by the LLN,
i.e. QVn

P→ σ2.

3. QVn is asymptotic normal if E[X 4
1 ] <∞ by the CLT,

i.e.
√
n(QVn − σ2) w→ N(0, ρ2).

The above properties also holds for many other short-range dependence models.
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Motivation

Long-range dependence data

The temperature on earth the last 10,000 years.
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Theorem (The Birkhoff–Khinchin theorem)
If (Xn)n∈N is a stationary sequence such that E[|X1|] <∞. Then,

1.
1
n

n∑
j=1

Xj
a.s.−→ r.v.

2. If (Xn)n∈N is ergodic then

1
n

n∑
j=1

Xj
a.s.−→ E[X1].
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Gaussian sequences with long-range dependence

If (Xi )i∈N is a stationary Gaussian sequence with

γ(n) := Cov(X0,Xn) ∼ cn2(H−1) n→∞, H ∈ (0, 1).

H < 1/2 −→ short-range dependence,

H > 1/2 −→ long-range dependence.

QVn = 1
n
∑n

i=1 X
2
i is a consistent estimator for σ2 by the Birkhoff–Khinchin

ergodic theorem.

However, QVn is not always asymptotic normal:

Theorem (Rosenblatt, Breuer and Major, Taqqu)

1. H < 3/4:
√
n(QVn − σ2) w→ N(0, ρ2).

2. H > 3/4: n2(1−H)(QVn − σ2) w→ Rosenblatt r.v.

For H > 3/4, we obtain a slower convergence rate and a non-Gaussian limit.
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Quadratic variation of Gaussian processes with long-range
dependence X

Main question of the talk:

What is the behaviour of the
quadratic variation of

non-Gaussian (stable) processes with
long-range dependence?

First we will review some structural results of stationary processes.
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Two subclasses of stationary stable processes

1. (Xn) is called a moving average if it is on the form

Xn =
∫
R
φ(n − s) dLs

where (Ls) is a stable Lévy process, and φ : R→ R a deterministic
function.

2. (Xn) is called a harmonizable process if it is on the form

Xn =
∫
R
e ins Λ(ds),

where Λ is a rotational invariant C-valued stable random measure.

Stationary Gaussian processes:

1. Any stationary process is harmonizable.

2. A stationary process is a moving average if and only if its spectral measure
is absolutely continuous.

Stationary non-Gaussian stable processes:

1. The class of moving averages and harmonizable processes are disjoint.

2. Moving averages are ergodic, harmonizable processes are not.
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Self-similar processes

A process (Yt) is self-similar if

“scaling of time equals scaling space in distribution”, i.e. for some H

(Yat) D= (aHYt) for all a > 0.

The parameter H is called index of self-similarity or Hurst index.

Gaussian processes: The only self-similar Gaussian processes with stationary
increments are the fractional Brownian motions BH , H ∈ (0, 1),

BH
t
D=
∫
R
{(t − s)H−1/2

+ − (−s)H−1/2
+ } dBs (“moving average rep.”)

D=
∫
R

e its − 1
is |s|1/2−H dB̃s (“harmonizable rep.”)

where (Bs) is a Brownian motion, and (B̃s) is a “C-valued Brownian motion”.
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Non-Gaussian stable processes:
The class of self-similar stable processes with stationary increments is huge1.

Key examples includes:

1. linear fractional stable motion

Yt =
∫
R
{(t − s)H−1/α

+ − (−s)H−1/α
+ } dLs

where (Ls) is an α-stable Lévy process.

2. harmonizable fractional stable motion

Yt =
∫
R

e its − 1
is |s|1−H−1/α dLs ,

where (Ls) is a C-valued α-stable rotational invariante Lévy process.

3. Mittag–Leftler fractional stable motion

Yt =
∫
R×Ω′

Lx
t (ω′) Λ(dx , dω′),

where (Lx
t )t∈R+,x∈R is the local time for a symmetric stable Lévy process

defined on a new probability space (Ω′,F ′,P′), and Λ is a symmetric
α-stable random measure on S = R× Ω′.

1V. Pipiras and M. Taqqu (2002). The structure of self-similar stable mixed moving averages.
Ann. Probab. 30. 9
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Fractional noises

A stationary sequence (Xn) is called a fractional noise if it is on the form

Xn = Yn − Yn−1

where (Yt) is a self-similar process with stationary increments.

Key examples fractional noises:

1. The linear fractional stable noise

2. The harmonizable fractional stable noise

3. The Mittag–Leftler fractional stable noise
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The general structure of stationary stable processes

(Xn)n∈N stationary stable Dynamic system (+ co-cycle)

Rosiński (1995), Ann. Probab.:

Non-singular flow on a measure space

Dynamic system: Flow of the Lorenz ODE
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Structure of stationary stable processes.

The flows:

independence

moving average

Dissipative
(“low memory”)

Conservative-Null
(“medium memory”)

Positive
(“infinite memory”)

harmonizable

linear fractional
stable noise

Mittag-Leffler
fractional stable noise

harmonizable
fractional stable noise

Level of memory

12



The flows for the two extremes

Moving average
The flows are translations on R;

φn : x 7→ x + n.
λ = Lebesgue measure.

Harmonizable processes
Identify flow on R; φn : x 7→ x .

All dynamic properties are
determined by the co-cycle.
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QVn = 1
n
∑n

j=1 X 2
j

Theorem (Gnedenko and Kolmogorov)
Let (Xj ) be i.i.d. α-stable r.v. Then as n→∞,

n1−2/αQVn
w→ Z0,

where Z0 is a totally right-skewed α/2-stable r.v.

Theorem (B., Lachièze-Rey and Podolskij ’17∗)
Let (Xj ) be the linear fractional α-stable noise. Then as n→∞,

n1−2/αQVn
w→ Z0,

where Z0 is a totally right-skewed α/2-stable r.v.

Remark:

1. The Birkhoff–Khinchin theorem do not apply due to E[X 2
j ] =∞.

2. The proof is very different than the Gnedenko and Kolmogorov result, due
the dependence.

———————————————-
∗Ann. Probab. 2017. Vol. 45
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Important ingredients in the proof

1. The result is proved in the high-frequency setting (by self-similarity)

QVn
D= n1−2H

n∑
j=1

(Xi/n − X(i−1)/n)2

where one can use a more “pathwise approach”.

2. Rounding result of Tukey ’38:

Let
2.1 Z be an absolutely continuous r.v.
2.2 {x} := x − bxc ∈ [0, 1) denote the fractional part of x ∈ R.

Then,
{nZ} w→ U ∼ U([0, 1]).
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1. Assume that L has only one jump occurring at a random time T , which
has a density on the interval (0, 1).

2. Let jn be the random index satisfying T ∈ [(jn − 1)/n, jn/n).

3. Observe that

Xl/n−X(l−1)/n =

0, l < jn

∆LT

((
jn+l

n − T
)H−1/α

+
−
(

jn+l−1
n − T

)H−1/α

+

)
, l ≥ jn.

4. By Tukey ’38 we obtain

n1/2−H(X(jn+l)/n−X(jn+l−1)/n) w→ ∆LT ((l + U)α+ − (l − 1 + U)α+) , l ≥ 0.

Thus,

n1−2H
n∑

j=1

(Xj/n − X(j−1)/n)2 w→ |∆LT |p
∞∑
l=0

|(l + U)α+ − (l − 1 + U)α+|p .
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What happens when (Lt) has more than one jump?

For α ∈ (0, 1) we can do rough estimates to allow (Lt) to jump more.

The α ∈ (1, 2) case is more complicated:

1. We need precise conditions for when a stochastic (Xt)t∈T has finite
supremum: supt∈T |Xt | <∞ a.s.

2. A Gaussian process (Xt)t∈T has finite supremum if and only if there exists
a majorizing measure for the metric space (T , d) with
d(s, t) = ‖Xs − Xt‖L2 , i.e. for each probability measure µ we have

E
[

sup
t∈T
|Xt |
]
≤ K sup

t∈T

∫ D

0

√
log 1

µ(B(t, ε)) dε.

3. For our proof we use the majorizing measure techniques of Marcus and
Rosiński∗ for infinitely divisible processes to show boundedness of a family
of random variables (Ri,n)i,n∈N.

——————–
∗M. Marcus and J. Rosiński (2005). Journal of Theoretical Probability 18.
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Structure of stationary stable processes.

The flows:

independence

moving average

Dissipative
(“low memory”)

Conservative-Null
(“medium memory”)

Positive
(“infinite memory”)

harmonizable

linear fractional
stable noise

Mittag-Leffler
fractional stable noise

harmonizable
fractional stable noise

Level of memory

What is the quadratic variation
of the other extreme?
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Infinitely divisible harmonizable processes

Let (Xj ) be a Lévy driven harmonizable process of the form

Xj =
∫
R
e ijsg(s) dLs , QVn = 1

n

n∑
j=1

‖Xj‖2,

where (Lt)t∈R is a rotational invariant Lévy process indexed by R.

Theorem (B., Podolskij and Grønbæk)
As n→∞ we have

QVn
P→ U0

where U0 is an infinitely divisible r.v. of the form

U0 =
∫
R
|g(s)|2d([L1]s + [L2]s).

Corollary (B., Podolskij and Grønbæk)
Let (Xj ) be the harmonizable fractional α-stable noise. Then as n→∞,

QVn
P→ U0

where U0 is a totally right-skewed α/2-stable r.v.
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Quadratic variation of α-stable processes: QVn = 1
n
∑n

j=1 X 2
j

The flows:

independence

moving average

Dissipative
(“low memory”)

Conservative-Null
(“medium memory”)

Positive
(“infinite memory”)

harmonizable

linear fractional
stable noise

Mittag-Leffler
fractional stable noise

harmonizable
fractional stable noise

Level of memory

i.i.d.-case and
the linear fractional stable noise

Normalization factor: n1−2/α
Convergence form: in law

Limiting distribution: α/2-stable

harmonizable fractional stable noise
Normalization factor: non

Convergence form: in probability
Limiting distribution: α/2-stable

————————————————————————–

1. The heavy dependence structure of harmonizable processes has great
impact, even on the first order asymptotic theory.

2. “The harmonizable stable noise behaves as if it was integrable.” 20



Key ideas of the proof:

Let Xn =
∫
R e

insg(s) dLs be a harmonizable process.

Key decomposition:
‖Xn‖2 = U0 + Vn,

where

1. U0 is a positive infinitely divisible r.v. not depending on n
2. Vn is a second-order multiple integral of the form

Vn = 2<
(∫

R

∫ s−

−∞
e in(s−u)g(s)g(u) dLu dLs

)
.

———————————————————————

Hence, QVn = U0 + 1
n

n∑
j=1

Vj .

We show that 1
n
∑n

j=1 Vj
P→ 0, which finish the proof.

The proof uses the Kallenberg and Szulga (1989)∗ theory for multiple infinitely
divisible integrals. (Remark that Vn 6→ 0 in probability.)

——————————–
Probab. Theory Related Fields 83(1-2)
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Convergence rate for Qn: The H > 3/4 case

Theorem (B., Podolskij and Grønbæk)
Let (Xj ) be the harmonizable fractional α-stable noise.

For H > 3/4, we have as n→∞,

n2(1−H)
(
QVn − U0

)
w→ Rα,

where
Rα = 2<

(∫
R2

e i(s−u) − 1
i(s − u) |su|

γ dLu dLs

)
.

Remark:

1. We call Rα a stable Rosenblatt r.v., due to its similarities with the spectral
representation of the standard Rosenblatt r.v.

2. The convergence rate n2(1−H) is the same as in the Gaussian case.
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Proof

By the “key decomposition” we have

QVn − U0 = 2<
(∫

R

∫ s−

−∞

(1
n

n∑
j=1

e in(s−u)
)
|su|γ dLu dLs

)
= 2<

(∫
R

∫ s−

−∞

( 1− e in(s−u)

n(1− e i(s−u))

)
|su|γ dLu dLs

)
,

which is used to show

n2(1−H)
(
QVn − U0

)
w→ Rα.
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Back to the linear fractional stable noise: a second order limit theory?

Theorem (B., Lachièze-Rey and Podolskij ’17)
Let (Xj ) be the linear fractional α-stable noise. Then as n→∞,

n1−2/αQVn
w→ Z0, (1)

where Z0 is a totally right-skewed α/2-stable r.v.

1. Since convergence in probability do not hold for (1) we can not obtain a
second theory, contrarily to harmonizable processes.

2. How can we avoid this situation?
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Power variation

1. For p > 0 consider the power variation

V (p)n = 1
n

n∑
j=1

|Xj |p,

and note QVn = V (2)n.

2. Since any moving average is ergodic the Birkhoff–Khinchin theorem
implies:

3. Let (Xj ) be the linear fractional stable noise and p < α. Then,

V (p)n
a.s.−→ E[|X1|p].

4. What is the convergence rate for V (p)n?

25



Second order theory for the linear fractional stable noise

”Classical” results of the form

an

n∑
j=1

Yj
D→ U n→∞,

where (Yi )i≥1 is a stationary sequence which satisfies one of the following

1. i.i.d.
2. martingale difference
3. Markov chain
4. strongly mixing

are never applicable.
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The Gaussian case

Theorem (Breuer–Major [1], Taqqu [2])

Suppose that X is the fractional Gaussian noise Hurst index H ∈ (0, 1).

(i) For H ∈ (0, 3/4),
√
n
(
V (p)n − E[|X1|p]

)
w→ N (0, vp).

(ii) When H ∈ (3/4, 1) it holds that

n2(1−H)
(
V (p)n − E[|X1|p]

)
w→ Rosenblatt r.v.

Remark: The asymptotics for V (p)n is analogue to that of QVn.

————————————————
[1] Breuer and Major (1983). Journal of Multivariate Analysis 13.

[2] Taqqu (1979). Z. Wahrsch. Verw. Gebiete 50.
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The non-Gaussian case

Theorem (B., Lachièze-Rey and Podolskij)
Suppose that (Xj ) is the k-order linear fractional stable noise with Hurst index
H ∈ (1/α, k). Let p < α/2.

(a): For H < k − 1/α, we obtain
√
n
(
V (p)n − E[|X1|p]

)
w→ N (0, v 2).

(b): For H > k − 1/α, it holds that

n
(k−H)α

(k−H)α+1
(
V (p)n − E[|X1|p]

)
w→ S(k−H)α+1

where S(k−H)α+1 is a totally right skewed ((k − H)α + 1)-stable random
variable with mean zero.

Remark: For α > 1, case (a), also follows by
V. Pipiras and M. Taqqu, and P. Abry (2007). Bernoulli 13.
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B., Lachièze-Rey and Podolskij (2017). Ann. Probab.

Gaussian

stable of index (k −H)α+ 1

phase transition:
H = k − 1

α

Breuer and Major (1983)

stab
ility

in
d
ex

Stochastic fluctiation of the power variation of the k-order linear fractional stable noise

1 2

1

2

3

4

k − 1/2
k − 1/4

k

α

H = index of self-similarity
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Thank you for your attention!
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