APPROXIMATE DEGREE AND QUANTUM QUERY LOWER BOUNDS VIA DUAL POLYNOMIALS

14 Agosto 2018

Mark Bun
Robin Kothari
Justin Thaler

Princeton \rightarrow Simons \& Boston U.
Microsoft Research
Georgetown

Approximate Degree [Nism-Szegedy92]

For a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Approximate Degree: Minimum degree of a real polynomial $p:\{0,1\}^{n} \rightarrow \mathbb{R}$ such that

$$
|p(x)-f(x)| \leq 1 / 3 \quad \text { for all } x \in\{0,1\}^{n}
$$

Denoted by adeg (f)
Ex. $\operatorname{adeg}\left(\mathrm{OR}_{n}\right)=\Theta(\sqrt{n})$

Research Directions for the Polynomial Method

(1) Advance our understanding of adeg

A Nearly Optimal Lower Bound on the Approximate Degree of $A C^{0}$

Hardness amplification within AC^{0}
(2) Use adeg to advance application domains

The Polynomial Method Strikes Back:
Tight Quantum Query Bounds via Dual Polynomials

Approximate Degree of $A C^{0}$

Approximate Degree of $A C^{0}$

Applications of $A C^{0}$ Lower Bound

Nearly optimal $\Omega\left(n^{1-\delta}\right)$ quantum and multiparty communication lower bounds for AC^{0}

Learning via regression requires $\exp \left(\Omega\left(n^{1-\delta}\right)\right)$ features

Improved secret sharing with reconstruction in AC^{0}

Research Directions for the Polynomial Method

(1) Advance our understanding of adeg

A Nearly Optimal Lower Bound on the Approximate Degree of $A C^{0}$

Hardness amplification within AC^{0}
(2) Use adeg to advance application domains

The Polynomial Method Strikes Back:
Tight Quantum Query Bounds via Dual Polynomials

(Deterministic) Query Complexity

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function
Deterministic Query Complexity:
Minimum number of bits of x that must be read to compute $f(x)$

Ex. Computing OR_{n} requires n queries

x_{1}	x_{2}	x_{3}	x_{4}	\ldots	x_{n-1}	x_{n}

Quantum Query Complexity

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function
Quantum Query Complexity:
Minimum number of bits of x that must be read in superposition to compute $f(x)$ with probability $\geq 2 / 3$

Quantum Query Complexity

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function
Quantum Query Complexity:
Minimum number of bits of x that must be read in superposition to compute $f(x)$ with probability $\geq 2 / 3$

Ex. Computing OR_{n}

only needs \sqrt{n} quantum queries [Grover96]

Quantum Query Lower Bounds

"The Polynomial Method" [Beals-Buhrman-Cleve-Mosca-deWolf98]:
Accept prob. of a T query algorithm $=$ Degree $2 T$ polynomial in x
\Rightarrow Quantum-query-complexity $(f) \geq 1 / 2 \operatorname{adeg}(f)$
Newer "adversary" methods:
\square Positive-weights method [Ambainis02]
Easy to apply, but limited in power

\square Negative-weights method [Høyer-Lee-Špalek07, ..., Reichardt11]
Tight characterization, but difficult to apply

This work: New and nearly tight quantum query lower bounds via the polynomial method

Our Results

Problem	Best Prior Upper Bound	Our Lower Bound	Best Prior Lower Bound
k-distinctness	$O\left(n^{3 / 4-1 /\left(2^{k+2}-4\right)}\right)$ [Bel12a]	$\tilde{\Omega}\left(n^{3 / 4-1 /(2 k)}\right)$	$\tilde{\Omega}\left(n^{2 / 3}\right)$ [AS04]
Image Size Testing	$O(\sqrt{n} \log n)[A B R d W 16]$	$\tilde{\Omega}(\sqrt{n})$	$\tilde{\Omega}\left(n^{1 / 3}\right)[$ ABRdW16]
k-junta Testing	$O(\sqrt{k} \log k)[A B R d W 16]$	$\tilde{\Omega}(\sqrt{k})$	$\tilde{\Omega}\left(k^{1 / 3}\right)[$ ABRdW16]
SDU	$O(\sqrt{n})[$ BHH11]	$\tilde{\Omega}(\sqrt{n})$	$\tilde{\Omega}\left(n^{1 / 3}\right)[$ BHH11,AS04]
Shannon Entropy	$\tilde{O}(\sqrt{n})[$ BHH11,LW17]	$\tilde{\Omega}(\sqrt{n})$	$\tilde{\Omega}\left(n^{1 / 3}\right)[$ LW17]

Table 1: Our lower bounds on quantum query complexity and approximate degree vs. prior work.

Problem	Best Prior Upper Bound	Our Upper Bound	Our Lower Bound	Best Prior Lower Bound
Surjectivity	$\tilde{O}\left(n^{3 / 4}\right)[$ She18]	$\tilde{O}\left(n^{3 / 4}\right)$	$\tilde{\Omega}\left(n^{3 / 4}\right)$	$\tilde{\Omega}\left(n^{2 / 3}\right)[$ AS04 $]$

Table 2: Our bounds on the approximate degree of Surjectivity vs. prior work.

Lower Bound for k-distinctness

Define k DIST $_{N, R}:\{1, \ldots, R\}^{N} \rightarrow\{0,1\}$ by
k-DIST $_{N, R}\left(s_{1}, \ldots, s_{N}\right)=1 \quad$ iff Some $r \in[R]$ appears $\geq k$ times in the input list

Corresponds to a Boolean function on $\mathrm{O}\left(N \log _{2} R\right)$ bits Upper Bounds: $\quad \mathrm{O}\left(N^{k /(k+1)}\right)$ [Ambainis03] via quantum walks $\mathrm{O}\left(N^{3 / 4-1 / \exp (k)}\right)$ [Belovs 12$]$ via learning graphs

Lower Bounds: $\quad \Omega\left(N^{2 / 3}\right)$ [Aaronson-Shiol] via polynomial method
This work:
$\Omega\left(N^{3 / 4-1 /(2 k)}\right)$ via polynomial method

Our Results

$\Omega\left(n^{1-\delta}\right)$ lower bound for $A C^{0}$

Recursive Application
$\mathrm{O}\left(n^{3 / 4}\right)$ upper bound for Surjectivity

Intuition \&
Ideas
$\Omega\left(n^{3 / 4}\right)$ lower bound for Surjectivity

Common Proof Strategy

| Qualitatively matches [Belovs 1 2] |
| ---: | :--- | :--- |
| Matches [Ambainis-Belovs-Regev-deWolf 16] | | k-Distinctness: | $\Omega\left(n^{3 / 4-1 /(2 k)}\right)$ |
| :--- | :--- |
| Image Size Testing: | $\Omega\left(n^{1 / 2}\right)$ |

Reductions

Matches [Ambainis-Belovs-Regev-deWolf 16]	Statistical Dist. from Uniform:	$\Omega\left(n^{1 / 2}\right)$
Matches [Bravyi-Harrow-Hassidim 1]	k-Junta Testing:	$\Omega\left(k^{1 / 2}\right)$
Matches [Li-Wu 17]	Shannon Entropy:	$\Omega\left(n^{1 / 2}\right)$

Lower Bound Roadmap

1. Prove a hardness amplification theorem for functions in $A C^{0}$
2. Express Surjectivity, k-Distinctness, etc. as amplified versions of functions we understand

Hardness Amplification in AC^{0}

Theorem 1: If $\operatorname{adeg}(f)>d_{\text {, }}$ then $\operatorname{adeg}(F)>t^{1 / 2} d$ for $F=\mathrm{OR}_{t}$ of [B.-Thaler13, Sherstov13, BenDavid-Bouland-Garg-Kothari17]

Theorem 2: If adeg $(f)>d_{1}$ then $\operatorname{adeg}_{1-2^{t}}(F)>d$ for $F=\mathrm{OR}_{t} \circ f$ [B.-Thaler 14]

Theorem 3: If $\operatorname{adeg}(f)>d$, then $\operatorname{deg}_{ \pm}(F)>\min \{t, d\}$ for $F=\mathrm{OR}_{t} \circ f$ [Sherstov1 4]

Theorem 4: If $\operatorname{adeg}_{+}(f)>d$, then $\operatorname{adeg}_{1-2^{-t}}(F)>d$ for $F=$ ODD-MAX-BIT ${ }_{t} \circ f$ [Thaler 14]

Theorem 5: If $\operatorname{adeg}(f)>d_{\text {, }}$ then $\operatorname{deg}_{ \pm}(F)>\min \{t, d\}$ for $F=$ APPROX-MAJ ${ }_{t} \circ f$ [Bouland-Chen-Holden-Thaler-Vasudevan16]

Hardness Amplification

Theorem Template: If f is "hard" to approximate by low-degree polynomials, then $F=g \circ f$ is "even harder" to approximate by low-degree polynomials x_{1}

Block Composition Barrier

Robust approximations, i.e.,

$$
\operatorname{adeg}(g \circ f) \leq \mathrm{O}(\operatorname{adeg}(g) \cdot \operatorname{adeg}(f))
$$

imply that block composition cannot give better lower bounds than \sqrt{n}

Our Work: A New Hardness Amplification Theorem for Degree

(1) An $\Omega\left(n^{1-\delta}\right)$ approximate degree lower bound for $A C^{0}$

Recursive
application

Start with:
$\operatorname{adeg}(f) \geq d$

Construct:
$\operatorname{adeg}(F) \geq \Omega\left(d^{1 / 2} \cdot n^{1 / 2}\right)$

Refined \& generalized application
(2) New quantum query lower bounds

Breaking the Block Composition Barrier

Prior work:

- Hardness amplification "from the top"
- Block composed functions

Our new work:

- Hardness amplification "from the bottom"
- Non-block-composed functions

Remainder of This Talk: Lower Bound for SURJECTIVITY

Getting to Know Surjectivity

Define $^{S_{U R J}^{N, R}}$: $\{1, \ldots, R\}^{N} \rightarrow\{0,1\}$ by

$$
\operatorname{SURJ}_{N, R}\left(s_{1}, \ldots, s_{N}\right)=1 \quad \text { iff }
$$

Every $r \in[R]$ appears in the input list

Corresponds to a Boolean function on $\mathrm{O}\left(N \log _{2} R\right)$ bits Has quantum query complexity $\Omega(R)$ [Beame-Machmouchilo] but approximate degree $\mathrm{O}\left(R^{3 / 4}\right)$ [Sherstov17]
(For $N=\mathrm{O}(R)$)

Getting to Know Surjectivity

$\operatorname{SURJ}_{N, R}\left(s_{1}, \ldots, s_{N}\right)=1 \quad$ iff

Every $r \in[R]$ appears in the input list
Define auxiliary variables

$$
y_{r, i}(s)= \begin{cases}1 & \text { if } s_{i}=r \\ 0 & \text { otherwise }\end{cases}
$$

Then $\operatorname{SURJ}_{N, R}\left(s_{1}, \ldots, s_{N}\right)=$
$\operatorname{AND}_{R}\left(\operatorname{OR}_{N}\left(y_{11}, \ldots, y_{1 N}\right), \ldots, \mathrm{OR}_{\mathrm{N}}\left(y_{R 1}, \ldots, y_{R N}\right)\right)$

Getting to Know Surjectivity

Observation: To approximate $\mathrm{SURJ}_{N, R}$, suffices to approx. $\mathrm{AND}_{R} \circ \mathrm{OR}_{N}$ on inputs of Hamming weight N

Define auxiliary variables

$$
y_{r, i}(s)= \begin{cases}1 & \text { if } s_{i}=r \\ 0 & \text { otherwise }\end{cases}
$$

Then $\operatorname{SURJ}_{N, R}\left(s_{1}, \ldots, s_{N}\right)=$

$$
\operatorname{AND}_{R}\left(\operatorname{OR}_{N}\left(y_{11}, \ldots, y_{1 N}\right), \ldots, \operatorname{OR}_{\mathrm{N}}\left(y_{R 1}, \ldots, y_{R N}\right)\right)
$$

Surjectivity Lower Bound

This work:
For some $N=\mathrm{O}(R), \quad \operatorname{adeg}\left(\mathrm{SURJ}_{N, R}\right)=\Omega\left(R^{3 / 4}\right)$
Stage 1: Reduce to a claim about block composed functions
Lemma: Builds on symmetrization argument of [Ambainis03]

$$
\operatorname{adeg}\left(\operatorname{SURJ}_{N, R}\right)=\Theta\left(\operatorname{adeg}\left(\left(\mathrm{AND}_{R} \circ \mathrm{OR}_{N}\right) \leq N\right)\right)
$$

Surjectivity Lower Bound

This work:
For some $N=\mathrm{O}(R), \quad \operatorname{adeg}\left(\mathrm{SURJ}_{N, R}\right)=\Omega\left(R^{3 / 4}\right)$

Stage 2: Prove adeg $\left(\left(\mathrm{AND}_{R} \circ \mathrm{OR}_{N}\right) \leq N\right)=\Omega\left(R^{3 / 4}\right)$ Uses method of dual polynomials [loffe-Tikhomirov68, Sherstov07, Shi-Zhu07]

Dual

$$
\begin{aligned}
\max _{\Psi} & \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)} \Psi(x) \\
\text { s.t. } & \sum_{x \in\{0,1\}^{n}}|\Psi(x)|=1 \\
& \operatorname{deg}(p) \leq d \Longrightarrow \sum_{x \in\{0,1\}^{n}} p(x) \Psi(x)=0
\end{aligned}
$$

Surjectivity Lower Bound

This work:
For some $N=\mathrm{O}(R), \quad \operatorname{adeg}\left(\mathrm{SURJ}_{N, R}\right)=\Omega\left(R^{3 / 4}\right)$

Stage 2: Prove adeg $\left(\left(\mathrm{AND}_{R} \circ \mathrm{OR}_{N}\right) \leq N\right)=\Omega\left(R^{3 / 4}\right)$
Uses method of dual polynomials [loffe-Tikhomirov68, Sherstov07, Shi-Zhu07]

From Justin's talk:
Can prove $\operatorname{adeg}\left(\mathrm{AND}_{R} \circ \mathrm{OR}_{N}\right)=\Omega(R)$ by combining dual polynomials $\Psi_{\text {AND }}$ and $\Psi_{\text {OR }}$ to construct a dual polynomial $\Psi_{\text {AND-OR }}{ }^{\text {[B.-Thaler13, Sherstov13] }}$

Details of Stage 2

Claim: $\operatorname{adeg}\left(\mathrm{AND}_{R} \circ \mathrm{OR}_{N}\right)=\Omega\left(R^{3 / 4}\right)$ even under the promise that $|x| \leq N$
is equivalent to
There exists a dual polynomial witnessing adeg $\left(\mathrm{AND}_{R} \bigcirc \mathrm{OR}_{N}\right)$
$=\Omega\left(R^{3 / 4}\right)$ which is supported on inputs with $|x| \leq N$

Does the dual polynomial we already have for $\mathrm{AND}_{R} \circ \mathrm{OR}_{N}$ satisfy this property?

NO

Fixing the AND-OR Dual Polynomial

$$
\Psi_{\mathrm{AND}-\mathrm{OR}}(x)=2^{R} \Psi_{\mathrm{AND}}\left(\operatorname{sgn} \Psi_{\mathrm{OR}}\left(x_{1}\right), \ldots, \operatorname{sgn} \Psi_{\mathrm{OR}}\left(x_{R}\right)\right) \prod_{i=1}\left|\Psi_{\mathrm{OR}}\left(x_{i}\right)\right|
$$

$\Psi_{\text {OR }}$ must be nonzero for inputs with Hamming weight up to $\Omega(N)$
$\Rightarrow \Psi_{\text {AND-OR }}$ nonzero up to Hamming weight $\Omega(R N)$

1. $\Psi_{\text {AND-OR }}$ has L_{1}-norm 1
2. $\Psi_{\text {AND-OR }}$ has pure high degree $\Omega\left(R^{1 / 2} N^{1 / 2}\right)=\Omega(R) \Omega$
3. $\Psi_{\text {AND-OR }}$ has high correlation with $\mathrm{AND}_{R} \circ \mathrm{OR}_{N}$
4. $\Psi_{\text {AND-OR }}$ is supported on inputs with $|x| \leq N$

Fixing the AND-OR Dual Polynomial

$$
\Psi_{\mathrm{AND}-\mathrm{OR}}(x)=2^{R} \Psi_{\mathrm{AND}}\left(\operatorname{sgn} \Psi_{\mathrm{OR}}\left(x_{1}\right), \ldots, \operatorname{sgn} \Psi_{\mathrm{OR}}\left(x_{R}\right)\right) \prod_{i=1}^{R}\left|\Psi_{\mathrm{OR}}\left(x_{i}\right)\right|
$$

$\Psi_{\text {OR }}$ must be nonzero for inputs with Hamming weight up to $\Omega(N)$
$\Rightarrow \Psi_{\text {AND-OR }}$ nonzero up to Hamming weight $\Omega(R N)$

Fix 1: Trade pure high degree of Ψ_{OR} for "support" size
Fix 2: Zero out high Hamming weight inputs to $\Psi_{\text {AND-OR }}$

Fix 1: Trading PHD for Support Size

For every integer $1 \leq m \leq N$, there is a dual polynomial Ψ_{OR}^{m} for OR_{N} which
\square has pure high degree $\Omega\left(m^{1 / 2}\right)$
\square is supported on inputs of Hamming weight $\leq m$
$\Psi_{\mathrm{AND}-\mathrm{OR}}^{m}(x)=2^{R} \Psi_{\mathrm{AND}}\left(\operatorname{sgn} \Psi_{\mathrm{OR}}^{m}\left(x_{1}\right), \ldots, \operatorname{sgn} \Psi_{\mathrm{OR}}^{m}\left(x_{R}\right)\right) \prod_{i=1}^{R}\left|\Psi_{\mathrm{OR}}^{m}\left(x_{i}\right)\right|$
Dual polynomial $\Psi_{\text {AND-OR }}^{m}$

- has pure high degree $\Omega\left(R^{1 / 2} m^{1 / 2}\right)$
- is supported on inputs of Hamming weight $\leq m R$

Fix 2: Zeroing Out High Hamming Weight Inputs

Dual polynomial $\Psi_{\text {AND-OR }}^{m}$

- has pure high degree $\Omega\left(R^{1 / 2} m^{1 / 2}\right)$
- is supported on inputs of Hamming weight $\leq m R$

Suppose further that $\quad \sum_{|x|>N}\left|\Psi_{\text {AND-OR }}^{m}(x)\right| \ll \operatorname{negl}(R)$
Can we post-process $\Psi_{\text {AND-OR }}^{m}$ to zero out inputs with Hamming weight $N<|x| \leq m R .$.
...without ruining

- pure high degree of $\Psi_{\text {AND-OR }}^{m}$

YES (Follows from
[Razborov-Sherstov-08])

- correlation between $\Psi_{\text {AND-OR }}^{m}$ and $\mathrm{AND}_{R} \circ \mathrm{OR}_{N}$?

Fix 2: Zeroing Out High Hamming Weight Inputs

Technical Lemma (follows from [Razborov-Sherstov08]) If $0<D<N$ and

$$
\sum_{|x|>N}\left|\Psi_{\text {AND-OR }}^{m}(x)\right| \ll 2^{-D}
$$

then there exists a "correction term" $\Psi_{\text {corr }}^{m}$ that

1. Agrees with $\Psi_{\text {AND-OR }}^{m}$ inputs of Hamming weight $>N$
2. Has L_{1}-norm 0.01
3. Has pure high degree D

Fix 2: Zeroing Out High Hamming Weight Inputs

Claim: For $1 \leq m \leq N$,

$$
\sum_{|x|>N}\left|\Psi_{\text {AND-OR }}^{m}(x)\right| \ll 2^{-R / m^{1 / 2}}
$$

Proof idea:
$\Psi_{\text {OR }}^{m}$ can be made biased toward low Hamming weight inputs:
For all $t>0$,

$$
\sum_{|x|=t}\left|\Psi_{\mathrm{OR}}^{m}(x)\right| \lesssim \exp \left(-t / m^{1 / 2}\right)
$$

Primal interpretation:
Any polynomial that looks like this still has degree $\Omega\left(m^{1 / 2}\right)$

Fix 2: Zeroing Out High Hamming Weight Inputs

Claim: For $1 \leq m \leq N$,

$$
\sum_{|x|>N}\left|\Psi_{\text {AND-OR }}^{m}(x)\right| \ll 2^{-R / m^{1 / 2}}
$$

Proof idea:

Ψ_{OR}^{m} can be made biased toward low Hamming weight inputs:
For all $t>0, \quad \sum_{|x|=t}\left|\Psi_{\mathrm{OR}}^{m}(x)\right| \lesssim \exp \left(-t / m^{1 / 2}\right)$
\Rightarrow "Worst" high Hamming weight inputs look like
$\left|x_{1}\right|=m^{1 / 2}, \ldots,\left|x_{N / m^{1 / 2}}\right|=m^{1 / 2},\left|x_{\left(N / m^{1 / 2}\right)+1}\right|=0, \ldots,\left|x_{R}\right|=0$
$\Psi_{\mathrm{AND}-\mathrm{OR}}^{m}(x)=2^{R} \Psi_{\mathrm{AND}}\left(\operatorname{sgn} \Psi_{\mathrm{OR}}^{m}\left(x_{1}\right), \ldots, \operatorname{sgn} \Psi_{\mathrm{OR}}^{m}\left(x_{R}\right)\right) \prod_{i=1}^{R}\left|\Psi_{\mathrm{OR}}^{m}\left(x_{i}\right)\right|$
Weight on such inputs looks like $2^{-N / m^{1 / 2}}$

Putting the Pieces Together

Dual polynomial $\Psi_{\text {AND-OR }}^{m}$

- has pure high degree $\Omega\left(R^{1 / 2} m^{1 / 2}\right)$
- satisfies $\sum\left|\Psi_{\text {AND-OR }}^{m}(x)\right| \ll 2^{-R / m^{1 / 2}}$

Balanced at $m=R^{1 / 2}$
Correction term $\Psi_{\text {corr }}^{m}$
\Rightarrow PHD $\Omega\left(R^{3 / 4}\right)$

- has pure high degree $\Omega\left(R / m^{1 / 2}\right)$
- agrees with $\Psi_{\text {AND-OR }}^{m}$ inputs of Hammir eight $>N$
$\Rightarrow \Psi_{\text {AND-OR }}=\Psi_{\text {AND-OR }}^{m}-\Psi_{\text {corr }}^{m}$ has

1. L_{1}-norm ≈ 1
2. high correlation with $\mathrm{AND}_{R} \circ \mathrm{OR}_{N}$
3. pure high degree $\Omega\left(\min \left\{R^{1 / 2} m^{1 / 2}, R / m^{1 / 2}\right\}\right)$
4. support on inputs with $|x| \leq N$

Recap of SURJECTIVITY Lower Bound

This work:
For some $N=\mathrm{O}(R), \quad \operatorname{adeg}\left(\mathrm{SURJ}_{N, R}\right)=\Omega\left(R^{3 / 4}\right)$

Stage 1: Apply symmetrization to reduce to

Builds on
[Ambainis03]

Claim: $\operatorname{adeg}\left(\mathrm{AND}_{R} \circ \mathrm{OR}_{N}\right)=\Omega\left(R^{3 / 4}\right)$ even under the promise that $|x| \leq N$

Stage 2: Prove Claim via method of dual polynomials Refines AND-OR dual polynomial w/ techniques of [Razborov-Sherstov08]

Conclusions

Hardness amplification beyond block composition $\quad \Rightarrow$
Nearly optimal lower bounds for AC 0
New quantum query lower bounds
Imminently forthcoming work: $\quad \operatorname{adeg}_{\varepsilon}(F) \geq \Omega\left(n^{1-\delta}\right)$ for some $\varepsilon \geq 1-\exp \left(\Omega\left(n^{1-\delta}\right)\right)$ and $F \in \mathrm{AC}^{0}$

Open Problems:

\square Approximate degree / quantum query complexity of poly-size DNF? Best lower bound: $\Omega\left(n^{3 / 4-\delta}\right)$
\square Lower bounds for quantum problems with different structure (e.g. triangle finding, graph collision, verifying matrix products)

