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Approximate Degree [Nisan-Szegedy92] 

For a Boolean function f : {0,  1}n à {0,  1}  
 

Approximate Degree: Minimum degree of a real 
polynomial p : {0,  1}n à      such that 
 

 |p (x ) – f (x )| ≤ 1/3  for all  x ∈ {0, 1}n  
 
 

Denoted by adeg(f ) 
Ex.  adeg(ORn ) = Θ(  n ) 
 
  



Research Directions for the 
Polynomial Method 

(1)  Advance our understanding of adeg 

A Nearly Optimal Lower Bound on the Approximate Degree of AC0 

(2) Use adeg to advance application domains 

The Polynomial Method Strikes Back:  
Tight Quantum Query Bounds via Dual Polynomials 

Hardness amplification within AC0 



Approximate Degree of AC0 

…
 

Depth 1 

Depth 2 

Depth 3 

Depth 2k 

adeg(ORn) = Ω(n1/2) 
[Nisan-Szegedy92]   

adeg(Element-Distn) = Ω(n2/3) 
[Aaronson-Shi01]   

Q: Is there an AC0 function 
with approximate degree 
Ω(n)? 



Approximate Degree of AC0 

adeg(ORn) = Ω(n1/2) 
[Nisan-Szegedy92]   

…
 

Depth 1 

Depth 2 

Depth 3 

adeg(Element-Distn) = Ω(n2/3) 
[Aaronson-Shi01]   

Depth 2k 

adeg(Surjectivityn) = Ω(n3/4) 
This work 

adeg(Fk,n) = Ω(n     )  Nearly linear 
This work   

1–2-k 



Applications of AC0 Lower Bound 

x y 

f (x, y) 

Nearly optimal Ω(n1-δ) 
quantum and multiparty 

communication lower bounds for AC0 
 

Learning via regression requires 
exp(Ω(n1-δ)) features 

x 

x1 

x2 x3 

x4 

Improved secret sharing 
with reconstruction in AC0  



Research Directions for the 
Polynomial Method 

(1)  Advance our understanding of adeg 

A Nearly Optimal Lower Bound on the Approximate Degree of AC0 

(2) Use adeg to advance application domains 

The Polynomial Method Strikes Back:  
Tight Quantum Query Bounds via Dual Polynomials 

Hardness amplification within AC0 



(Deterministic) Query Complexity 

Deterministic Query Complexity: 
Minimum number of bits of x that must be read in superposition 
to compute f (x) with probability > 2/3 

Ex. Computing ORn 
requires n queries   

x1 x2 x3 x4 ... xn-1 xn 

0 0 1 0 0 0 

Let  f : {0, 1}n à {0, 1} be a boolean function  



Quantum Query Complexity 

Let  f : {0, 1}n à {0, 1} be a boolean function  

Quantum Query Complexity: 
Minimum number of bits of x that must be read in superposition 
to compute f (x) with probability ≥ 2/3 

|ψ0> U0 Q U1 Q UT …

Unitaries independent of x 

Query transformation Q |i>|b> = |i>|b XOR xi >    



Quantum Query Complexity 

Let  f : {0, 1}n à {0, 1} be a boolean function  

Quantum Query Complexity: 
Minimum number of bits of x that must be read in superposition 
to compute f (x) with probability ≥ 2/3 

Ex. Computing ORn 
only needs   n quantum queries [Grover96]   



Quantum Query Lower Bounds 

Newer “adversary” methods: 
¨  Positive-weights method [Ambainis02] 

Easy to apply, but limited in power 
 

¨  Negative-weights method [Høyer-Lee-Špalek07, …, Reichardt11] 

     Tight characterization, but difficult to apply 
 

This work: New and nearly tight quantum query lower 
bounds via the polynomial method 

“The Polynomial Method” [Beals-Buhrman-Cleve-Mosca-deWolf98]: 

  Accept prob. of a T query algorithm = Degree 2T polynomial in x 
 

 ⇒ Quantum-query-complexity(f ) ≥ ½ adeg(f )  



Our Results 



Lower Bound for k-distinctness 

Define k-DISTN,R : {1 ,…, R}N à {0, 1} by 
 

 k-DISTN,R (s1, …, sN) = 1   iff 
       Some r ∈[R] appears ≥ k times in the input list 

 

Corresponds to a Boolean function on O(N log2R) bits 
Upper Bounds:  O(N 

k/(k+1)) [Ambainis03] via quantum walks 
          O(N 

3/4–1/exp(k)) [Belovs12] via learning graphs 
 

Lower Bounds:  Ω(N 
2/3) [Aaronson-Shi01] via polynomial method 

    This work:  Ω(N 
3/4–1/(2k)) via polynomial method 

 



Ω(n3/4) lower bound 
for Surjectivity 

Our Results 

O(n3/4) upper bound for 
Surjectivity 

New proof of [Sherstov17] 

Intuition & 
Ideas 

k-Distinctness:     Ω(n3/4 –1/(2k))  
Image Size Testing:   Ω(n1/2)  

Qualitatively matches [Belovs12] 

Matches [Ambainis-Belovs-Regev-deWolf16] 

Common Proof Strategy 

Statistical Dist. from Uniform:  Ω(n1/2)  
k-Junta Testing:      Ω(k1/2)  
Shannon Entropy:     Ω(n1/2)  

Matches [Ambainis-Belovs-Regev-deWolf16] 
Matches [Bravyi-Harrow-Hassidim11] 

Matches [Li-Wu17] 

Reductions 

Ω(n1-δ) lower bound 
for AC0 

Recursive Application 



Lower Bound Roadmap 

1.  Prove a hardness amplification theorem for 
functions in AC0 

2.  Express Surjectivity, k-Distinctness, etc. as 
amplified versions of functions we understand 

ANDR  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1              …              sN 



Hardness Amplification in AC0 

Theorem 1: If adeg(f ) > d,  then adeg(F ) > t1/2d               
for F = ORt ¢ f  [B.-Thaler13, Sherstov13, BenDavid-Bouland-Garg-Kothari17] 
 

Theorem 2: If adeg–(f ) > d,  then adeg     (F ) > d             
for F = ORt ¢ f  [B.-Thaler14] 
 

Theorem 3: If adeg–(f ) > d,  then deg±(F ) > min{t, d}         
for F = ORt ¢ f  [Sherstov14] 
 

Theorem 4: If adeg+(f )  > d,  then adeg    (F ) > d                
for F = ODD-MAX-BITt ¢ f  [Thaler14] 
 

Theorem 5: If adeg(f ) > d,  then deg±(F ) > min{t, d}           
for F = APPROX-MAJt ¢ f  [Bouland-Chen-Holden-Thaler-Vasudevan16] 

1–2-t 

1–2-t 



Hardness Amplification 

1–2-t 

1–2-t Theorem Template: If f  is “hard” to  
approximate by low-degree polynomials, 
then F = g ¢ f is “even harder” to  
approximate by low-degree polynomials 

g

f f

x1 xR 

… 

1–2-t 

Block Composition Barrier 
 
 
 
 

Robust approximations, i.e., 
 

adeg(g ¢ f ) ≤ O(adeg(g) � adeg(f )) 
 

imply that block composition cannot give better lower bounds than   n 



Our Work: A New Hardness 
Amplification Theorem for Degree 

f 

x1 … xn 

Start with: 
adeg(f ) ≥ d 

Depth 
k 

F 

x1 
… xO(n) 

Construct: 
adeg(F ) ≥ Ω(d 

1/2 � n1/2) 

Depth 
k+2 

(1) An Ω(n1-δ) approximate 
degree lower bound for AC0  

Recursive 
application 

(2) New quantum query 
lower bounds 

Refined & generalized 
application 



Breaking the Block Composition Barrier 

Prior work:  
•  Hardness amplification “from the top” 
•  Block composed functions 

Our new work: 
•  Hardness amplification “from the bottom” 

•  Non-block-composed functions 

g

f f 

x1 xn 

… 

f 

g g… 



Remainder of This Talk: 
Lower Bound for SURJECTIVITY 

ANDR  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1              …              sN 



Getting to Know Surjectivity 

Define SURJN,R : {1 ,…, R}N à {0, 1} by 
 

 SURJN,R(s1, …, sN) = 1   iff 
                Every r ∈[R] appears in the input list 

 

Corresponds to a Boolean function on O(N log2R) bits 
Has quantum query complexity Ω(R) [Beame-Machmouchi10] but 
approximate degree O(R3/4) [Sherstov17] 

       (For N = O(R)) 
 



SURJN,R(s1, …, sN) = 1  iff 
                Every r ∈[R] appears in the input list 

Getting to Know Surjectivity 

Define auxiliary variables 
 

     yr,i(s ) = 
 
 
Then  SURJN,R(s1, …, sN) = 
    ANDR ( ORN (y11, …, y1N), …, ORN (yR1, …, yRN) ) 

{ 1   if  si = r 
0    otherwise 

ANDR  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1              …                sN 



SURJN,R(s1, …, sN) = 1  iff 
                Every r ∈[R] appears in the input list 

Getting to Know Surjectivity 

Define auxiliary variables 
 

     yr,i(s ) = 
 
 
Then  SURJN,R(s1, …, sN) = 
    ANDR ( ORN (y11, …, y1N), …, ORN (yR1, …, yRN) ) 

{ 1   if  si = r 
0    otherwise 

ANDR  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1              …                sN 

Observation: To approximate SURJN,R, suffices to approx. 
ANDR ¢ ORN on inputs of Hamming weight N  



Surjectivity Lower Bound 

Stage 1: Reduce to a claim about block composed functions 
 

  Lemma: Builds on symmetrization argument of [Ambainis03]  
 

adeg(SURJN,R) = Θ(adeg( (ANDR ¢ ORN)≤N ) ) 

ANDR  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

Promised that |y| ≤ N 

This work: 
For some N = O(R),     adeg(SURJN,R) = Ω(R3/4)  



Surjectivity Lower Bound 

This work: 
For some N = O(R),     adeg(SURJN,R) = Ω(R3/4)  

Stage 2:  Prove adeg( (ANDR ¢ ORN)≤N ) = Ω(R3/4) 

s.t. 

Primal 

s.t. 

Dual 
 

Uses method of dual polynomials [Ioffe-Tikhomirov68, Sherstov07, Shi-Zhu07] 

 



Surjectivity Lower Bound 

This work: 
For some N = O(R),     adeg(SURJN,R) = Ω(R3/4)  

From Justin’s talk: 
 

Can prove adeg(ANDR ¢ ORN) = Ω(R) by combining 
dual polynomials ΨAND and ΨOR to construct a dual 
polynomial ΨAND-OR [B.-Thaler13, Sherstov13] 

Stage 2:  Prove adeg( (ANDR ¢ ORN)≤N ) = Ω(R3/4) 
Uses method of dual polynomials [Ioffe-Tikhomirov68, Sherstov07, Shi-Zhu07] 

 



Details of Stage 2 

Claim: adeg(ANDR ¢ ORN) = Ω(R3/4) even under the  
promise that |x | ≤ N 
 

is equivalent to 
 

There exists a dual polynomial witnessing adeg(ANDR ¢ ORN) 
= Ω(R3/4) which is supported on inputs with |x | ≤ N 
 
 
Does the dual polynomial we already have for ANDR ¢ ORN 
satisfy this property? 
 

NO 



Fixing the AND-OR Dual Polynomial 

ΨOR must be nonzero for inputs with 
Hamming weight up to Ω(N ) 

 ⇒ΨAND-OR nonzero up to Hamming weight Ω(RN ) 

1.  ΨAND-OR has L1-norm 1   

2.  ΨAND-OR has pure high degree Ω(R1/2N 
1/2) = Ω(R)  

3.  ΨAND-OR has high correlation with ANDR ¢ ORN 
4.  ΨAND-OR is supported on inputs with |x | ≤ N 

✓ 
✓ 

✓ 
✗ 



Fixing the AND-OR Dual Polynomial 

ΨOR must be nonzero for inputs with 
Hamming weight up to Ω(N ) 

 ⇒ΨAND-OR nonzero up to Hamming weight Ω(RN ) 

Fix 1:  Trade pure high degree of ΨOR for “support” size 
 
Fix 2:  Zero out high Hamming weight inputs to ΨAND-OR 



Fix 1: Trading PHD for Support Size 

For every integer 1 ≤ m ≤ N, there is a dual 
polynomial ΨOR for ORN which 
¨  has pure high degree Ω(m1/2)  
¨  is supported on inputs of Hamming weight ≤ m  

 

Dual polynomial ΨAND-OR  
•  has pure high degree Ω(R1/2 m1/2)  
•  is supported on inputs of Hamming weight ≤ mR  
 

m m m m

m

m



Fix 2: Zeroing Out High 
Hamming Weight Inputs 

 

Dual polynomial ΨAND-OR  
•  has pure high degree Ω(R1/2 m1/2)  
•  is supported on inputs of Hamming weight ≤ mR  
 

Can we post-process ΨAND-OR to zero out inputs with 
Hamming weight N < |x | ≤ mR… 

…without ruining 
•  pure high degree of ΨAND-OR  
•  correlation between ΨAND-OR and ANDR ¢ ORN? 

Suppose further that 

 
YES (Follows from 
[Razborov-Sherstov-08]) 
 

m

m

m

m

X

|x|>N

| m

AND-OR(x)| ⌧ negl(R)

X

|x|>N

| m

AND-OR(x)| ⌧ 2�R/m

1/2

p
n

2
p
n

1



Fix 2: Zeroing Out High 
Hamming Weight Inputs 

Technical Lemma (follows from [Razborov-Sherstov08]) 
If 0 < D < N and  
 
 
 
then there exists a “correction term” Ψcorr that 
1.  Agrees with ΨAND-OR inputs of Hamming weight >N  
2.  Has L1-norm 0.01 
3.  Has pure high degree D  

m

m

X

|x|>N

| m

AND-OR(x)| ⌧ negl(R)

X

|x|>N

| m

AND-OR(x)| ⌧ 2�R/m

1/2

p
n

2
p
n

1

2-D, 



Fix 2: Zeroing Out High 
Hamming Weight Inputs 

Claim: For 1 ≤ m ≤ N, 

X

|x|>N

| m

AND-OR(x)| ⌧ negl(R)

X

|x|>N

| m

AND-OR(x)| ⌧ 2�R/m

1/2

p
n

2
p
n

1

Proof idea: 
ΨOR can be made biased toward low Hamming weight inputs:         

  For all t > 0, 
 

m

X

|x|>N

| m

AND-OR(x)| ⌧ negl(R)

X

|x|>N

| m

AND-OR(x)| ⌧ 2

�R/m

1/2

p
n

2

p
n

X

|x|=t

| m

OR(x)| . exp(�t/m

1/2
)

1

Primal interpretation: 
Any polynomial that looks like this 
still has degree Ω(m1/2)  

p(x) 

|x| 0 

1 

1 0 m1/2 

exp(|x|/m1/2) 

m



Fix 2: Zeroing Out High 
Hamming Weight Inputs 

Claim: For 1 ≤ m ≤ N, 

Weight on such inputs looks like 2–N/m 

  

m m m m

1/2 

X

|x|>N

| m

AND-OR(x)| ⌧ negl(R)

X

|x|>N

| m

AND-OR(x)| ⌧ 2�R/m

1/2

p
n

2
p
n

1

⇒ “Worst” high Hamming weight inputs look like 
|x1| = m1/2, …, |xN/m   | = m1/2, |x(N/m   )+1| = 0, …, |xR| = 0 1/2 1/2 

Proof idea: 
ΨOR can be made biased toward low Hamming weight inputs:         

  For all t > 0, 
 

m

X

|x|>N

| m

AND-OR(x)| ⌧ negl(R)

X

|x|>N

| m

AND-OR(x)| ⌧ 2

�R/m

1/2

p
n

2

p
n

X

|x|=t

| m

OR(x)| . exp(�t/m

1/2
)

1



Putting the Pieces Together 
Dual polynomial ΨAND-OR            Fix 1 
•  has pure high degree Ω(R1/2 m1/2)  
•  satisfies 
 

Correction term Ψcorr              Fix 2 
•  has pure high degree Ω(R/m1/2)  
•  agrees with ΨAND-OR inputs of Hamming weight >N  
 

Balanced at m = R1/2 

     ⇒ PHD Ω(R3/4) 

m

m

m

 

1.   L1-norm ≈ 1 

2.   high correlation with ANDR ¢ ORN 

3.   pure high degree Ω(min{R1/2m1/2, R/m1/2}) 
4.   support on inputs with |x | ≤ N 

⇒ΨAND-OR = ΨAND-OR – Ψcorr  has m m

X

|x|>N

| m

AND-OR(x)| ⌧ negl(R)

X

|x|>N

| m

AND-OR(x)| ⌧ 2�R/m

1/2

p
n

2
p
n

1



Recap of SURJECTIVITY Lower Bound 

Stage 1: Apply symmetrization to reduce to 
 

 Claim: adeg(ANDR ¢ ORN) = Ω(R3/4) even under the  
 promise that |x | ≤ N 

Builds on 
[Ambainis03] 

Refines AND-OR dual polynomial w/ techniques of [Razborov-Sherstov08] 

Stage 2: Prove Claim via method of dual polynomials 
 

This work: 
For some N = O(R),     adeg(SURJN,R) = Ω(R3/4)  



Hardness amplification beyond block composition  ⇒ 
 Nearly optimal lower bounds for AC0 

 New quantum query lower bounds 

Imminently forthcoming work:  adegε(F) ≥ Ω(n1-δ) for 
some ε ≥ 1 – exp(Ω(n1-δ)) and F ∈ AC0 

 

Open Problems: 
¨  Approximate degree / quantum query complexity of 

poly-size DNF?     Best lower bound: Ω(n3/4 - δ) 
¨  Lower bounds for quantum problems with different 

structure (e.g. triangle finding, graph collision, verifying 
matrix products) 

Conclusions 

Thank you! 


