APPROXIMATE DEGREE AND QUANTUM QUERY LOWER BOUNDS VIA DUAL POLYNOMIALS

14 Agosto 2018

Mark Bun Robin Kothari Justin Thaler Princeton → Simons & Boston U. Microsoft Research Georgetown

Approximate Degree [Nisan-Szegedy92]

For a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Approximate Degree: Minimum degree of a real polynomial $p: \{0,1\}^n \rightarrow \mathbb{R}$ such that

 $|p(x) - f(x)| \le 1/3$ for all $x \in \{0, 1\}^n$

Denoted by adeg(f)**Ex.** $\operatorname{adeg}(\operatorname{OR}_n) = \Theta(\sqrt{n})$

Research Directions for the Polynomial Method

(1) Advance our understanding of adeg

A Nearly Optimal Lower Bound on the Approximate Degree of AC⁰

Hardness amplification within AC⁰

(2) Use adeg to advance application domains

The Polynomial Method Strikes Back: Tight Quantum Query Bounds via Dual Polynomials

Approximate Degree of AC⁰

Approximate Degree of AC⁰

Applications of AC⁰ Lower Bound

Learning via regression requires $\exp(\Omega(n^{1-\delta}))$ features

Research Directions for the Polynomial Method

(1) Advance our understanding of adeg

A Nearly Optimal Lower Bound on the Approximate Degree of AC⁰

Hardness amplification within AC⁰

(2) Use adeg to advance application domains

The Polynomial Method Strikes Back: Tight Quantum Query Bounds via Dual Polynomials

(Deterministic) Query Complexity

Let $f: \{0, 1\}^n \rightarrow \{0, 1\}$ be a boolean function

Deterministic Query Complexity: Minimum number of bits of x that must be read to compute f(x)

Ex. Computing OR_n requires n queries

x_1	x_2	x_3	x_4	•••	x_{n-1}	x_n

Quantum Query Complexity

Let
$$f: \{0, 1\}^n \rightarrow \{0, 1\}$$
 be a boolean function

Quantum Query Complexity:

Minimum number of bits of x that must be read in superposition to compute f(x) with probability $\geq 2/3$

Quantum Query Complexity

Let $f: \{0, 1\}^n \rightarrow \{0, 1\}$ be a boolean function

Quantum Query Complexity:

Minimum number of bits of x that must be read in superposition to compute f(x) with probability $\geq 2/3$

Ex. Computing OR_n only needs \sqrt{n} quantum queries [Grover 96]

Quantum Query Lower Bounds

<u>"The Polynomial Method</u>" [Beals-Buhrman-Cleve-Mosca-deWolf98]: Accept prob. of a T query algorithm = Degree 2T polynomial in x

 \Rightarrow Quantum-query-complexity $(f) \ge \frac{1}{2} \operatorname{adeg}(f)$

Newer "adversary" methods:

Positive-weights method [Ambainis02]
Easy to apply, but limited in power

Negative-weights method [Høyer-Lee-Špalek07, ..., Reichardt11] Tight characterization, but difficult to apply

This work: New and nearly tight quantum query lower bounds via the polynomial method

Our Results

Problem	Best Prior Upper Bound	Our Lower Bound	Best Prior Lower Bound
k-distinctness	$O(n^{3/4-1/(2^{k+2}-4)})$ [Bel12a]	$\tilde{\Omega}(n^{3/4-1/(2k)})$	$ ilde{\Omega}(n^{2/3})$ [AS04]
Image Size Testing	$O(\sqrt{n}\log n)$ [ABRdW16]	$ ilde{\Omega}(\sqrt{n})$	$\tilde{\Omega}(n^{1/3})$ [ABRdW16]
k-junta Testing	$O(\sqrt{k}\log k)$ [ABRdW16]	$ ilde{\Omega}(\sqrt{k})$	$ ilde{\Omega}(k^{1/3})$ [ABRdW16]
SDU	$O(\sqrt{n})$ [BHH11]	$\tilde{\Omega}(\sqrt{n})$	$ ilde{\Omega}(n^{1/3})$ [BHH11, AS04]
Shannon Entropy	$\tilde{O}(\sqrt{n})$ [BHH11,LW17]	$\tilde{\Omega}(\sqrt{n})$	$ ilde{\Omega}(n^{1/3})$ [LW17]

Table 1: Our lower bounds on quantum query complexity and approximate degree vs. prior work.

Problem	Best Prior Upper Bound	Our Upper Bound	Our Lower Bound	Best Prior Lower Bound
Surjectivity	$\tilde{O}(n^{3/4})$ [She18]	$ ilde{O}(n^{3/4})$	$ ilde{\Omega}(n^{3/4})$	$\tilde{\Omega}(n^{2/3})$ [AS04]

Table 2: Our bounds on the approximate degree of Surjectivity vs. prior work.

Lower Bound for k-distinctness

Define
$$k$$
-DIST _{N,R} : {1,..., R } ^{N} \rightarrow {0, 1} by

 $k\text{-}\mathrm{DIST}_{N,R} \ (s_1, \ldots, s_N) = 1 \qquad \text{iff}$ Some $r \in [R]$ appears $\geq k$ times in the input list

Lower Bounds: <u>This work:</u> $\Omega(N^{2/3})$ [Aaronson-Shi01] via polynomial method $\Omega(N^{3/4-1/(2k)})$ via polynomial method

Our Results

Lower Bound Roadmap

- 1. Prove a hardness amplification theorem for functions in AC^0
- 2. Express Surjectivity, k-Distinctness, etc. as amplified versions of functions we understand

Hardness Amplification in AC⁰

<u>Theorem 1:</u> If $\operatorname{adeg}(f) > d$, then $\operatorname{adeg}(F) > t^{1/2}d$ for $F = \operatorname{OR}_t \circ f$ [B.-Thaler13, Sherstov13, BenDavid-Bouland-Garg-Kothari17]

<u>Theorem 2:</u> If $adeg_{-}(f) > d$, then $adeg_{1-2^{-t}}(F) > d$ for $F = OR_t$ of [B.-Thaler14]

<u>Theorem 3:</u> If $adeg_{-}(f) > d$, then $deg_{\pm}(F) > \min\{t, d\}$ for $F = OR_t$ o f [Sherstov14]

<u>Theorem 4:</u> If $adeg_+(f) > d$, then $adeg_{1-2^{-t}}(F) > d$ for $F = ODD-MAX-BIT_t$ o f [Thaler14]

 $\begin{array}{l} \underline{ \mbox{Theorem 5:}} \mbox{ If } {\rm adeg}(f) > d \mbox{, then } {\rm deg}_{\pm}(F) > \min\{t, \ d\} \\ \mbox{for } F = {\rm APPROX-MAJ}_t \mbox{ o } f \ \mbox{ [Bouland-Chen-Holden-Thaler-Vasudevan16]} \end{array} \end{array}$

Hardness Amplification

Theorem Template: If
$$f$$
 is "hard" to
approximate by low-degree polynomials, f ... f
then $F = g$ o f is "even harder" to // f ... f
approximate by low-degree polynomials x_1 x_R

Block Composition Barrier

Robust approximations, i.e.,

$$\operatorname{adeg}(g \circ f) \le \operatorname{O}(\operatorname{adeg}(g) \cdot \operatorname{adeg}(f))$$

imply that block composition cannot give better lower bounds than \sqrt{n}

Refined & generalized application

(2) New quantum query lower bounds

Breaking the Block Composition Barrier

Prior work:

- Hardness amplification "from the top"
- Block composed functions

Our new work:

- Hardness amplification "from the bottom"
 - Non-block-composed functions

Remainder of This Talk: Lower Bound for SURJECTIVITY

Getting to Know Surjectivity

Define
$$SURJ_{N,R} : \{1, ..., R\}^N \rightarrow \{0, 1\}$$
 by

$$\begin{aligned} \text{SURJ}_{N,R}(s_1, \hdots, s_N) &= 1 & \text{iff} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ &$$

Corresponds to a Boolean function on $O(N \log_2 R)$ bits Has quantum query complexity $\Omega(R)$ [Beame-Machmouchi10] but approximate degree $O(R^{3/4})$ [Sherstov17]

(For N = O(R))

Getting to Know Surjectivity

Getting to Know Surjectivity

<u>Observation</u>: To approximate $SURJ_{N,R}$, suffices to approx. AND_R o OR_N on inputs of Hamming weight N

Surjectivity Lower Bound

This work:

For some N = O(R), $\operatorname{adeg}(\operatorname{SURJ}_{N,R}) = \Omega(R^{3/4})$

Stage 1: Reduce to a claim about block composed functions

Lemma: Builds on symmetrization argument of [Ambainis03]

$$\operatorname{adeg}(\operatorname{SURJ}_{N,R}) = \Theta(\operatorname{adeg}((\operatorname{AND}_R \circ \operatorname{OR}_N)^{\leq N}))$$

Promised that $|y| \leq N$

Surjectivity Lower Bound

<u>This work:</u>

For some N = O(R), $\operatorname{adeg}(\operatorname{SURJ}_{N,R}) = \Omega(R^{3/4})$

Stage 2: Prove $\operatorname{adeg}((\operatorname{AND}_R \circ \operatorname{OR}_N)^{\leq N}) = \Omega(R^{3/4})$

Uses method of dual polynomials [loffe-Tikhomirov68, Sherstov07, Shi-Zhu07]

$$\begin{array}{c} \underbrace{\text{Primal}}_{p,\varepsilon} \\ \text{s.t. } |p(x) - f(x)| \leq \varepsilon \quad \forall x \in \{0,1\}^n \\ \text{deg}(p) \leq d \implies \sum_{x \in \{0,1\}^n} p(x)\Psi(x) = 0 \end{array}$$

Surjectivity Lower Bound

This work:

For some N = O(R), $\operatorname{adeg}(\operatorname{SURJ}_{N,R}) = \Omega(R^{3/4})$

Stage 2: Prove $\operatorname{adeg}((\operatorname{AND}_R \circ \operatorname{OR}_N)^{\leq N}) = \Omega(R^{3/4})$ Uses method of dual polynomials [loffe-Tikhomirov68, Sherstov07, Shi-Zhu07]

From Justin's talk:

Can prove $\operatorname{adeg}(\operatorname{AND}_R \circ \operatorname{OR}_N) = \Omega(R)$ by combining dual polynomials $\Psi_{\operatorname{AND}}$ and Ψ_{OR} to construct a dual polynomial $\Psi_{\operatorname{AND-OR}}$ [B.-Thaler13, Sherstov13]

Details of Stage 2

<u>Claim</u>: $adeg(AND_R \circ OR_N) = \Omega(R^{3/4})$ even under the promise that $|x| \leq N$

is equivalent to

There exists a dual polynomial witnessing $adeg(AND_R O OR_N) = \Omega(R^{3/4})$ which is supported on inputs with $|x| \le N$

Does the dual polynomial we already have for $AND_R OOR_N$ satisfy this property?

Fixing the AND-OR Dual Polynomial

D

$$\Psi_{\text{AND-OR}}(x) = 2^R \Psi_{\text{AND}}(\operatorname{sgn}\Psi_{\text{OR}}(x_1), \dots, \operatorname{sgn}\Psi_{\text{OR}}(x_R)) \prod_{i=1}^n |\Psi_{\text{OR}}(x_i)|$$

$$\begin{split} \Psi_{\mathrm{OR}} & \textit{must} \text{ be nonzero for inputs with} \\ \text{Hamming weight up to } \Omega(N) \\ & \Rightarrow \Psi_{\mathrm{AND-OR}} \text{ nonzero up to Hamming weight } \Omega(RN) \end{split}$$

- 1. $\Psi_{\mathrm{AND}\text{-}\mathrm{OR}}$ has $L_1\text{-}\mathrm{norm}\;1$ 🖌
- 2. $\Psi_{\rm AND\text{-}OR}$ has pure high degree $\Omega(R^{1/2}N^{1/2})$ = $\Omega(R)$ /
- 3. $\Psi_{\rm AND\text{-}OR}$ has high correlation with $\mathsf{AND}_R\,\mathbf{o}\;\mathsf{OR}_N$
- 4. $\Psi_{\text{AND-OR}}$ is supported on inputs with $|x| \leq N$

Fixing the AND-OR Dual Polynomial

D

$$\Psi_{\text{AND-OR}}(x) = 2^R \Psi_{\text{AND}}(\operatorname{sgn}\Psi_{\text{OR}}(x_1), \dots, \operatorname{sgn}\Psi_{\text{OR}}(x_R)) \prod_{i=1}^n |\Psi_{\text{OR}}(x_i)|$$

$$\begin{split} \Psi_{\mathrm{OR}} & \textit{must} \text{ be nonzero for inputs with} \\ \text{Hamming weight up to } \Omega(N) \\ & \Rightarrow \Psi_{\mathrm{AND-OR}} \text{ nonzero up to Hamming weight } \Omega(RN) \end{split}$$

Fix 1: Trade pure high degree of Ψ_{OR} for "support" size

Fix 2: Zero out high Hamming weight inputs to $\Psi_{AND\text{-}OR}$

Fix 1: Trading PHD for Support Size

For every integer $1 \le m \le N$, there is a dual polynomial Ψ_{OR}^m for OR_N which \Box has pure high degree $\Omega(m^{1/2})$

 \square is supported on inputs of Hamming weight $\leq m$

 $\Psi_{\text{AND-OR}}^{m}(x) = 2^{R} \Psi_{\text{AND}}(\operatorname{sgn} \Psi_{\text{OR}}^{m}(x_{1}), \dots, \operatorname{sgn} \Psi_{\text{OR}}^{m}(x_{R})) \prod_{i=1}^{R} |\Psi_{\text{OR}}^{m}(x_{i})|$

Dual polynomial $\Psi^{\ m}_{
m AND-OR}$

- has pure high degree $\Omega(R^{1/2}\ m^{1/2})$
- is supported on inputs of Hamming weight $\leq m R$

Dual polynomial $\Psi^{\,m}_{
m AND-OR}$

- has pure high degree $\Omega(R^{1/2} \; m^{1/2})$
- is supported on inputs of Hamming weight $\leq mR$

Suppose further that
$$\sum_{|x|>N} |\Psi^m_{AND-OR}(x)| \ll \operatorname{negl}(R)$$

Can we post-process Ψ_{AND-OR}^{m} to zero out inputs with Hamming weight $N < |x| \le mR...$ YES (Follows from

[Razborov-Sherstov-08])

- ...without ruining
- pure high degree of $\Psi^m_{\mathrm{AND-OR}}$
- correlation between $\Psi^m_{\mathrm{AND-OR}}$ and $\mathsf{AND}_R \mathsf{o} \, \mathsf{OR}_N$?

<u>Technical Lemma</u> (follows from [Razborov-Sherstov08]) If 0 < D < N and

$$\sum_{|x|>N} |\Psi^m_{\text{AND-OR}}(x)| \ll 2^{-D},$$

then there exists a "correction term" $\Psi^m_{
m corr}$ that

- 1. Agrees with $\Psi^{\,m}_{\rm AND-OR}$ inputs of Hamming weight >N
- 2. Has L_1 -norm 0.01
- 3. Has pure high degree D

Claim: For
$$1 \le m \le N$$
,

$$\sum_{|x|>N} |\Psi_{\text{AND-OR}}^m(x)| \ll 2^{-R/m^{1/2}}$$

Proof idea:

 Ψ_{OR}^m can be made biased toward low Hamming weight inputs: For all t > 0, $\sum_{|x|=t} |\Psi_{\mathrm{OR}}^m(x)| \lesssim \exp(-t/m^{1/2})$

Primal interpretation: Any polynomial that looks like this still has degree $\Omega(m^{1/2})$

Claim: For
$$1 \le m \le N$$
, $\sum_{|x|>N} |\Psi_{\text{AND-OR}}^m(x)| \ll 2^{-R/m^{1/2}}$

Proof idea:

 Ψ_{OR}^m can be made biased toward low Hamming weight inputs: For all t > 0, $\sum_{|x|=t} |\Psi_{\mathrm{OR}}^m(x)| \lesssim \exp(-t/m^{1/2})$

⇒ "Worst" high Hamming weight inputs look like $|x_1| = m^{1/2}, ..., |x_{N/m^{1/2}}| = m^{1/2}, |x_{(N/m^{1/2})+1}| = 0, ..., |x_R| = 0$ $\Psi_{\text{AND-OR}}^m(x) = 2^R \Psi_{\text{AND}}(\operatorname{sgn} \Psi_{\text{OR}}^m(x_1), ..., \operatorname{sgn} \Psi_{\text{OR}}^m(x_R)) \prod_{i=1}^R |\Psi_{\text{OR}}^m(x_i)|$

Weight on such inputs looks like $2^{-N/m^{1/2}}$

Putting the Pieces Together

Recap of SURJECTIVITY Lower Bound

<u>This work:</u>

For some N = O(R), $\operatorname{adeg}(\operatorname{SURJ}_{N,R}) = \Omega(R^{3/4})$

Stage 1: Apply symmetrization to reduce to

Builds on [Ambainis03]

<u>Claim</u>: $adeg(AND_R \circ OR_N) = \Omega(R^{3/4})$ even under the promise that $|x| \leq N$

Stage 2: Prove Claim via method of dual polynomials

Refines AND-OR dual polynomial w/ techniques of [Razborov-Sherstov08]

Conclusions

 $\begin{array}{ll} \mbox{Hardness amplification beyond block composition} &\Rightarrow \\ & \mbox{Nearly optimal lower bounds for AC^0} \\ & \mbox{New quantum query lower bounds} \\ \mbox{Imminently forthcoming work:} & \mbox{adeg}_{\varepsilon}(F) \geq \Omega(n^{1-\delta}) \mbox{ for some } \varepsilon \geq 1 - \exp(\Omega(n^{1-\delta})) \mbox{ and } F \in \mathsf{AC^0} \end{array}$

Open Problems:

- Thank you!
- Approximate degree / quantum query complexity of poly-size DNF? Best lower bound: $\Omega(n^{3/4 \delta})$
- Lower bounds for quantum problems with different structure (e.g. triangle finding, graph collision, verifying matrix products)