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Approximate Degree mian-szegedyo2)

For a Boolean function f: {0,1}" > {0, 1}

Approximate Degree: Minimum degree of a real
polynomial p: {0,1}" > R such that

Ip(x) — f(z)] <1/3  forall z€ {0, 1}"

OR o5 (z)
1.2
1

Denoted by adeg(f) o

0.6}

Ex. adeg(OR,) = O(/n) .




Research Directions for the

Polynomial Method
o

(1) Advance our understanding of adeg

A Nearly Optimal Lower Bound on the Approximate Degree of AC°
. “

C—Iqrdness amplification within ACD

(2) Use adeg to advance application domains

The Polynomial Method Strikes Back:
Tight Quantum Query Bounds via Dual Polynomials

N\ S/




Approximate Degree of AC°
—

Q: Is there an ACP° function

with approximate degree

adeg(Element-Dist,) = n?/ 3)
[Aaronson-ShiO1]

— adeg(OR,) = Q(n!/?)

/ [Nisan-Szegedy92]




Approximate Degree of AC°
—

adeg(Fk;n) — Q(nl_zk) Nearly linear

This work

adeg(Surjectivity, ) = Q(n3/*)

This work

adeg(Element-Dist,) = n?/ 3)
[Aaronson-ShiO1]

— adeg(OR,,) = Q(n!/?)

[Nisan-Szegedy92]




Applications of AC° Lower Bound

Learning via regression requires
exp(Q(n'?)) features

Nearly optimal (n!-) R
quantum and multiparty T, =

Improved secret sharing
with reconstruction in ACY

communication lower bounds for AC°



Research Directions for the

Polynomial Method
o

(1) Advance our understanding of adeg

A Nearly Optimal Lower Bound on the Approximate Degree of AC°
. “

C—Iqrdness amplification within ACD

(2) Use adeg to advance application domains

The Polynomial Method Strikes Back:
Tight Quantum Query Bounds via Dual Polynomials

N\ S/




(Deterministic) Query Complexity

Let f: {0, 1}" > {0, 1} be a boolean function

Deterministic Query Complexity:

Minimum number of bits of x that must be read

to compute f(z)

Ex. Computing OR Ty | Ty | @y | Xy | e | T4

requires n queries




Quantum Query Complexity

Let f: {0, 1}" > {0, 1} be a boolean function

Quantum Query Complexity:

Minimum number of bits of x that must be read in superposition

to compute f(x) with probability > 2/3
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Unitaries mdependen’r of x



Quantum Query Complexity

Let f: {0, 1}" > {0, 1} be a boolean function

Quantum Query Complexity:

Minimum number of bits of x that must be read in superposition

to compute f(x) with probability > 2/3

Ex. Computing OR
only needs+/n quantum queries [Grover9s]



Quantum Query Lower Bounds

“The Polynomial Me’rhod” [Beals-Buhrman-Cleve-Mosca-deWolf98]:
Accept prob. of a 1T' query algorithm = Degree 271 polynomial in x

= Quantum-query-complexity(f) = V2 adeg(f)

Newer “adversary” methods: M- T e
Positive-weights method [Ambainis02]

Easy to apply, but limited in power
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Negative-weights method [Heyer-Lee-3palek07, ..., Reichardt1 1]

Tight characterization, but difficult to apply

This work: New and nearly tight quantum query lower
bounds via the polynomial method



Qur Results

Problem

Best Prior Upper Bound
O(n3/4_1/(2k+2_4)) [Bel12a]

Our Lower Bound

Q(n3/4-1/(2K))

Best Prior Lower Bound
k-distinctness

Q(n?/3) [AS04]
Image Size Testing O(y/nlogn) [ABRAW16]

Q(y/n) (n'/3) [ABRAW16]

k-junta Testing O(Vklogk) [ABRAW16] Q(Vk) Q(k'/3) [ABRAW16]

SDU O(y/n) [BHH11] Q(y/n) ()(n'/3) [BHH11, AS04]
Shannon Entropy O(y/n) [BHH11,LW17] Q(v/n) Q(n'/3) [LW17]

Table 1: Our lower bounds on quantum query complexity and approximate degree vs. prior work.

Problem

Best Prior Upper Bound

Our Upper Bound
Surjectivity O(n®/*) [Shel§]

Our Lower Bound

Best Prior Lower Bound
O(n3/4) Q(n3/4)

Q(n2/3) [AS04]
Table 2: Our bounds on the approximate degree of Surjectivity vs. prior work.




Lower Bound for k-distinctness

Define k-DIST y  : {1 ,..., R}" > {0, 1} by

k-DIST y p (8, +eer Sy) = 1 iff
Some r €| R] appears = k times in the input list

Corresponds to a Boolean function on O(N log,R) bits
Upper Bounds: O(NF 1)) [ambainis03] via quantum walks

O(N3/41/exp(k ) [Belovs12] Via learning graphs

(
Lower Bounds: QU(N?/3) taaronson-shio1] via polynomial method

This work: Q(N3/41/28) via polynomial method



QOur Results

Q(n'%) lower bound
for AC°

Recursive Application

Ideas

[ O(n?/*) upper bound for | Intition & Q(n?/*) lower bound

Surjectivity for Surjectivity

New proof of [Sherstov17] Common Proof Strategy

Qualitatively matches [Belovs12] | k-Distincthess: Q(n3/4 —1/(2’“))
Matches [Ambainis-Belovs-Regev-deWolf16] Image Size Testing: Q(nl/z)
Reductions

Matches [Ambainis-Belovs-Regev-deWolf16] | Statistical Dist. from Uniform: Q(n1/2)
Matches [Bravyi-Harrow-Hassidim11] | k-Junta Testing: Q(kl/z)
Matches [Li-Wul7]{ Shannon Entropy: Q(n1/2)




Lower Bound Roadmap

1. Prove a hardness amplification theorem for
functions in ACO

2. Express Surjectivity, k-Distinctness, etc. as
amplified versions of functions we understand

AND .

P 7ANNN

ORy = ORy
//\\ //\\

Y11 oo eee Ypn

/%\



Hardness Amplification in AC°

Theorem 1: If adeg(f) > d, then adeg(F') > t/2d
for F' = ORtO f [B.-Thaler13, Sherstov13, BenDavid-Bouland-Garg-Kotharil7]

Theorem 2: If adeg (f) > d, then adeg o« (F') > d
for '= OR, o f [B-Thaler14]

Theorem 3: If adeg (f) > d, then deg_ (F') > min{¢, d}
for F' = ORtO f [Sherstov14]

Theorem 4: If adeg_ (f) > d, then adeg1_2_t(F) > d
for F'= ODD-MAX-BIT, o f [Thaler14]

Theorem 5: If adeg(f) > d, then deg (F') > min{¢, d}
for F'= APPROX—MAJt O f [Bouland-Chen-Holden-Thaler-Vasudevan1 6]




Hardness Amplification

Theorem Template: If fis “hard” to ///{\\

approximate by low-degree polynomials,

I
then I' = g o fis “even harder” to VZANN /7 N\
LR

approximate by low-degree polynomials 74

Block Composition Barrier

Robust approximations, i.e.,

adeg(g o f) < O(adeg(g) * adeg(f))

imply that block composition cannot give better lower bounds than</n




Our Work: A New Hardness
Amplification Theorem for Degree

(1) An Q(n'%) approximate
degree lower bound for AC°

Recursive

D— application

@’rq rt with: Construct: \

f
Y N
L

adeg(f) > d adeg(F) > Q(dV/2- nl/?)

F

ATV

v :El ) :L’O(W

Refined & generalized (2)
application —

—

New quantum query
lower bounds




Breaking the Block Composition Barrier

g

Prior work:
* Hardness amplification “from the top” ///\\\
* Block composed functions f oo f
ZANNEEVZAN
4 L,

/
P ZANNN

9 g
/M Our new work:

* Hardness amplification “from the bottom”

* Non-block-composed functions



Remainder of This Talk:
Lower Bound for SURJECTIVITY

AND ,
P7ANN N
ORy  ORy
PAANN PAANN

Y11 o« Yin  Yr1 -+ YgnN
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Getting to Know Surjectivity
Define SURJ y 5 : {1 ,..., R} > {0, 1} by

SURJ y (81 +-es Sy) = 1 iff
Every r €| R| appears in the input list

Corresponds to a Boolean function on O(N log,R) bits

Has quantum query complexity 2(R) Beame-Machmouchi1o] but
approximate degree O(R3/4) isherstov17]
(For N = O(R))



Getting to Know Surjectivity

SURJ y (81 s Sy) = 1 iff
Every r €| R| appears in the input list

AND,

Define auxiliary variables
Y AN
1 if s,=1r ORy ... ORy
yr z( ) —

//\\ //\\

Y1 eee -+« YrN

/%\

0 otherwise

Then SURJy p(s, ..., sy) =
ANDR( ORN(ylla e le)? "t ORN <yR17 e yRN) )



Getting to Know Surjectivity

Observation: To approximate SURJ y 5, suffices to approx.
AND, o0 OR on inputs of Haomming weight N

Define auxiliary variables AND
1 if s,=1r ORy ... ORy
Yrd$) = 0 otherwise //\\ //\\
Y1 eee -+« YrN
/%\

Then SURJy p(s, ..., sy) =
ANDR( ORN(ylla e le)? "t ORN <yR17 e yRN) )



Surjectivity Lower Bound

This work:

For some N = O(R), adeg(SURJy ;) = Q(R¥4)

Stage 1: Reduce to a claim about block composed functions

Lemma: Builds on symmetrization argument of [AmbainisO3]

adeg(SURJy ) = O(adeg( (AND}O ORy)=" ) )

ANDy, Promised that |y| < N
ORy .. ORy
A7 A7
Y1 ¢+ Yin  Yr1 .- Yrn



Surjectivity Lower Bound

This work:

For some N = O(R),

|

adeg(SURJy ) = Q(R¥4)

Stage 2: Prove adeg( (AND, o OR,)=V ) = Q(R3/4)

Uses method of dual polynomials

-

min
D,

E

Primal

~

s.t. |p(z) — f(z)| <e Vwe{0,1}"

/

max Y  (—1)7@ ()
xe{0,1}

2 w@l=1
xe{0,1}"




Surjectivity Lower Bound

This work:

For some N = O(R), adeg(SURJy ;) = Q(R¥4)

Stage 2: Prove adeg( (AND, o OR,)=V ) = Q(R3/4)

From Justin’s talk:

Can prove adeg(AND, o0 ORy) = Q(R) by combining
dual polynomials W,y and W4y to construct a dual
polynomidl \IJAND—OR [B.-Thaler13, Sherstov1 3]



Details of Stage 2

Claim: adeg(AND 0 OR,) = Q(R%*) even under the
promise that |x| < N

is equivalent to

There exists a dual polynomial witnessing adeg(AND 0 OR )
= Q(R3/*) which is supported on inputs with |2| < N

Does the dual polynomial we already have for AND, 0 OR,
satisfy this property? NO



Fixing the AND-OR Dual Polynomial

R
U anD-or (€) = 2% Wanp (sgn Yor(21), .. . ,sgn Yor(zr)) | [ [Yor(z:)]
z':1/7
W, must be nonzero for inputs with
Hamming weight up to ()
=W ,np.or Nonzero up to Hamming weight Q(RN )

1. ¥, xp.op has Li-norm 1/

2. U, np.or has pure high degree Q(RY2NV2) = Q(R)/
3. ¥, \p.or has high correlation with AND, 0 OR,

4. U, \p.or is supported on inputs with || < N X



Fixing the AND-OR Dual Polynomial

R
U anp-or(2) = 2"WanD (sgn Yor(21), - - - ,sgn Yor(zR)) H (Wor(z:)|

z':1/7
W, must be nonzero for inputs with
Hamming weight up to ()
=W ,np.or Nonzero up to Hamming weight Q(RN )

Fix 1: Trade pure high degree of W, for “support” size

Fix 2: Zero out high Hamming weight inputs to V y\xp_or



Fix 1: Trading PHD for Support Size

For every integer 1 < m < N, there is a dual
polynomial W, for OR, which

has pure high degree Q(m!/?)
is supported on inputs of Hamming weight < m

R
UAND-OR (%) = 2" WaAND (sgn UOR (71), - - ., 5gn UOR(TR)) H [ WOR ()]
i=1

" Dual polynomial ¥ \\p_or -

* has pure high degree Q(R!/? m!/?)

K. is supported on inputs of Hamming weight < mR




Fix 2: Zeroing Out High
Hamming Weight Inputs

"Dual polynomial ¥ AND.OR
* has pure high degree Q(R'/2 ml!/?)
_* is supported on inputs of Hamming weight < mRiR

Suppose further that Z i ND.oR ()] < negl(R)

Can we post-process ¥ ynp.or 10 zero out inputs with

Hamming weight N < |z| < mR...
YES (Follows from

..without ruinin
9 [quborov-ShersTov-OS])

* pure high degree of ¥, \p or
* correlation between U '\, or and AND,0 OR 2



Fix 2: Zeroing Out High
Hamming Weight Inputs

Technical Lemma (follows from [rRazborov-Sherstov08])

f 0 < D < N and

then there exists a “correction term” W  that

1. Agrees with WV /iy or inputs of Hamming weight >N
2. Has L;-norm 0.01
3. Has pure high degree D



Fix 2: Zeroing Out High
Hamming Weight Inputs

_R/ml/2
Claim: For 1 < m < N, Z U p.or(z)] < 271

Proof idea:

U Ji can be made biased toward low Hamming weight inputs:
For all ¢ > 0, > WBR(@)| S exp(—t/m'/?)

lx|=t

p()

Primal interpretation:
Any polynomial that looks like this
still has degree Q(m!/?)

exp(|al /m!/?)

¥ i T



Fix 2: Zeroing Out High
Hamming Weight Inputs

Claim: For 1 < m < N, Z [WAND-or(7)] < 27 Rfm?/?
lx|>N
Proof idea:
U Ji can be made biased toward Iow Hamming weight inputs:
Forall t > 0, > U8Bk (2)] S exp(—t/m'/?)
lx|=t

= “Worst” high Hamming weight inputs look like
2| = ml2, o [Ty e | = MY 2 0] =0, e, |2 = 0
R

UAND-OR (2) = 27U AnD (sgn UOR (71), - - ., 5gn YOR(TR)) H [WOR ()|
i=1
1/2 7

Weight on such inputs looks like 2-Y/™



Putting the Pieces Together

" Dual polynomial U\ \D.0R Fix 1
* has pure high degree Q(R/2 m!/?)

e satisfies Z O p.or (2)] < 27 R/™

\ e Balanced at m = RY?2 ./
/Correction term U™ = PHD Q(R%/%) )

COorr

* has pure high degree Q(R/m!/?)
* agrees with U\ o inputs of Hammir  eight >N

=W xD-0r = [\PXND-OR - \IJZZSJ has
1. Li-norm =1
2. high correlation with AND, 0 OR,,
3. pure high degree Q(min{RY?m!/2, R/m!/?})

4. support on inputs with || < N



Recap of SURJECTIVITY Lower Bound

This work:

For some N = O(R), adeg(SURJy ;) = Q(R¥4)

Stage 1: Apply symmetrization to reduce to [ Builds on }
[AmbainisO3]

Claim: adeg(AND ,0 OR ) = Q(R?/*) even under the
promise that |z| < N

Stage 2: Prove Claim via method of dual polynomials

[ Refines AND-OR dual polynomial w/ techniques of [Razborov-Sherstov08] J




Conclusions

Hardness amplification beyond block composition =
Nearly optimal lower bounds for AC°
New quantum query lower bounds

Imminently forthcoming work:  adeg_(F) > Q(n!*%) for
some ¢ > 1 — exp(2(n?)) and F € ACC

|
Open Problems: Thank youl!

Approximate degree / quantum query complexity of
poly-size DNF2  Best lower bound: Q(n?/4-9)

Lower bounds for quantum problems with different
structure (e.g. triangle finding, graph collision, verifying
matrix products)



