On the Discrepancy of Random Matrices with Many Columns

Cole Franks and Michael Saks August 18, 2018

- discrepancy of a matrix: extent to which the rows can be simultaneously split into two equal parts.
- Formally, let $\|\cdot\|_*$ be a norm, and let

$$\mathsf{disc}_*(M) = \min_{v \in \{+1, -1\}^n} \|Mv\|_*$$

(M is an $m \times n$ matrix).

Goal: prove $disc_*(M)$ is small in certain situations, and find the good assignments v efficiently.

- discrepancy of a matrix: extent to which the rows can be simultaneously split into two equal parts.
- ullet Formally, let $\|\cdot\|_*$ be a norm, and let

$$\mathsf{disc}_*(M) = \min_{v \in \{+1, -1\}^n} \|Mv\|_*$$

(M is an $m \times n$ matrix).

Goal: prove $\operatorname{disc}_*(M)$ is small in certain situations, and find the good assignments v efficiently.

- discrepancy of a matrix: extent to which the rows can be simultaneously split into two equal parts.
- ullet Formally, let $\|\cdot\|_*$ be a norm, and let

$$\mathsf{disc}_*(M) = \min_{v \in \{+1, -1\}^n} \|Mv\|_*$$

(M is an $m \times n$ matrix).

Goal: prove $\operatorname{disc}_*(M)$ is small in certain situations, and find the good assignments v efficiently.

- discrepancy of a matrix: extent to which the rows can be simultaneously split into two equal parts.
- Formally, let $\|\cdot\|_*$ be a norm, and let

$$\mathsf{disc}_*(M) = \min_{v \in \{+1, -1\}^n} \|Mv\|_*$$

(M is an $m \times n$ matrix).

Goal: prove $disc_*(M)$ is small in certain situations, and find the good assignments ν efficiently.

1

$$\mathsf{disc}_{\infty}\left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right] = 1$$

- Extractors: the best extractor for two independent *n*-bit sources with min-entropy k has error rate $\operatorname{disc}_{\infty}(M)$ where M is a
 - 1. $\binom{2^n}{2^k}^2 \times 2^{2n}$ matrix
 - 2. with one row for each rectangle $A \times B \subset \{0,1\}^n \times \{0,1\}^n$ with $|A| = |B| = 2^k$,
 - 3. each row is a $2^n \times 2^n$ matrix with (x, y) entry equal to $\frac{1}{2^{2k}} 1_A(x) 1_B(y)$.

number of rows is \gg number of columns, random coloring optimal but useless!

•

$$\mathsf{disc}_{\infty}\left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right] = 1$$

- Extractors: the best extractor for two independent *n*-bit sources with min-entropy k has error rate $\operatorname{disc}_{\infty}(M)$ where M is a
 - 1. $\binom{2^n}{2^k}^2 \times 2^{2n}$ matrix
 - 2. with one row for each rectangle $A \times B \subset \{0,1\}^n \times \{0,1\}^n$ with $|A| = |B| = 2^k$,
 - 3. each row is a $2^n \times 2^n$ matrix with (x, y) entry equal to $\frac{1}{2^{2k}} 1_A(x) 1_B(y)$.

 number of rows is \gg number of columns, random coloring optimal

$$\mathsf{disc}_{\infty}\left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right] = 1$$

- Extractors: the best extractor for two independent *n*-bit sources with min-entropy k has error rate $\operatorname{disc}_{\infty}(M)$ where M is a
 - 1. $\binom{2^n}{2^k}^2 \times 2^{2n}$ matrix
 - 2. with one row for each rectangle $A \times B \subset \{0,1\}^n \times \{0,1\}^n$ with $|A| = |B| = 2^k$,
 - 3. each row is a $2^n \times 2^n$ matrix with (x, y) entry equal to $\frac{1}{2^{2k}} 1_A(x) 1_B(y)$. number of rows is \gg number of columns, random coloring optimal

$$\mathsf{disc}_{\infty}\left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right] = 1$$

- Extractors: the best extractor for two independent *n*-bit sources with min-entropy k has error rate $\operatorname{disc}_{\infty}(M)$ where M is a
 - 1. $\binom{2^n}{2^k}^2 \times 2^{2n}$ matrix
 - 2. with one row for each rectangle $A \times B \subset \{0,1\}^n \times \{0,1\}^n$ with $|A| = |B| = 2^k$,
 - 3. each row is a $2^n \times 2^n$ matrix with (x, y) entry equal to $\frac{1}{2^{2k}} 1_A(x) 1_B(y)$. number of rows is \gg number of columns, random coloring optimal but useless!

 $\mathsf{disc}_{\infty}\left[egin{array}{ccc}1&0&1\1&1&1\end{array}
ight]=1$

- Extractors: the best extractor for two independent *n*-bit sources with min-entropy k has error rate $\operatorname{disc}_{\infty}(M)$ where M is a
 - 1. $\binom{2^n}{2^k}^2 \times 2^{2n}$ matrix
 - 2. with one row for each rectangle $A \times B \subset \{0,1\}^n \times \{0,1\}^n$ with $|A| = |B| = 2^k$,
 - 3. each row is a $2^n \times 2^n$ matrix with (x, y) entry equal to $\frac{1}{2^{2k}} 1_A(x) 1_B(y)$.

number of rows is \gg number of columns, random coloring optimal but useless!

•

$$\mathsf{disc}_{\infty} \left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 1 \end{array} \right] = 1$$

- Extractors: the best extractor for two independent *n*-bit sources with min-entropy k has error rate $\operatorname{disc}_{\infty}(M)$ where M is a
 - 1. $\binom{2^n}{2^k}^2 \times 2^{2n}$ matrix
 - 2. with one row for each rectangle $A \times B \subset \{0,1\}^n \times \{0,1\}^n$ with $|A| = |B| = 2^k$,
 - 3. each row is a $2^n \times 2^n$ matrix with (x, y) entry equal to $\frac{1}{2^{2k}} 1_A(x) 1_B(y)$.

number of rows is \gg number of columns, random coloring optimal but useless!

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: $M_{ij} \in [-1,1]$ and $\leq t$ nonzero entries per column,

$$herdisc(M) \leq 2t - 1$$

Beck-Fiala Conjecture: If M as above,

$$herdisc(M) = O(\sqrt{t})$$

Komlos Conjecture: *M* with unit vector columns,

$$herdisc(M) = O(1)$$

Banaczszyk's Theorem: If M as above,

$$\operatorname{herdisc}(M) = O(\sqrt{\log m})$$

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: $M_{ij} \in [-1,1]$ and $\leq t$ nonzero entries per column,

$$herdisc(M) \leq 2t - 1.$$

Beck-Fiala Conjecture: If M as above,

$$herdisc(M) = O(\sqrt{t})$$

Komlos Conjecture: M with unit vector columns,

$$herdisc(M) = O(1)$$

Banaczszyk's Theorem: If M as above

$$\operatorname{herdisc}(M) = O(\sqrt{\log m})$$

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: $M_{ij} \in [-1,1]$ and $\leq t$ nonzero entries per column,

$$herdisc(M) \leq 2t - 1.$$

Beck-Fiala Conjecture: If M as above,

$$herdisc(M) = O(\sqrt{t})$$

Komlos Conjecture: M with unit vector columns,

$$herdisc(M) = O(1)$$

Banaczszyk's Theorem: If M as above

$$herdisc(M) = O(\sqrt{\log m})$$

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: $M_{ij} \in [-1,1]$ and $\leq t$ nonzero entries per column,

$$herdisc(M) \leq 2t - 1.$$

Beck-Fiala Conjecture: If *M* as above,

$$herdisc(M) = O(\sqrt{t})$$

Komlos Conjecture: *M* with unit vector columns,

$$herdisc(M) = O(1)$$

Banaczszyk's Theorem: If M as above,

$$herdisc(M) = O(\sqrt{\log m})$$

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: $M_{ij} \in [-1,1]$ and $\leq t$ nonzero entries per column,

$$herdisc(M) \leq 2t - 1$$
.

Beck-Fiala Conjecture: If M as above,

$$herdisc(M) = O(\sqrt{t})$$

Komlos Conjecture: *M* with unit vector columns,

$$herdisc(M) = O(1)$$

Banaczszyk's Theorem: If M as above,

$$\operatorname{herdisc}(M) = O(\sqrt{\log m})$$

Discrepancy of random matrices

Let M be a random t-sparse matrix

$$m \left[\begin{array}{ccccc} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array} \right]$$

Theorem (Ezra, Lovett 2015)

Few columns: If n = O(m), then with probability $1 - \exp(-\Omega(t))$

$$\mathsf{herdisc}(M) = O(\sqrt{t \log t}).$$

Many columns: If $n = \Omega\left(\binom{m}{t} \log \binom{m}{t}\right)$ then with pr. $1 - \binom{m}{t}^{-\Omega(1)}$

$$disc(M) \leq 2$$

Discrepancy of random matrices

Let M be a random t-sparse matrix

$$m \underbrace{ \left[\begin{array}{ccccc} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array} \right]}_{n}$$

Theorem (Ezra, Lovett 2015)

Few columns: If n = O(m), then with probability $1 - \exp(-\Omega(t))$.

$$\mathsf{herdisc}(M) = O(\sqrt{t \log t}).$$

Many columns: If $\mathbf{n} = \Omega\left(\binom{\mathbf{m}}{t} \log \binom{\mathbf{m}}{t}\right)$ then with pr. $1 - \binom{\mathbf{m}}{t}^{-\Omega(1)}$

$$\operatorname{disc}(M) \leq 2$$

Discrepancy of random matrices

Let M be a random t-sparse matrix

$$m \underbrace{\left[\begin{array}{ccccc} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array} \right]}_{n}$$

Theorem (Ezra, Lovett 2015)

Few columns: If n = O(m), then with probability $1 - \exp(-\Omega(t))$.

$$\mathsf{herdisc}(M) = O(\sqrt{t \log t}).$$

Many columns: If $n = \Omega\left(\binom{m}{t}\log\binom{m}{t}\right)$ then with pr. $1 - \binom{m}{t}^{-\Omega(1)}$,

$$\operatorname{disc}(M) \leq 2$$

Why not herdisc for many columns?

- $\mathcal{L} \subset \mathbb{R}^m$ is a nondegenerate lattice,
- X is a finitely supported r.v. on \mathcal{L} such that span $_{\mathbb{Z}}X=\mathcal{L}$.
- *n* columns of *M* are drawn i.i.d from *X*.

Question

How does disc*(M) behave for various ranges of n?

- $\mathcal{L} \subset \mathbb{R}^m$ is a nondegenerate lattice,
- X is a finitely supported r.v. on \mathcal{L} such that span $_{\mathbb{Z}}X=\mathcal{L}$.
- *n* columns of *M* are drawn i.i.d from *X*.

Question

How does disc*(M) behave for various ranges of n?

- $\mathcal{L} \subset \mathbb{R}^m$ is a nondegenerate lattice,
- X is a finitely supported r.v. on \mathcal{L} such that span $_{\mathbb{Z}}X=\mathcal{L}$.
- *n* columns of *M* are drawn i.i.d from *X*.

Question

How does disc_{*}(M) behave for various ranges of n?

- $\mathcal{L} \subset \mathbb{R}^m$ is a nondegenerate lattice,
- X is a finitely supported r.v. on \mathcal{L} such that span $_{\mathbb{Z}}X=\mathcal{L}$.
- *n* columns of *M* are drawn i.i.d from *X*.

Question

How does $disc_*(M)$ behave for various ranges of n?

For $n\gg m$ the problem becomes a closest vector problem on \mathcal{L} .

Definition

 $ho_*(\mathcal{L})$ is the covering radius of \mathcal{L} in the norm $\|\cdot\|_*$

Fact

 $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability as $n \to \infty$.

Naïvely, *n* has to be huge

not tight!

For $n \gg m$ the problem becomes a closest vector problem on \mathcal{L} .

Definition

 $\rho_*(\mathcal{L})$ is the covering radius of \mathcal{L} in the norm $\|\cdot\|_*$.

Fact

 $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability as $n \to \infty$.

Naïvely, *n* has to be huge

not tight!

For $n \gg m$ the problem becomes a closest vector problem on \mathcal{L} .

Definition

 $\rho_*(\mathcal{L})$ is the covering radius of \mathcal{L} in the norm $\|\cdot\|_*$.

Fact

 $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability as $n \to \infty$.

Naïvely, *n* has to be huge.

For $n \gg m$ the problem becomes a closest vector problem on \mathcal{L} .

Definition

 $\rho_*(\mathcal{L})$ is the covering radius of \mathcal{L} in the norm $\|\cdot\|_*$.

Fact

 $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability as $n \to \infty$.

Na"ively, n has to be huge.

not tight!

For $n \gg m$ the problem becomes a closest vector problem on \mathcal{L} .

Definition

 $\rho_*(\mathcal{L})$ is the covering radius of \mathcal{L} in the norm $\|\cdot\|_*$.

Fact

 $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability as $n \to \infty$.

Naïvely, n has to be huge.

not tight!

For a given random variable X, how large must n be before $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability?

```
t-sparse vectors, \ell_{\infty}

• \mathcal{L} is \{x \in \mathbb{Z}^m : \sum x_i \equiv 0 \bmod t\}

• \rho_{\infty}(\mathcal{L}) = 1

By fact, \mathrm{disc}_{\infty}(M) \leq 2 eventually.

EL15 showed this happens for n \geq \Omega(\binom{m}{t}\log\binom{m}{t}). exponentia dependence on t!

This work: n = \Omega(m^3\log^2 m)
```

For a given random variable X, how large must n be before $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability?

t-sparse vectors, ℓ_{∞}

- \mathcal{L} is $\{ \boldsymbol{x} \in \mathbb{Z}^m : \sum x_i \equiv 0 \mod t \}$
- $\rho_{\infty}(\mathcal{L}) = 1$

By fact, $\operatorname{disc}_{\infty}(M) \leq 2$ eventually.

*EL*15 showed this happens for $n \geq \Omega(\binom{m}{t} \log \binom{m}{t})$. exponential dependence on t!

This work: $n = \Omega(m^3 \log^2 m)$

For a given random variable X, how large must n be before $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability?

t-sparse vectors, ℓ_{∞}

- \mathcal{L} is $\{ \boldsymbol{x} \in \mathbb{Z}^m : \sum x_i \equiv 0 \mod t \}$
- $\rho_{\infty}(\mathcal{L}) = 1$

By fact, $\operatorname{disc}_{\infty}(M) \leq 2$ eventually.

*EL*15 showed this happens for $n \ge \Omega(\binom{m}{t} \log \binom{m}{t})$. exponential

dependence on t!

This work: $n = \Omega(m^3 \log^2 m)$

For a given random variable X, how large must n be before $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability?

t-sparse vectors, ℓ_{∞}

- \mathcal{L} is $\{ \boldsymbol{x} \in \mathbb{Z}^m : \sum x_i \equiv 0 \mod t \}$
- $\rho_{\infty}(\mathcal{L}) = 1$

By fact, $\operatorname{disc}_{\infty}(M) \leq 2$ eventually.

*EL*15 showed this happens for $n \ge \Omega(\binom{m}{t} \log \binom{m}{t})$. exponential dependence on t!

This work: $n = \Omega(m^3 \log^2 m)$

Our results

Our Results

Random *t*-sparse matrices:

Theorem (FS18)

Let M be a random t-sparse matrix. If $n = \Omega(m^3 \log^2 m)$, then

$$\mathsf{disc}_\infty({\color{red} \textit{M}}) \leq 2$$

with probability at least $1 - O\left(\sqrt{\frac{m \log n}{n}}\right)$.

Actually usually $\operatorname{\mathsf{disc}}_\infty(M) = 1$

Related work: Hoberg and Rothvoss '18 obtained $\Omega(m^2 \log m)$ for M with i.i.d $\{0,1\}$ entries.

Our Results

Random *t*-sparse matrices:

Theorem (FS18)

Let M be a random t-sparse matrix. If $n = \Omega(m^3 \log^2 m)$, then

$$\mathsf{disc}_\infty({\color{red} \textit{M}}) \leq 2$$

with probability at least $1 - O\left(\sqrt{\frac{m \log n}{n}}\right)$.

Actually usually $\operatorname{disc}_{\infty}(M) = 1$.

Related work: Hoberg and Rothvoss '18 obtained $\Omega(m^2 \log m)$ for M with i.i.d $\{0,1\}$ entries.

Our Results

Random *t*-sparse matrices:

Theorem (FS18)

Let M be a random t-sparse matrix. If $n = \Omega(m^3 \log^2 m)$, then

$$\mathsf{disc}_\infty({\color{red} \mathit{M}}) \leq 2$$

with probability at least $1 - O\left(\sqrt{\frac{m \log n}{n}}\right)$.

Actually usually $\operatorname{disc}_{\infty}(M) = 1$.

Related work: Hoberg and Rothvoss '18 obtained $\Omega(m^2 \log m)$ for M with i.i.d $\{0,1\}$ entries.

\mathcal{L}, M, X as before, and define

1. $L = \max_{v \in \text{supp } X} \|v\|_2$

e.g. \sqrt{t} for t-sparse

2. distortion $R_* = \max_{\|v\|_2 = 1} \|v\|_*$

e.g.
$$\sqrt{m}$$
 for $*=\infty$

3. spanningness: s(X) "how far X is from proper sublattice.

will be $\leq 1/m$ for t-sparse

Theorem (FS18)

$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 for

$$n \geq N = \mathsf{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L})$$

\mathcal{L}, M, X as before, and define

1. $L = \max_{v \in \text{supp } X} \|v\|_2$

e.g. \sqrt{t} for t-sparse

2. distortion $R_* = \max_{\|v\|_2 = 1} \|v\|_*$.

e.g.
$$\sqrt{m}$$
 for $* = \infty$

3. spanningness: s(X) "how far X is from proper sublattice."

will be $\leq 1/m$ for t-sparse

Theorem (FS18)

$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 for

$$n \geq N = \mathsf{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L})$$

\mathcal{L}, M, X as before, and define

1. $L = \max_{v \in \text{supp } X} \|v\|_2$

e.g. \sqrt{t} for t-sparse

2. distortion $R_* = \max_{\|v\|_2 = 1} \|v\|_*$.

e.g.
$$\sqrt{m}$$
 for $*=\infty$

3. spanningness: s(X) "how far X is from proper sublattice."

will be $\leq 1/m$ for t-sparse

Theorem (FS18)

$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 for

$$n \geq N = \mathsf{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L})$$

\mathcal{L}, M, X as before, and define

1. $L = \max_{v \in \text{supp } X} \|v\|_2$

e.g. \sqrt{t} for t-sparse

2. distortion $R_* = \max_{\|v\|_2 = 1} \|v\|_*$.

e.g.
$$\sqrt{m}$$
 for $*=\infty$

3. spanningness: s(X) "how far X is from proper sublattice."

will be $\leq 1/m$ for t-sparse

Theorem (FS18)

$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 for

$$n \geq N = \mathsf{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L})$$

\mathcal{L}, M, X as before, and define

1. $L = \max_{v \in \text{supp } X} \|v\|_2$

e.g. \sqrt{t} for t-sparse

2. distortion $R_* = \max_{\|v\|_2 = 1} \|v\|_*$.

e.g.
$$\sqrt{m}$$
 for $* = \infty$

3. spanningness: s(X) "how far X is from proper sublattice."

will be $\leq 1/m$ for t-sparse

Theorem (FS18)

$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 for

$$n \ge N = \mathsf{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L})$$

\mathcal{L}, M, X as before, and define

1. $L = \max_{v \in \text{supp } X} ||v||_2$

e.g. \sqrt{t} for t-sparse

2. distortion $R_* = \max_{\|v\|_2 = 1} \|v\|_*$.

e.g.
$$\sqrt{m}$$
 for $* = \infty$

3. spanningness: s(X) "how far X is from proper sublattice."

will be $\leq 1/m$ for t-sparse

Theorem (FS18)

$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 for

$$n \geq N = \mathsf{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L})$$

\mathcal{L}, M, X as before, and define

1. $L = \max_{v \in \text{supp } X} \|v\|_2$

e.g. \sqrt{t} for t-sparse

2. distortion $R_* = \max_{\|v\|_2 = 1} \|v\|_*$.

e.g.
$$\sqrt{m}$$
 for $* = \infty$

3. spanningness: s(X) "how far X is from proper sublattice."

will be $\leq 1/m$ for *t*-sparse

Theorem (FS18)

$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 for

$$n \geq N = \mathsf{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L})$$

 \mathcal{L}, M, X as before, and define

1. $L = \max_{v \in \text{supp } X} \|v\|_2$

e.g. \sqrt{t} for t-sparse

2. distortion $R_* = \max_{\|v\|_2 = 1} \|v\|_*$.

e.g.
$$\sqrt{m}$$
 for $* = \infty$

3. spanningness: s(X) "how far X is from proper sublattice."

will be $\leq 1/m$ for *t*-sparse

Theorem (FS18)

Suppose $\mathbb{E}XX^{\dagger} = I_m$. Then $\mathrm{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with probability

$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 for

$$n \geq N = \text{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L}).$$

C

To apply the theorem to non-isotropic X, consider the transformed r.v. $\Sigma^{-1/2}X$, where $\Sigma=\mathbb{E}XX^{\dagger}$.

Need to show: for most *fixed* M, the r.v. $M\mathbf{y}$, $\mathbf{y} \in_{R} \{\pm 1\}^{n}$, gets within $2\rho_{*}(\mathcal{L})$ of the origin with positive probability.

Use local central limit theorem:

 Intuitively the My (sampled at same time) approaches lattice Gaussian:

$$\Pr[M\mathbf{y} = \lambda] \propto e^{-\frac{1}{2}\lambda^{\dagger}\Sigma^{-1}\lambda}$$

for $\lambda \in M\mathbf{1} + 2\mathcal{L}$

- 2. For most M, My also behaves like this!
- 3. Then done: $\lambda \in M\mathbf{1} + 2\mathcal{L}$ contains, near origin, elements of *-norm $2\rho_*(\mathcal{L})$.

Need to show: for most fixed M, the r.v. $M\mathbf{y}$, $\mathbf{y} \in_{R} \{\pm 1\}^{n}$, gets within $2\rho_{*}(\mathcal{L})$ of the origin with positive probability.

Use local central limit theorem:

 Intuitively the My (sampled at same time) approaches lattice Gaussian:

$$\Pr[M\mathbf{y} = \lambda] \propto e^{-\frac{1}{2}\lambda^{\dagger}\Sigma^{-1}\lambda}$$

for $\lambda \in M\mathbf{1} + 2\mathcal{L}$

- 2. For most M, My also behaves like this!
- 3. Then done: $\lambda \in M\mathbf{1} + 2\mathcal{L}$ contains, near origin, elements of *-norm $2\rho_*(\mathcal{L})$.

Need to show: for most fixed M, the r.v. $M\mathbf{y}$, $\mathbf{y} \in_{R} \{\pm 1\}^{n}$, gets within $2\rho_{*}(\mathcal{L})$ of the origin with positive probability.

Use local central limit theorem:

$$\Pr[M\mathbf{y} = \lambda] \propto e^{-\frac{1}{2}\lambda^{\dagger}\Sigma^{-1}\lambda}$$

for
$$\lambda \in M1 + 2\mathcal{L}$$

- 2. For most M, My also behaves like this!
- 3. Then done: $\lambda \in M\mathbf{1} + 2\mathcal{L}$ contains, near origin, elements of *-norm $2\rho_*(\mathcal{L})$.

Need to show: for most fixed M, the r.v. $M\mathbf{y}$, $\mathbf{y} \in_{R} \{\pm 1\}^{n}$, gets within $2\rho_{*}(\mathcal{L})$ of the origin with positive probability.

Use local central limit theorem:

$$\Pr[M\mathbf{y} = \lambda] \propto e^{-\frac{1}{2}\lambda^{\dagger}\Sigma^{-1}\lambda}$$

for
$$\lambda \in M1 + 2\mathcal{L}$$

- 2. For most M, My also behaves like this!
- 3. Then done: $\lambda \in M\mathbf{1} + 2\mathcal{L}$ contains, near origin, elements of *-norm $2\rho_*(\mathcal{L})$.

Need to show: for most fixed M, the r.v. $M\mathbf{y}$, $\mathbf{y} \in_{R} \{\pm 1\}^{n}$, gets within $2\rho_{*}(\mathcal{L})$ of the origin with positive probability.

Use local central limit theorem:

$$\Pr[M\mathbf{y} = \lambda] \propto e^{-\frac{1}{2}\lambda^{\dagger}\Sigma^{-1}\lambda}$$

for
$$\lambda \in M1 + 2\mathcal{L}$$

- 2. For most M, My also behaves like this!
- 3. Then done: $\lambda \in M\mathbf{1} + 2\mathcal{L}$ contains, near origin, elements of *-norm $2\rho_*(\mathcal{L})$.

Need to show: for most fixed M, the r.v. $M\mathbf{y}$, $\mathbf{y} \in_{R} \{\pm 1\}^{n}$, gets within $2\rho_{*}(\mathcal{L})$ of the origin with positive probability.

Use local central limit theorem:

$$\Pr[M\mathbf{y} = \lambda] \propto e^{-\frac{1}{2}\lambda^{\dagger}\Sigma^{-1}\lambda}$$

for
$$\lambda \in M1 + 2\mathcal{L}$$

- 2. For most M, My also behaves like this!
- 3. Then done: $\lambda \in M\mathbf{1} + 2\mathcal{L}$ contains, near origin, elements of *-norm $2\rho_*(\mathcal{L})$.

- ullet Proof of LCLT pprox proof of LCLT in [Kuperberg, Lovett, Peled, '12].
- Differences:
 - theirs was for FIXED very wide matrices.
 - Ours holds for MOST less wide matrices.

- \bullet Proof of LCLT \approx proof of LCLT in [Kuperberg, Lovett, Peled, '12].
- Differences:
 - theirs was for FIXED very wide matrices.
 - Ours holds for MOST less wide matrices.

- Proof of LCLT ≈ proof of LCLT in [Kuperberg, Lovett, Peled, '12].
- Differences:
 - theirs was for FIXED very wide matrices.
 - Ours holds for MOST less wide matrices.

- ullet Proof of LCLT pprox proof of LCLT in [Kuperberg, Lovett, Peled, '12].
- Differences:
 - theirs was for FIXED very wide matrices.
 - Ours holds for MOST less wide matrices.

Motivation for our LCLT

Obstruction to LCLTs:

If X lies on a proper sublattice $\mathcal{L}' \subsetneq \mathcal{L}$, in trouble.

Need an approximate version of the assumption that this doesn't happen.

Definition

Dual lattice: $\mathcal{L}^* := \{ \boldsymbol{\theta} : \forall \boldsymbol{\lambda} \in \mathcal{L}, \langle \boldsymbol{\lambda}, \boldsymbol{\theta} \rangle \in \mathbb{Z} \}.$

Definition

$$f_X(heta) := \sqrt{\mathbb{E}[|\langle X, heta
angle \ \mathsf{mod} \ 1|^2]}$$
, where $\mathsf{mod} \, 1 o [-1/2, 1/2)$

$$f_X(\theta) = 0 \Longrightarrow \theta \in \mathcal{L}^*.$$

$$f_X(\theta) \approx 0 \Longrightarrow \langle X, \theta \rangle \approx \in \mathbb{Z}.$$

Thus, obstruction is θ far from \mathcal{L}^* with $f_X(\theta)$ small.

Definition

Dual lattice: $\mathcal{L}^* := \{ \boldsymbol{\theta} : \forall \boldsymbol{\lambda} \in \mathcal{L}, \langle \boldsymbol{\lambda}, \boldsymbol{\theta} \rangle \in \mathbb{Z} \}.$

Definition

$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, heta
angle \ \mathsf{mod} \ 1|^2]}$$
, where $\mathsf{mod} \ 1 o [-1/2, 1/2)$

$$f_X(\theta)=0\Longrightarrow \theta\in\mathcal{L}^*$$

$$f_X(\theta) \approx 0 \Longrightarrow \langle X, \theta \rangle \approx \in \mathbb{Z}.$$

Thus, obstruction is θ far from \mathcal{L}^* with $f_X(\theta)$ small

Definition

Dual lattice: $\mathcal{L}^* := \{ \boldsymbol{\theta} : \forall \boldsymbol{\lambda} \in \mathcal{L}, \langle \boldsymbol{\lambda}, \boldsymbol{\theta} \rangle \in \mathbb{Z} \}.$

Definition

$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \bmod 1|^2]}$$
, where $\bmod 1 o [-1/2, 1/2)$

$$f_X(\theta) = 0 \Longrightarrow \theta \in \mathcal{L}^*.$$

$$f_X(\theta) \approx 0 \Longrightarrow \langle X, \theta \rangle \approx \in \mathbb{Z}$$

Thus, obstruction is θ far from \mathcal{L}^* with $f_X(\theta)$ small

Definition

Dual lattice: $\mathcal{L}^* := \{ \boldsymbol{\theta} : \forall \boldsymbol{\lambda} \in \mathcal{L}, \langle \boldsymbol{\lambda}, \boldsymbol{\theta} \rangle \in \mathbb{Z} \}.$

Definition

$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \bmod 1|^2]}$$
, where $\bmod 1 o [-1/2, 1/2)$

$$f_X(\theta) = 0 \Longrightarrow \theta \in \mathcal{L}^*.$$

$$f_X(\theta) \approx 0 \Longrightarrow \langle X, \theta \rangle \approx \in \mathbb{Z}.$$

Thus, obstruction is heta far from \mathcal{L}^* with $f_X(heta)$ small

Definition

Dual lattice: $\mathcal{L}^* := \{ \boldsymbol{\theta} : \forall \boldsymbol{\lambda} \in \mathcal{L}, \langle \boldsymbol{\lambda}, \boldsymbol{\theta} \rangle \in \mathbb{Z} \}.$

Definition

$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \bmod 1|^2]}$$
, where $\bmod 1 o [-1/2, 1/2)$

$$f_X(\theta) = 0 \Longrightarrow \theta \in \mathcal{L}^*$$
.

$$f_X(\theta) \approx 0 \Longrightarrow \langle X, \theta \rangle \approx \in \mathbb{Z}.$$

Thus, obstruction is θ far from \mathcal{L}^* with $f_X(\theta)$ small.

Spanningness: recall
$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$$

Say θ is pseudodual if

$$f_X(\boldsymbol{\theta}) \leq \frac{1}{2} d(\boldsymbol{\theta}, \mathcal{L}^*).$$

(Why pseudodual? Near \mathcal{L}^* , $f_X(\theta) \approx d(\theta, \mathcal{L}^*)$.)

Spanningness:

$$s(X) := \inf_{\mathcal{L}^* \not\ni \theta \text{ pseudodual}} f_X(\theta).$$

Spanningness: recall
$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$$

Say θ is pseudodual if

$$f_X(\boldsymbol{\theta}) \leq \frac{1}{2} d(\boldsymbol{\theta}, \mathcal{L}^*).$$

(Why pseudodual? Near \mathcal{L}^* , $f_X(\theta) \approx \frac{d}{d}(\theta, \mathcal{L}^*)$.)

Spanningness:

$$s(X) := \inf_{\mathcal{L}^* \not\ni \theta \text{ pseudodual}} f_X(\theta).$$

Spanningness: recall
$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$$

Say θ is pseudodual if

$$f_X(\theta) \leq \frac{1}{2} d(\theta, \mathcal{L}^*).$$

(Why pseudodual? Near \mathcal{L}^* , $f_X(\theta) \approx \frac{d}{d}(\theta, \mathcal{L}^*)$.)

Spanningness:

$$s(X) := \inf_{\mathcal{L}^* \not\ni \theta \text{ pseudodual}} f_X(\theta).$$

For a matrix M, define the multidimensional Gaussian density

$$G_{\mathbf{M}}(\lambda) = \frac{2^{m/2} \det(\mathcal{L})}{\pi^{m/2} \sqrt{\det(\mathbf{M} \mathbf{M}^{\dagger})}} e^{-2\lambda^{\dagger} (\mathbf{M} \mathbf{M}^{\dagger})^{-1} \lambda}$$

on \mathbb{R}^m (Gaussian with covariance $\frac{1}{2}MM^{\dagger}$).

Theorem (FS18)

With probability
$$1-O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 over the choice of M ,

- $1. \ \ \frac{1}{2}nI_m \leq MM^{\dagger} \leq 2nI_m$
- 2.

$$\left| \Pr_{y_i \in \{\pm 1/2\}} [\mathbf{M} \mathbf{y} = \lambda] - G_{\mathbf{M}}(\lambda) \right| = G_{\mathbf{M}}(0) \cdot O\left(\frac{m^2 L^2}{n}\right)$$

prvided
$$n \ge N_0 = \text{poly}(m, s(X)^{-1}, L, \log \det \mathcal{L})$$
.

For a matrix M, define the multidimensional Gaussian density

$$G_{\mathbf{M}}(\lambda) = \frac{2^{m/2} \det(\mathcal{L})}{\pi^{m/2} \sqrt{\det(\mathbf{M} \mathbf{M}^{\dagger})}} e^{-2\lambda^{\dagger} (\mathbf{M} \mathbf{M}^{\dagger})^{-1} \lambda}$$

on \mathbb{R}^m (Gaussian with covariance $\frac{1}{2}MM^{\dagger}$).

Theorem (FS18)

With probability $1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$ over the choice of M,

- $1. \ \ \frac{1}{2}nI_m \leq MM^{\dagger} \leq 2nI_m$
- 2.

$$\left| \Pr_{y_i \in \{\pm 1/2\}} [\mathbf{M} \mathbf{y} = \boldsymbol{\lambda}] - G_{\mathbf{M}}(\lambda) \right| = G_{\mathbf{M}}(0) \cdot O\left(\frac{m^2 L^2}{n}\right)$$

prvided
$$n \ge N_0 = \text{poly}(m, s(X)^{-1}, L, \log \det \mathcal{L})$$
.

For a matrix M, define the multidimensional Gaussian density

$$G_{\mathbf{M}}(\lambda) = \frac{2^{m/2} \det(\mathcal{L})}{\pi^{m/2} \sqrt{\det(\mathbf{M} \mathbf{M}^{\dagger})}} e^{-2\lambda^{\dagger} (\mathbf{M} \mathbf{M}^{\dagger})^{-1} \lambda}$$

on \mathbb{R}^m (Gaussian with covariance $\frac{1}{2}MM^{\dagger}$).

Theorem (FS18)

With probability $1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$ over the choice of M,

- 1. $\frac{1}{2}nI_m \leq MM^{\dagger} \leq 2nI_m$
- 2.

$$\left| \Pr_{y_i \in \{\pm 1/2\}} [\mathbf{M} \mathbf{y} = \boldsymbol{\lambda}] - G_{\mathbf{M}}(\lambda) \right| = G_{\mathbf{M}}(0) \cdot O\left(\frac{m^2 L^2}{n}\right)$$

prvided
$$n \geq N_0 = \text{poly}(m, s(X)^{-1}, L, \log \det \mathcal{L})$$
.

For a matrix M, define the multidimensional Gaussian density

$$G_{\mathbf{M}}(\lambda) = \frac{2^{m/2} \det(\mathcal{L})}{\pi^{m/2} \sqrt{\det(\mathbf{M}\mathbf{M}^{\dagger})}} e^{-2\lambda^{\dagger} (\mathbf{M}\mathbf{M}^{\dagger})^{-1} \lambda}$$

on \mathbb{R}^m (Gaussian with covariance $\frac{1}{2}MM^{\dagger}$).

Theorem (FS18)

With probability $1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$ over the choice of M,

- 1. $\frac{1}{2}nI_m \leq MM^{\dagger} \leq 2nI_m$
- 2.

$$\left| \Pr_{y_i \in \{\pm 1/2\}} [\mathbf{M} \mathbf{y} = \lambda] - G_{\mathbf{M}}(\lambda) \right| = G_{\mathbf{M}}(0) \cdot O\left(\frac{m^2 L^2}{n}\right)$$

For a matrix M, define the multidimensional Gaussian density

$$G_{\mathbf{M}}(\lambda) = \frac{2^{m/2} \det(\mathcal{L})}{\pi^{m/2} \sqrt{\det(\mathbf{M} \mathbf{M}^{\dagger})}} e^{-2\lambda^{\dagger} (\mathbf{M} \mathbf{M}^{\dagger})^{-1} \lambda}$$

on \mathbb{R}^m (Gaussian with covariance $\frac{1}{2}MM^{\dagger}$).

Theorem (FS18)

With probability
$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 over the choice of M ,

- 1. $\frac{1}{2}nI_m \leq MM^{\dagger} \leq 2nI_m$
- 2.

$$\left| \Pr_{y_i \in \{\pm 1/2\}} [\mathbf{M} \mathbf{y} = \boldsymbol{\lambda}] - G_{\mathbf{M}}(\lambda) \right| = G_{\mathbf{M}}(0) \cdot O\left(\frac{m^2 L^2}{n}\right)$$

prvided
$$n \geq N_0 = \text{poly}(m, s(X)^{-1}, L, \log \det \mathcal{L})$$
.

Proof of local limit theorem

Definition (Fourier transform!)

If Y is a random variable on \mathbb{R}^m , $\widehat{Y}: \mathbb{R}^m \to \mathbb{C}$ is

$$\widehat{Y}(\theta) = \mathbb{E}[e^{2\pi i \langle Y, \theta \rangle}].$$

Fact (Fourier inversion:)

if Y takes values on L, then

$$\mathsf{Pr}(Y=oldsymbol{\lambda}) = \mathsf{det}(\mathcal{L}) \int_{D} \widehat{Y}(oldsymbol{ heta}) e^{-2\pi i \langle oldsymbol{\lambda}, oldsymbol{ heta}
angle} doldsymbol{ heta}$$

Here D is any fundamental domain of the dual lattice \mathcal{L}^*

Neat/obvious: true even if Y takes values on an affine shift $v + \mathcal{L}$.

Definition (Fourier transform!)

If Y is a random variable on \mathbb{R}^m , $\widehat{Y}: \mathbb{R}^m \to \mathbb{C}$ is

$$\widehat{Y}(\theta) = \mathbb{E}[e^{2\pi i \langle Y, \theta \rangle}].$$

Fact (Fourier inversion:)

if Y takes values on L, then

$$\Pr(Y = \lambda) = \det(\mathcal{L}) \int_{D} \widehat{Y}(\theta) e^{-2\pi i \langle \lambda, \theta \rangle} d\theta$$

Here D is any fundamental domain of the dual lattice \mathcal{L}^* .

Neat/obvious: true even if Y takes values on an affine shift $v + \mathcal{L}$.

Definition (Fourier transform!)

If Y is a random variable on \mathbb{R}^m , $\widehat{Y}: \mathbb{R}^m \to \mathbb{C}$ is

$$\widehat{Y}(\theta) = \mathbb{E}[e^{2\pi i \langle Y, \theta \rangle}].$$

Fact (Fourier inversion:)

if Y takes values on \mathcal{L} , then

$$\Pr(Y = \lambda) = \det(\mathcal{L}) \int_{D} \widehat{Y}(\theta) e^{-2\pi i \langle \lambda, \theta \rangle} d\theta$$

Here D is any fundamental domain of the dual lattice \mathcal{L}^* .

Neat/obvious: true even if Y takes values on an affine shift $v + \mathcal{L}$.

Take Fourier transform

For fixed M, Fourier transform of $M\mathbf{y}$ for $\mathbf{y} \in_{R} \{\pm 1/2\}$? Say i^{th} column is \mathbf{x}_{i} .

$$\widehat{My}(\theta) = \mathbb{E}_{\mathbf{y}} \left[e^{2\pi i \langle \sum_{j=1}^{n} y_{j} \mathbf{x}_{j}, \theta \rangle} \right]$$

$$= \prod_{j=1}^{n} \mathbb{E}_{y_{j}} [e^{2\pi i y_{j} \langle \mathbf{x}_{j}, \theta \rangle}]$$

$$= \prod_{j=1}^{n} \cos(\pi \langle \mathbf{x}_{j}, \theta \rangle).$$

Let $\varepsilon > 0$, to be picked with hindsight (think $n^{-1/4}$)

$$\left| \frac{1}{\det \mathcal{L}} \Pr(My = \lambda) - G_M(\lambda) \right| = \left| \int_D e^{-2\pi i \langle \lambda, \theta \rangle} (\widehat{My}(\theta) - \widehat{G_M}(\theta)) d\theta \right|$$

$$\leq \int_{B(\varepsilon)} |\widehat{My}(\theta) - \widehat{G_M}(\theta)| d\theta \qquad (I_1)$$

$$+ \int_{\mathbb{R}^m \setminus B(\varepsilon)} |\widehat{G_M}(\theta)| d\theta \qquad (I_2)$$

$$+ \int_{D \setminus B(\varepsilon)} |\widehat{My}(\theta)| d\theta \tag{I_3}$$

If $D \subset B(\varepsilon)$. D is the Voronoi cell in \mathcal{L}^* .

rest of the proof is to show these are small

- First two easy from the eigenvalue property.
- $\mathbb{E}_M[I_3] \leq e^{-\varepsilon^2 n}$ if $\varepsilon \leq s(X)$.

Let $\varepsilon > 0$, to be picked with hindsight (think $n^{-1/4}$)

$$\left| \frac{1}{\det \mathcal{L}} \Pr(My = \lambda) - G_M(\lambda) \right| = \left| \int_D e^{-2\pi i \langle \lambda, \theta \rangle} (\widehat{My}(\theta) - \widehat{G_M}(\theta)) d\theta \right|$$

$$\leq \int_{B(\varepsilon)} |\widehat{My}(\theta) - \widehat{G_M}(\theta)| d\theta \qquad (I_1)$$

$$+ \int_{\mathbb{R}^m \setminus B(\varepsilon)} |\widehat{G_M}(\theta)| d\theta \qquad (I_2)$$

$$+ \int_{D \setminus B(\varepsilon)} |\widehat{My}(\theta)| d\theta \tag{I_3}$$

If $D \subset B(\varepsilon)$. D is the Voronoi cell in \mathcal{L}^* .

rest of the proof is to show these are small

- First two easy from the eigenvalue property.
- $\mathbb{E}_M[I_3] \leq e^{-\varepsilon^2 n}$ if $\varepsilon \leq s(X)$.

Let $\varepsilon > 0$, to be picked with hindsight (think $n^{-1/4}$)

$$\left| \frac{1}{\det \mathcal{L}} \Pr(My = \lambda) - G_M(\lambda) \right| = \left| \int_D e^{-2\pi i \langle \lambda, \theta \rangle} (\widehat{My}(\theta) - \widehat{G_M}(\theta)) d\theta \right|$$

$$\leq \int_{B(\varepsilon)} |\widehat{My}(\theta) - \widehat{G_M}(\theta)| d\theta \qquad (I_1)$$

$$+ \int_{\mathbb{R}^m \setminus B(\varepsilon)} |\widehat{G_M}(\theta)| d\theta \tag{I_2}$$

$$+ \int_{D \setminus B(\varepsilon)} |\widehat{My}(\theta)| d\theta \tag{I_3}$$

If $D \subset B(\varepsilon)$. D is the Voronoi cell in \mathcal{L}^* .

rest of the proof is to show these are small!

- First two easy from the eigenvalue property.
- $\mathbb{E}_M[I_3] \leq e^{-\varepsilon^2 n}$ if $\varepsilon \leq s(X)$.

Let $\varepsilon > 0$, to be picked with hindsight (think $n^{-1/4}$)

$$\left| \frac{1}{\det \mathcal{L}} \Pr(My = \lambda) - G_M(\lambda) \right| = \left| \int_D e^{-2\pi i \langle \lambda, \theta \rangle} (\widehat{My}(\theta) - \widehat{G_M}(\theta)) d\theta \right|$$

$$\leq \int_{B(\varepsilon)} |\widehat{My}(\theta) - \widehat{G_M}(\theta)| d\theta \qquad (I_1)$$

$$+ \int_{\mathbb{R}^m \setminus B(\varepsilon)} |\widehat{G_M}(\theta)| d\theta \qquad (I_2)$$

$$+ \int_{D \setminus B(\varepsilon)} |\widehat{My}(\theta)| d\theta \tag{I_3}$$

If $D \subset B(\varepsilon)$. D is the Voronoi cell in \mathcal{L}^* .

rest of the proof is to show these are small!

- First two easy from the eigenvalue property.
- $\mathbb{E}_M[I_3] \leq e^{-\varepsilon^2 n}$ if $\varepsilon \leq s(X)$.

Let $\varepsilon > 0$, to be picked with hindsight (think $n^{-1/4}$)

$$\left| \frac{1}{\det \mathcal{L}} \Pr(My = \lambda) - G_M(\lambda) \right| = \left| \int_D e^{-2\pi i \langle \lambda, \theta \rangle} (\widehat{My}(\theta) - \widehat{G_M}(\theta)) d\theta \right|$$

$$\leq \int_{B(\varepsilon)} |\widehat{My}(\theta) - \widehat{G_M}(\theta)| d\theta \qquad (I_1)$$

$$+ \int_{\mathbb{R}^m \setminus B(\varepsilon)} |\widehat{G_M}(\theta)| d\theta \qquad (I_2)$$

$$+ \int_{D \setminus B(\varepsilon)} |\widehat{My}(\theta)| d\theta \tag{I_3}$$

If $D \subset B(\varepsilon)$. D is the Voronoi cell in \mathcal{L}^* .

rest of the proof is to show these are small!

- First two easy from the eigenvalue property.
- $\mathbb{E}_M[I_3] \leq e^{-\varepsilon^2 n}$ if $\varepsilon \leq s(X)$.

Applying the main theorem

Random *t*-sparse matrices

From now on we just want to bound the spanningness. We'll do it for t-sparse vectors - the framework is that of [KLP12].

Lemma

Let X be a random t-sparse vector. Then $s(X) = \Omega(\frac{1}{m})$.

Random *t*-sparse matrices

From now on we just want to bound the spanningness. We'll do it for t-sparse vectors - the framework is that of [KLP12].

Lemma

Let X be a random t-sparse vector. Then $s(X) = \Omega(\frac{1}{m})$.

Recall what $s(X) \ge \frac{1}{m}$ means. We need to show that if θ is pseudodual, i.e., $f_X(\theta) \le \|\theta\|/2$ but not dual, then $f_X(\theta) \ge \alpha/m$.

Proof outline: (recall
$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$$
)

- if all $|\langle \mathbf{x}, \theta \rangle \mod 1| \leq 1/4$ for all $x \in \operatorname{supp} X$, then $f_X(\theta) \geq d(\theta, \mathcal{L}^*)$, so θ not pseudodual unless dual.
- X is $\frac{1}{2m}$ -spreading: for all θ ,

$$f_X(oldsymbol{ heta}) \geq rac{1}{2m} \sup_{\mathbf{x} \in \mathtt{SUDD}\, X} |\langle \mathbf{x}, oldsymbol{ heta}
angle m{ ext{mod }} 1$$

Together, if heta is pseudodual, then $f_X(heta) \geq rac{1}{8m}$.

Recall what $s(X) \ge \frac{1}{m}$ means. We need to show that if θ is pseudodual, i.e., $f_X(\theta) \le \|\theta\|/2$ but not dual, then $f_X(\theta) \ge \alpha/m$.

Proof outline: (recall
$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$$
)

- if all $|\langle \mathbf{x}, \theta \rangle \mod 1| \leq 1/4$ for all $x \in \operatorname{supp} X$, then $f_X(\theta) \geq d(\theta, \mathcal{L}^*)$, so θ not pseudodual unless dual.
- X is $\frac{1}{2m}$ -spreading: for all θ ,

$$f_X(\boldsymbol{\theta}) \geq \frac{1}{2m} \sup_{x \in \text{supp } X} |\langle \boldsymbol{x}, \boldsymbol{\theta} \rangle \mod 1$$

Together, if heta is pseudodual, then $f_X(heta) \geq rac{1}{8m}$.

Recall what $s(X) \ge \frac{1}{m}$ means. We need to show that if θ is pseudodual, i.e., $f_X(\theta) \le \|\theta\|/2$ but not dual, then $f_X(\theta) \ge \alpha/m$.

Proof outline: (recall
$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$$
)

- if all $|\langle x, \theta \rangle \mod 1| \le 1/4$ for all $x \in \operatorname{supp} X$, then $f_X(\theta) \ge d(\theta, \mathcal{L}^*)$, so θ not pseudodual unless dual.
- X is $\frac{1}{2m}$ -spreading: for all θ ,

$$f_X(\boldsymbol{\theta}) \geq \frac{1}{2m} \sup_{x \in \text{supp } X} |\langle \boldsymbol{x}, \boldsymbol{\theta} \rangle \mod 1$$

Together, if θ is pseudodual, then $f_X(\theta) \geq \frac{1}{8m}$.

Recall what $s(X) \ge \frac{1}{m}$ means. We need to show that if θ is pseudodual, i.e., $f_X(\theta) \le \|\theta\|/2$ but not dual, then $f_X(\theta) \ge \alpha/m$.

Proof outline: (recall
$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$$
)

- if all $|\langle \mathbf{x}, \theta \rangle \mod 1| \leq 1/4$ for all $x \in \operatorname{supp} X$, then $f_X(\theta) \geq d(\theta, \mathcal{L}^*)$, so θ not pseudodual unless dual.
- X is $\frac{1}{2m}$ -spreading: for all θ ,

$$f_X(oldsymbol{ heta}) \geq rac{1}{2m} \sup_{x \in \mathsf{supp}\, X} |\langle oldsymbol{x}, oldsymbol{ heta}
angle m{ ext{mod }} 1|$$

Together, if heta is pseudodual, then $f_X(heta) \geq rac{1}{8m}$.

Recall what $s(X) \ge \frac{1}{m}$ means. We need to show that if θ is pseudodual, i.e., $f_X(\theta) \le \|\theta\|/2$ but not dual, then $f_X(\theta) \ge \alpha/m$.

Proof outline: (recall
$$f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$$
)

- if all $|\langle \mathbf{x}, \boldsymbol{\theta} \rangle \mod 1| \leq 1/4$ for all $x \in \operatorname{supp} X$, then $f_X(\boldsymbol{\theta}) \geq d(\boldsymbol{\theta}, \mathcal{L}^*)$, so $\boldsymbol{\theta}$ not pseudodual unless dual.
- X is $\frac{1}{2m}$ -spreading: for all θ ,

$$f_X(oldsymbol{ heta}) \geq rac{1}{2m} \sup_{x \in \mathtt{SUDD}\, X} |\langle oldsymbol{x}, oldsymbol{ heta}
angle m{ ext{mod 1}}|$$

Together, if θ is pseudodual, then $f_X(\theta) \geq \frac{1}{8m}$.

Showing *X* is spreading

- 1. The argument in [KLP12] shows that X is $\frac{1}{(m \log m)^{3/2}}$ -spreading, but is much more general.
- 2. A direct proof yields the $\frac{1}{m}$

Showing *X* is spreading

- 1. The argument in [KLP12] shows that X is $\frac{1}{(m \log m)^{3/2}}$ -spreading, but is much more general.
- 2. A direct proof yields the $\frac{1}{m}$.

Random unit vectors

A result for a non-lattice distribution:

Theorem (FS18)

Let M be a matrix with i.i.d random unit vector columns. Then

$$\operatorname{disc} M = O(e^{-\sqrt{\frac{n}{m^3}}})$$

with probability at least
$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 provided $n = \Omega(m^3\log^2 m)$

Random unit vectors

A result for a non-lattice distribution:

Theorem (FS18)

Let M be a matrix with i.i.d random unit vector columns. Then

$$\operatorname{disc} M = O(e^{-\sqrt{\frac{n}{m^3}}})$$

with probability at least
$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 provided $n = \Omega(m^3\log^2 m)$

Random unit vectors

A result for a non-lattice distribution:

Theorem (FS18)

Let M be a matrix with i.i.d random unit vector columns. Then

$$\operatorname{disc} M = O(e^{-\sqrt{\frac{n}{m^3}}})$$

with probability at least
$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 provided $n = \Omega(m^3\log^2 m)$,

Open problems

- Can the colorings guaranteed by our theorems be produced efficiently? The probability a random coloring is good decreases with n as \sqrt{n}^{-m} , which is not good enough.
- As a function of m, how many columns are required such that disc(M) ≤ 2 for t-sparse vectors with high probability?

